Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 976
Filtrar
Mais filtros

Eixos temáticos
Intervalo de ano de publicação
1.
Plant Physiol ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38688011

RESUMO

Proanthocyanidins (PAs) are an important group of flavonoids that contribute to astringency, color, and flavor in grape (Vitis vinifera) and wines. They also play a crucial role in enhancing plant resistance to various stresses. However, the underlying regulatory mechanism governing PAs biosynthesis, particularly in relation to conferring resistance to powdery mildew, has not been extensively explored. This study focused on identifying a key player in PAs biosynthesis, namely the plant U-box (PUB) E3 ubiquitin ligase VvPUB26. We discovered that overexpression of VvPUB26 in grape leads to a significant increase in PAs content, whereas interfering with VvPUB26 has the opposite effect. Additionally, our findings demonstrated that overexpression of VvPUB26 in transgenic grapevines enhances defense against powdery mildew, while interfering with VvPUB26 results in increased susceptibility to the pathogen. Interestingly, we observed that VvPUB26 interacts with the WRKY transcription factor VvWRKY24, thereby facilitating ubiquitination and degradation processes. Through RNA-Seq analysis, we found that VvWRKY24 primarily participates in secondary metabolites biosynthesis, metabolic pathways, and plant-pathogen interaction. Notably, VvWRKY24 directly interacts with the promoters of dihydroflavonol-4-reductase (DFR) and leucoanthocyanidin reductase (LAR) to inhibit PAs biosynthesis. Meanwhile, VvWRKY24 also influences the expression of MYB transcription factor genes related to PAs synthesis. In conclusion, our results unveil a regulatory module involving VvPUB26-VvWRKY24-VvDFR/VvLAR that plays a fundamental role in governing PAs biosynthesis in grapevines. These findings enhance our understanding of the relationship between PAs biosynthesis and defense mechanisms against powdery mildew.

2.
Toxicol Appl Pharmacol ; 489: 117016, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38925514

RESUMO

To elucidate the impact of CYP3A4 activity inhibition and genetic polymorphism on the metabolism of crizotinib. Enzymatic incubation systems for crizotinib were established, and Sprague-Dawley rats were utilized for in vivo experiments. Analytes were quantified using LC-MS/MS. Upon screening 122 drugs and natural compounds, proanthocyanidins emerged as inhibitor of crizotinib metabolism, exhibiting a relative inhibition rate of 93.7%. The IC50 values were 24.53 ± 0.32 µM in rat liver microsomes and 18.24 ± 0.12 µM in human liver microsomes. In vivo studies revealed that proanthocyanidins markedly affected the pharmacokinetic parameters of crizotinib. Co-administration led to a significant reduction in the AUC(0-t), Cmax of PF-06260182 (the primary metabolite of crizotinib), and the urinary metabolic ratio. This interaction is attributed to the mixed-type inhibition of liver microsome activity by proanthocyanidins. CYP3A4, being the principal metabolic enzyme for crizotinib, has its genetic polymorphisms significantly influencing crizotinib's pharmacokinetics. Kinetic data showed that the relative metabolic rates of crizotinib across 26 CYP3A4 variants ranged from 13.14% (CYP3A4.12, 13) to 188.57% (CYP3A4.33) when compared to the wild-type CYP3A4.1. Additionally, the inhibitory effects of proanthocyanidins varied between CYP3A4.12 and CYP3A4.33, when compared to the wild type. Our findings indicate that proanthocyanidins coadministration and CYP3A4 genetic polymorphism can significantly influence crizotinib metabolism.


Assuntos
Crizotinibe , Citocromo P-450 CYP3A , Interações Medicamentosas , Microssomos Hepáticos , Polimorfismo Genético , Ratos Sprague-Dawley , Crizotinibe/farmacocinética , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Animais , Humanos , Masculino , Microssomos Hepáticos/metabolismo , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/efeitos dos fármacos , Ratos , Piridinas/farmacocinética , Pirazóis/farmacocinética , Pirazóis/farmacologia
3.
World J Urol ; 42(1): 27, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38214795

RESUMO

BACKGROUND: Τhe adherence of p-fimbriated Escherichia coli (E. coli) to urothelial cells leading to recurrent urinary tract infections (rUTIs) may be prevented by proanthocyanidins (PACs) contained in American cranberries. PURPOSE: The purpose of this clinical trial was to assess the clinical utility of prophylactic use of high-dose PACs daily in women with a history of rUTIs. MATERIALS AND METHODS: 172 adult women with a history of rUTIs, defined as ≥ 2 within a 6-month period or ≥ 3 within a 12-month period were enrolled and randomized in two groups to receive either Cysticlean™ 240 mg or placebo for a 12-month period. Urine samples, vaginal and rectal swabs were collected at initial and quarterly study visits. The primary study endpoints were the number of urinary tract infections (UTIs) and changes in Quality of Life (QoL), assessed by the 36-Item Short Form Survey (SF-36) questionnaire. RESULTS: 160 adult women of median age 40 years old (range 19-82) were finally analyzed in this randomized, placebo-controlled, double-blinded clinical trial. In response to intervention, the number of UTIs was significantly lower (Incidence rate ratio IRR 0.49, p < 0.001) and QoL was slightly improved. The numbers of E. coli isolates detected in vaginal (IRR 0.71, p value < 0.001) and in rectal swabs (IRR 0.87, p value < 0.001) were also significantly decreased. No adverse events were reported. CONCLUSION: The daily use of Cysticlean™ 240 mg was associated with a reduction of UTIs and a prolongation of UTI-free survival compared to placebo treatment, supporting its use as prophylaxis in this patient population. TRIAL REGISTRATION: Clinicaltrials.gov, identifier NCT03032003.


Assuntos
Cistite , Infecções Urinárias , Vaccinium macrocarpon , Adulto , Humanos , Feminino , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Escherichia coli , Qualidade de Vida , Infecções Urinárias/epidemiologia , Infecções Urinárias/prevenção & controle , Infecções Urinárias/tratamento farmacológico , Cistite/prevenção & controle
4.
Artigo em Inglês | MEDLINE | ID: mdl-38761010

RESUMO

Lotus seed skin extract is rich in flavonoids, making it a promising candidate for developing health products. In a previous study, we found that proanthocyanidins from lotus seed skin, particularly proanthocyanidin B1 (PB1), can indirectly activate the Nrf2 signaling pathway, exerting an antioxidant effect. In this study, we isolate proanthocyanidins from lotus seed skin (PLS) using ethanol extraction and RP-HPLC identification, and investigate its effects on glycolipid metabolism both in vivo and in vitro. Our results demonstrate that PLS reduces body weight in high-fat diet (HFD) mice by decreasing feed efficiency. PLS also normalizes serum glucose, insulin secretion, glycosylated hemoglobin (HbA1c), and intraperitoneal glucose tolerance (IPGTT). Furthermore, PLS significantly improves blood lipid parameters and inhibits the expressions of six proinflammatory factors, including IL-1α, IL-1ß, IL-3, IL-6, IFN-γ and TNF-α in HFD mice. Additionally, analysis of fresh liver tissues reveals that PLS and PB1 induce the expressions of antioxidant proteins such as HO-1 and NQO1 by activating the p38-Nrf2 signaling pathway and inhibiting the NF-κB signaling pathway. In conclusion, proanthocyanidins from lotus seed skin regulate glycolipid metabolism disorders by targeting the p38/Nrf2/NF-κB signaling pathway. Our study offers a new approach for the high-value comprehensive utilization of lotus seed skin by-products and precise dietary intervention for metabolic syndrome.

5.
J Dairy Sci ; 107(5): 2690-2705, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37949399

RESUMO

The usage of food-derived polyphenols with different polarities has been limited by their instability and incompatibility. Therefore, a biocarrier was developed by co-assembly of whey protein isolate (WPI) and hydrophilic proanthocyanidin (PC) for loading hydrophobic pterostilbene (PTE). Such biocarrier has superior affinity for PTE than WPI alone, as determined by encapsulation efficiency and loading capacity assay, fluorescence quenching analysis, and molecular docking, whereas the assembly process was characterized by particle size and zeta potential, 3-dimensional fluorescence, and scanning electron microscopy. Circular dichroism and Fourier transform infrared spectroscopy spectra confirmed the α-helix to ß-sheet and random coil transition of proteins during the formation of nanocomplexes. Whey protein isolate acted as a mediator through altering the binding mode of PC and PTE, allowing them to perform significant synergistic effects in enhancing 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and 2,2-diphenyl-1-picrylhydrazyl radical scavenging and reducing H2O2-induced cell damage. This research may serve to develop new protein/polyphenol co-loading systems and offer a reliable nutritional fortification.

6.
Phytother Res ; 38(5): 2154-2164, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38391003

RESUMO

Proanthocyanidins (PCs) are natural antioxidant polyphenols and their effect on the regulation of blood lipids is still controversial. This study was conducted to evaluate the effect of PCs on lipid metabolism. We searched PubMed, Embase, Web of Science, Chinese biomedical literature service system, China National Knowledge Internet, and Wanfang Data with no time restriction until March 18, 2022, using various forms of "proanthocyanidins" and "blood lipid" search terms. Randomized controlled trials investigating the relationship between PCs and lipid metabolism were included. The standard system of Cochrane Collaboration was used to assess the quality of studies. We standardized mean differences (SMDs) with 95% confidence interval (CI) using the random-effects model, Cohen approach. Seventeen studies (17 trials, N = 1138) fulfilled the eligibility criteria. PCs significantly reduced triglyceride, and increased recombinant apolipoprotein A1. Subgroup analysis showed a significant reduction in triglycerides in older adults (≥60 years) and total cholesterol for participants who were not overweight or obese (body mass index <24). An intervention duration of greater than 8 weeks reduced triglyceride and low-density lipoprotein cholesterol levels but increased high-density lipoprotein cholesterol. Different doses of PCs could regulate triglycerides, high-density lipoprotein cholesterol and total cholesterol. PCs have beneficial effects on circulating lipids and may represent a new approach for treating or preventing lipid metabolism disorders. However, more high-quality studies are needed to confirm these results.


Assuntos
Proantocianidinas , Triglicerídeos , Proantocianidinas/farmacologia , Humanos , Triglicerídeos/sangue , Lipídeos/sangue , Ensaios Clínicos Controlados Aleatórios como Assunto , Metabolismo dos Lipídeos/efeitos dos fármacos , LDL-Colesterol/sangue , HDL-Colesterol/sangue , Apolipoproteína A-I/sangue , Colesterol/sangue , Antioxidantes/farmacologia
7.
Immunopharmacol Immunotoxicol ; : 1-11, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38772618

RESUMO

BACKGROUND: Systemic inflammatory response syndrome (SIRS) is an uncontrolled systemic inflammatory response. Proanthocyanidins (PC) is a general term of polyphenol compounds widely existed in blueberry fruits and can treat inflammation-related diseases. This study aimed to explore the regulatory effect of PC on lipopolysaccharide (LPS)-induced systemic inflammation and its potential mechanism, providing effective strategies for the further development of PC. METHODS: Here, RAW264.7 macrophages were stimulated with LPS to establish an inflammation model in vitro, while endotoxin shock mouse models were constructed by LPS in vivo. The function of PC was investigated by MTT, ELISA kits, H&E staining, immunohistochemistry, and Western blot analysis. RESULTS: Functionally, PC could demonstrate the potential to mitigate mortality in mice with endotoxin shock, as well as attenuated the levels of inflammatory cytokines (IL-6, TNF-α) and biochemical indicators (AST, ALT, CRE and BUN). Moreover, it had a significant protective effect on lung and kidney tissues damage. Mechanistically, PC exerted anti-inflammatory effects by inhibiting the activation of the NF-κB/NLRP3 signaling pathway. CONCLUSION: PC might have the potential ability of anti-inflammatory effects via modulation of the NF-κB/NLRP3 signaling pathway.

8.
Phytochem Anal ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860343

RESUMO

INTRODUCTION: Winegrape varieties Kotsifali, Limnio, and Vradiano OBJECTIVE: The aim of this study was to develop a liquid chromatographic quadrupole time-of-flight tandem mass spectrometric (LC-QTOF-MS/MS) method for the investigation of the anthocyanin and proanthocyanidin content of Greek grape varieties employing target and suspect screening strategies. METHODOLOGY: A novel LC-QTOF-MS/MS method was developed and validated to assess the anthocyanin content of Kotsifali, Limnio, and Vradiano grape varieties. Sixteen grape samples were collected from the main growing areas of each variety in Greece. The influence of the grape variety on the anthocyanin and proanthocyanidin composition of three Greek winegrapes was investigated using chemometrics. RESULTS: Excellent linearity (R2 > 0.99) was achieved for all the target analytes, and recoveries ranged between 90.1% and 119.1%. The limits of quantification (LOQs) and limits of detection (LODs) were calculated over the range of 0.020-0.40 mg/g and 0.010-0.13 mg/g, respectively. The RSD% was lower than 9.1% and 7.3% for intra-day and inter-day studies, respectively, indicating satisfactory trueness and precision. Target and suspect screening resulted in the identification of 5 and 26 anthocyanins, respectively. CONCLUSIONS: Kotsifali variety exhibited a higher concentration of anthocyanins compared with Vradiano and Limnio. Higher levels of mean degree of polymerization (mDp) and different percentage levels of prodelphinidins (%P) were established among the varieties.

9.
Int J Mol Sci ; 25(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38474198

RESUMO

Periodontitis is a bacteria-induced inflammatory disease characterized by the progressive destruction of periodontal supporting tissues. Periodontal ligament stem cells (PDLSCs) are capable of differentiating into osteoblasts, which is an important stem cell source for endogenous periodontal tissue regeneration. Lysine lactylation (Kla) is a novel post-translational modification of proteins that is recently thought to be associated with osteogenic differentiation. Here, we found that lactylation levels are reduced both in the periodontal tissue of rats with periodontitis and lipopolysaccharide (LPS)-stimulated human PDLSCs. Proanthocyanidins were able to promote the osteogenesis of inflamed PDLSCs by restoring lactylation levels. Mechanistically, proanthocyanidins increased lactate production and restored the lactylation levels of PDLSCs, which recovered osteogenesis of inflamed PDLSCs via the Wnt/ß-catenin pathway. These results provide evidence on how epigenetic regulation by pharmacological agents influence the osteogenic phenotype of stem cells and the process of periodontal tissue repair. Our current study highlights the valuable potential of natural product proanthocyanidins in the regenerative engineering of periodontal tissues.


Assuntos
Periodontite , Proantocianidinas , Humanos , Ratos , Animais , Osteogênese/fisiologia , Ligamento Periodontal , Lipopolissacarídeos/metabolismo , Lisina/metabolismo , Proantocianidinas/metabolismo , Epigênese Genética , Células-Tronco/metabolismo , Periodontite/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas
10.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38731985

RESUMO

The effect of UV-B radiation exposure on transgenerational plasticity, the phenomenon whereby the parental environment influences both the parent's and the offspring's phenotype, is poorly understood. To investigate the impact of exposing successive generations of rice plants to UV-B radiation on seed morphology and proanthocyanidin content, the local traditional rice variety 'Baijiaolaojing' was planted on terraces in Yuanyang county and subjected to enhanced UV-B radiation treatments. The radiation intensity that caused the maximum phenotypic plasticity (7.5 kJ·m-2) was selected for further study, and the rice crops were cultivated for four successive generations. The results show that in the same generation, enhanced UV-B radiation resulted in significant decreases in grain length, grain width, spike weight, and thousand-grain weight, as well as significant increases in empty grain percentage and proanthocyanidin content, compared with crops grown under natural light conditions. Proanthocyanidin content increased as the number of generations of rice exposed to radiation increased, but in generation G3, it decreased, along with the empty grain ratio. At the same time, biomass, tiller number, and thousand-grain weight increased, and rice growth returned to control levels. When the offspring's radiation memory and growth environment did not match, rice growth was negatively affected, and seed proanthocyanidin content was increased to maintain seed activity. The correlation analysis results show that phenylalanine ammonialyase (PAL), cinnamate-4-hydroxylase (C4H), dihydroflavonol 4-reductase (DFR), and 4-coumarate:CoA ligase (4CL) enzyme activity positively influenced proanthocyanidin content. Overall, UV-B radiation affected transgenerational plasticity in seed morphology and proanthocyanidin content, showing that rice was able to adapt to this stressor if previous generations had been continuously exposed to treatment.


Assuntos
Oryza , Proantocianidinas , Raios Ultravioleta , Proantocianidinas/metabolismo , Oryza/efeitos da radiação , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Sementes/efeitos da radiação , Sementes/metabolismo , Grão Comestível/efeitos da radiação , Grão Comestível/metabolismo , Fenótipo
11.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338816

RESUMO

The phenylpropanoid and flavonoid pathways exhibit intricate regulation, not only influenced by environmental factors and a complex network of transcription factors but also by post-transcriptional regulation, such as silencing by microRNAs and miRNA-encoded micropeptides (miPEPs). VviMYBC2-L1 serves as a transcriptional repressor for flavonoids, playing a crucial role in coordinating the synthesis of anthocyanin and proanthocyanidin. It works in tandem with their respective transcriptional activators, VviMYBA1/2 and VviMYBPA1, to maintain an equilibrium of flavonoids. We have discovered a miPEP encoded by miR166c that appears to target VviMYBC2-L1. We conducted experiments to test the hypothesis that silencing this transcriptional repressor through miPEP166c would stimulate the synthesis of anthocyanins and proanthocyanidins. Our transcriptional analyses by qPCR revealed that the application of exogenous miPEP166c to Gamay Fréaux grape berry cells resulted in a significant upregulation in flavonoid transcriptional activators (VviMYBA1/2 and VviMYBPA1) and structural flavonoid genes (VviLDOX and VviDFR), as well as genes involved in the synthesis of proanthocyanidins (VviLAR1 and VviANR) and anthocyanins (VviUFGT1). These findings were supported by the increased enzyme activities of the key enzymes UFGT, LAR, and ANR, which were 2-fold, 14-fold, and 3-fold higher, respectively, in the miPEP166c-treated cells. Ultimately, these changes led to an elevated total content of anthocyanins and proanthocyanidins.


Assuntos
Proantocianidinas , Vitis , Antocianinas/metabolismo , Proantocianidinas/metabolismo , Vitis/genética , Vitis/metabolismo , Micropeptídeos , Frutas/metabolismo , Flavonoides/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39000477

RESUMO

The appearance of new respiratory virus infections in humans with epidemic or pandemic potential has underscored the urgent need for effective broad-spectrum antivirals (BSAs). Bioactive compounds derived from plants may provide a natural source of new BSA candidates. Here, we investigated the novel phytocomplex formulation SP4™ as a candidate direct-acting BSA against major current human respiratory viruses, including coronaviruses and influenza viruses. SP4™ inhibited the in vitro replication of SARS-CoV-2, hCoV-OC43, hCoV-229E, Influenza A and B viruses, and respiratory syncytial virus in the low-microgram range. Using hCoV-OC43 as a representative respiratory virus, most of the antiviral activity of SP4™ was observed to stem primarily from its dimeric A-type proanthocyanidin (PAC-A) component. Further investigations of the mechanistic mode of action showed SP4™ and its PAC-A-rich fraction to prevent hCoV-OC43 from attaching to target cells and exert virucidal activity. This occurred through their interaction with the spike protein of hCoV-OC43 and SARS-CoV-2, thereby interfering with spike functions and leading to the loss of virion infectivity. Overall, these findings support the further development of SP4™ as a candidate BSA of a natural origin for the prevention of human respiratory virus infections.


Assuntos
Antivirais , Coronavirus Humano OC43 , Proantocianidinas , SARS-CoV-2 , Replicação Viral , Proantocianidinas/farmacologia , Proantocianidinas/química , Antivirais/farmacologia , Antivirais/química , Humanos , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Coronavirus Humano OC43/efeitos dos fármacos , Animais , Cães , Vírus da Influenza A/efeitos dos fármacos , Coronavirus Humano 229E/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Chlorocebus aethiops
13.
Molecules ; 29(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38792040

RESUMO

Proanthocyanidins, natural polyphenolic compounds abundantly present in plants, exhibit diverse bioactivities, including antioxidative, anti-inflammatory, and antibacterial effects. These bioactivities are intricately linked to the degree of polymerization of these compounds. Through a comprehensive analysis of recent domestic and international research, this article synthesizes the latest advancements in the extraction process, degradation methods, as well as the biological activities and underlying mechanisms of proanthocyanidins. Furthermore, future research endeavors should prioritize the refinement of extraction techniques, the elucidation of bioactive mechanisms, and the development of formulations with enhanced potency. This will maximize the utilization of proanthocyanidins across diverse applications.


Assuntos
Anti-Inflamatórios , Antioxidantes , Proantocianidinas , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/isolamento & purificação , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Proantocianidinas/química , Proantocianidinas/isolamento & purificação , Proantocianidinas/farmacologia
14.
Molecules ; 29(11)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38893491

RESUMO

This paper explores the emerging subject of extracting tannins from various plant sources using deep eutectic solvents (DESs). Tannins are widely used in the food and feed industries as they have outstanding antioxidant qualities and greatly enhance the flavor and nutritional content of a wide range of food products. Organic solvents are frequently used in traditional extraction techniques, which raises questions about their safety for human health and the environment. DESs present a prospective substitute because of their low toxicity, adaptability, and environmental friendliness. The fundamental ideas supporting the application of DESs in the extraction of tannins from a range of plant-based materials frequently used in daily life are all well covered in this paper. Furthermore, this paper covers the impact of extraction parameters on the yield of extracted tannins, as well as possible obstacles and directions for future research in this emerging subject. This includes challenges such as high viscosity, intricated recovery of compounds, thermal degradation, and the occurrence of esterification. An extensive summary of the diversity, structure, biosynthesis, distribution, and roles of tannins in plants is given in this paper. Additionally, this paper thoroughly examines various bioactivities of tannins and their metabolites.


Assuntos
Solventes Eutéticos Profundos , Taninos , Taninos/química , Taninos/isolamento & purificação , Solventes Eutéticos Profundos/química , Extratos Vegetais/química , Antioxidantes/química , Antioxidantes/farmacologia , Plantas/química , Plantas/metabolismo , Solventes/química
15.
Molecules ; 29(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38338453

RESUMO

Nonalcoholic fatty liver disease (NAFLD), the most common liver disease worldwide, is a spectrum of liver abnormalities ranging from steatosis to nonalcoholic steatohepatitis (NASH) characterized by excessive lipid accumulation. The prevalence of NAFLD is predicted to increase rapidly, demanding novel approaches to reduce the global NAFLD burden. Flavonoids, the most abundant dietary polyphenols, can reduce the risk of NAFLD. The majority of dietary flavonoids are proanthocyanidins (PACs), which are oligomers and polymers of the flavonoid sub-group flavan-3-ols. The efficacy of PAC in reducing the NAFLD risk can be significantly hindered by low bioavailability. The development of synbiotics by combining PAC with probiotics may increase effectiveness against NAFLD by biotransforming PAC into bioavailable metabolites. PAC and probiotic bacteria are capable of mitigating steatosis primarily through suppressing de novo lipogenesis and promoting fatty acid ß-oxidation. PAC and probiotic bacteria can reduce the progression of steatosis to NASH mainly through ameliorating hepatic damage and inflammation induced by hepatic oxidative stress, endoplasmic reticulum stress, and gut microbiota dysbiosis. Synbiotics of PAC are superior in reducing the risk of NAFLD compared to independent administration of PAC and probiotics. The development of PAC-based synbiotics can be a novel strategy to mitigate the increasing incidence of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Proantocianidinas , Probióticos , Simbióticos , Humanos , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/etiologia , Proantocianidinas/farmacologia , Proantocianidinas/uso terapêutico , Fígado , Probióticos/uso terapêutico
16.
Molecules ; 29(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38257387

RESUMO

The viability, productivity and survival of higher plants under the adverse factors influence are largely determined by the functional activity of the antioxidant system. The aim of our work was to investigate changes in formation of high-molecular (superoxide dismutase and peroxidase) and low-molecular (phenolics, including flavanols and proanthocyanidins) antioxidants in callus culture of Camellia sinensis under influence of phenolic precursors (L-phenylalanine-3 mM, trans-cinnamic acid-1 mM, naringenin-0.5 mM). According to the data obtained, the effect of precursors on tea callus cultures did not lead to significant increasing of superoxide dismutase and peroxidase activity in most cases. However, it led to the increased accumulation of the total phenolics content, as well as flavanols and proanthocyanidins contents. For C. sinensis callus cultures, the most promising regulator of phenolic compounds was L-phenylalanine, in the presence of which its content increased almost twice. Thus, the exogenous effect of various precursors is possible to use for the targeted regulation of certain phenolics classes accumulation in plant cells.


Assuntos
Camellia sinensis , Proantocianidinas , Antioxidantes/farmacologia , Fenóis/farmacologia , Polifenóis , Peroxidases , Fenilalanina , Superóxido Dismutase
17.
Plant Cell Physiol ; 64(10): 1189-1203, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37522631

RESUMO

Proanthocyanidins (PAs) are common specialized metabolites and particularly abundant in trees and woody plants. In poplar (Populus spp.), PA biosynthesis is stress-induced and regulated by two previously studied transcription factors MYB115 and MYB134. To determine the relative contribution of these regulators to PA biosynthesis, we created single- and double-knockout (KO) mutants for both genes in transgenic poplars using CRISPR/Cas9. Knocking out either MYB134 or MYB115 showed reduced PA accumulation and downregulated flavonoid genes in leaves, but MYB134 disruption had the greatest impact and reduced PAs to 30% of controls. In roots, by contrast, only the MYB134/MYB115 double-KOs showed a significant change in PA concentration. The loss of PAs paralleled the lower expression of PA biosynthesis genes and concentrations of flavan-3-ol PA precursors catechin and epicatechin. Interestingly, salicinoids were also affected in double-KOs, with distinct patterns in roots and shoots. We conclude that the regulatory pathways for PA biosynthesis differ in poplar leaves and roots. The residual PA content in the double-KO plants indicates that other transcription factors must also be involved in control of the PA pathway.


Assuntos
Populus , Proantocianidinas , Proantocianidinas/metabolismo , Populus/genética , Populus/metabolismo , Sistemas CRISPR-Cas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética
18.
BMC Plant Biol ; 23(1): 61, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36710356

RESUMO

BACKGROUND: Lotus (Nelumbo Adans.) is used as an herbal medicine and the flowers are a source of natural flavonoids. 'Da Sajin', which was firstly found in the plateau area, is a natural mutant in flower color with red streamers dyeing around white petals. RESULTS: The LC-MS-MS results showed that eight anthocyanin compounds, including cyanidin 3-O-glucoside, cyanidin 3-O-galactoside, malvidin 3-O-galactoside, and malvidin 3-O-glucoside, were differentially enriched in red-pigmented tissues of the petals, whereas most of these metabolites were undetected in white tissues of the petals. Transcriptome profiling indicated that the relative high expression levels of structural genes, such as NnPAL, NnF3H, and NnANS, was inconsistent with the low anthocyanin concentration in white tissues. Members of the NnMYB and NnbHLH transcription factor families were presumed to play a role in the metabolic flux in the anthocyanin and proanthocyanidin biosynthetic pathway. The expression model of translational initiation factor, ribosomal proteins and SKP1-CUL1-F-box protein complex related genes suggested an important role for translational and post-translational network in anthocyanin biosynthesis. In addition, pathway analysis indicated that light reaction or photo destruction might be an important external cause for floral color determination in lotus. CONCLUSIONS: In this study, it is supposed that the natural lotus mutant 'Da Sajin' may have originated from a red-flowered ancestor. Partial loss of anthocyanin pigments in petals may result from metabolic disorder caused by light destruction. This disorder is mainly regulated at post translation and translation level, resulting in a non-inherited phenotype. These results contribute to an improved understanding of anthocyanin metabolism in lotus, and indicate that the translational and post-translational regulatory network determines the metabolic flux of anthocyanins and proanthocyanidins under specific environmental conditions.


Assuntos
Antocianinas , Nelumbo , Antocianinas/metabolismo , Nelumbo/química , Flavonoides/metabolismo , Fenótipo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas
19.
New Phytol ; 237(5): 1856-1875, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36527243

RESUMO

Powdery mildew (PM) is a severe fungal disease of cultivated grapevine world-wide. Proanthocyanidins (PAs) play an important role in resistance to fungal pathogens; however, little is known about PA-mediated PM resistance in grapevine. We identified a WRKY transcription factor, VqWRKY56, from Vitis quinquangularis, the expression of which was significantly induced by PM. Overexpression (OE) of VqWRKY56 in Vitis vinifera increased PA content and reduced susceptibility to PM. Furthermore, the transgenic plants showed more cell death and increased accumulation of salicylic acid and reactive oxygen species. Transient silencing of VqWRKY56 in V. quinquangularis and V. vinifera reduced PA accumulation and increased the susceptibility to PM. VqWRKY56 interacted with VqbZIPC22 in vitro and in planta. The protein VqWRKY56 can bind to VvCHS3, VvLAR1, and VvANR promoters, and VqbZIPC22 can bind to VvANR promoter. Co-expression of VqWRKY56 and VqbZIPC22 significantly increased the transcript level of VvCHS3, VvLAR1, and VvANR genes. Finally, transient OE of VqbZIPC22 in V. vinifera promoted PA accumulation and improved resistance to PM, while transient silencing in V. quinquangularis had the opposite effect. Our study provides new insights into the mechanism of PA regulation by VqWRKY56 in grapevine and provides a basis for further metabolic engineering of PA biosynthesis to improve PM resistance.


Assuntos
Proantocianidinas , Vitis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vitis/genética , Vitis/metabolismo , Regiões Promotoras Genéticas/genética , Metabolismo Secundário , Resistência à Doença/genética , Doenças das Plantas/microbiologia
20.
Plant Cell Environ ; 46(6): 1962-1980, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36891587

RESUMO

Seed deterioration during storage results in poor germination, reduced vigour, and non-uniform seedling emergence. The aging rate depends on storage conditions and genetic factors. This study aims to identify these genetic factors determining the longevity of rice (Oryza sativa L.) seeds stored under experimental aging conditions mimicking long-term dry storage. Genetic variation for tolerance to aging was studied in 300 Indica rice accessions by storing dry seeds under an elevated partial pressure of oxygen (EPPO) condition. A genome-wide association analysis identified 11 unique genomic regions for all measured germination parameters after aging, differing from those previously identified in rice under humid experimental aging conditions. The significant single nucleotide polymorphism in the most prominent region was located within the Rc gene, encoding a basic helix-loop-helix transcription factor. Storage experiments using near-isogenic rice lines (SD7-1D (Rc) and SD7-1d (rc) with the same allelic variation confirmed the role of the wildtype Rc gene, providing stronger tolerance to dry EPPO aging. In the seed pericarp, a functional Rc gene results in accumulation of proanthocyanidins, an important sub-class of flavonoids having strong antioxidant activity, which may explain the variation in tolerance to dry EPPO aging.


Assuntos
Oryza , Oryza/genética , Estudo de Associação Genômica Ampla , Germinação/genética , Plântula/genética , Sementes/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa