RESUMO
Background: Recent studies have shown that peripheral nerve regeneration process is closely related to neuropathic pain. Toll-like receptor 4 (TLR4) signaling was involved in different types of pain and nerve regeneration. TLR4 induced the recruitment of myeloid differentiation factor-88 adaptor protein (MyD88) and NF-κB-depended transcriptional process in sensory neurons and glial cells, which produced multiple cytokines and promoted the induction and persistence of pain. Our study aimed to investigate procyanidins's effect on pain and nerve regeneration via TLR4-Myd88 signaling. Methods: Spinal nerve ligation (SNL) model was established to measure the analgesic effect of procyanidins. Anatomical measurement of peripheral nerve regeneration was measured by microscopy and growth associated protein 43 (GAP43) staining. Western blotting and/or immunofluorescent staining were utilized to detect TLR4, myeloid differentiation factor-88 adaptor protein (MyD88), ionized calcium-binding adapter molecule 1 (IBA1) and nuclear factor kappa-B-p65 (NF-κB-p65) expression, as well as the activation of astrocyte and microglia. The antagonist of TLR4 (LPS-RS-Ultra, LRU) were intrathecally administrated to assess the behavioral effects of blocking TLR4 signaling on pain and nerve regeneration. Result: Procyanidins reduced mechanical allodynia, thermal hyperalgesia and significantly suppressed the number of nerve fibers regenerated and the degree of myelination in SNL model. Compared with sham group, TLR4, MyD88, IBA1 and phosphorylation of NF-κB-p65 were upregulated in SNL rats which were reversed by procyanidins administration. Additionally, procyanidins also suppressed activation of spinal astrocytes and glial cells. Conclusion: Suppression of TLR4-MyD88 signaling contributes to the alleviation of neuropathic pain and reduction of nerve regeneration by procyanidins.
Assuntos
Fator 88 de Diferenciação Mieloide , Regeneração Nervosa , Neuralgia , Proantocianidinas , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Masculino , Ratos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Extrato de Sementes de Uva/farmacologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Regeneração Nervosa/efeitos dos fármacos , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Proantocianidinas/farmacologia , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Nervos Espinhais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismoRESUMO
Schisandra henryi is an endemic species of medicinal potential known from traditional Chinese medicine. As part of this study, a complex biotechnological and phytochemical assessment was conducted on S. henryi with a focus on phenolic compounds and antioxidant profiling. The following in vitro cultures were tested: microshoot agar and callus, microshoot agitated, and suspension, along with the microshoot culture in PlantForm bioreactors. Qualitative profiling was performed by ultra-high-performance liquid chromatography with a photodiode array detector coupled with ion-trap mass spectrophotometry with electrospray ionization and then quantitative analysis by high-performance liquid chromatography with a diode array detector using standards. In the extracts, mainly the compounds from procyanidins were identified as well as phenolic acids (neochlorogenic acid, caffeic acid, protocatechuic acid) and catechin. The highest content of phenolic compounds was found for in vitro agar microshoot culture (max. total content 229.87 mg/100 g DW) and agitated culture (max. total content 22.82 mg/100 g DW). The max. TPC measured using the Folin-Ciocalteu assay was equal to 1240.51 mg GAE/100 g DW (agar microshoot culture). The extracts were evaluated for their antioxidant potential by the DPPH, FRAP, and chelate iron ion assays. The highest potential was indicated for agar microshoot culture (90% of inhibition and 59.31 nM/L TEAC, respectively). The research conducted on the polyphenol profiling and antioxidant potential of S. henryi in vitro culture extracts indicates the high therapeutic potential of this species. KEY POINTS: ⢠Different types of S. henryi in vitro cultures were compared for the first time. ⢠The S. henryi in vitro culture strong antioxidant potential was determined for the first time. ⢠The polyphenol profiling of different types of S. henryi in vitro cultures was shown.
Assuntos
Polifenóis , Schisandra , Polifenóis/análise , Cromatografia Líquida de Alta Pressão , Compostos Fitoquímicos/análise , Antioxidantes/análise , Reatores Biológicos , Técnicas de Cultura , Schisandra/química , Schisandra/crescimento & desenvolvimentoRESUMO
Procyanidins are one of the polyphenols consisting of multiple flavan-3-ols (eg epicatechin). They have a complex chemical structure, with the degree of polymerization and linked position of flavan-3-ols varying among various foods, such as apples and chocolate. Physiological functional studies of procyanidins have investigated their mechanisms in cells and animals based on their antioxidant effects. Recently, the intestinal environment, including the intestinal microflora, has played an important role in the energy metabolism and health status of the host. Regulation of the intestinal environment by dietary polyphenols is becoming a new concept in health functions, and we have begun to investigate the mechanism of apple procyanidins, focusing on the gut microbiota and metabolites in our functional research. In this minireview, we will discuss the effects of procyanidin ingestion on the gut microbiota and metabolites.
Assuntos
Biflavonoides , Catequina , Malus , Proantocianidinas , Animais , Proantocianidinas/química , Polifenóis , Malus/metabolismo , Flavonoides/químicaRESUMO
Long-term intake of procyanidins has been suggested to reduce the risk of cardiovascular disease, dementia, and sensory function decline associated with aging. However, most of the ingested procyanidins are not absorbed and are excreted in the feces, so the mechanism of their beneficial impact is unknown. Procyanidins are the components of astringency in plant foods and their stimulation appears to be directly transmitted to the central nervous system via sensory nerves. Recent attention has been focused on the taste receptors expressed in the extra-oral gastrointestinal tract may regulate homeostasis via the neuroendocrine system. In this paper, we have reviewed recent findings on the relationship between the astringency of procyanidins and their bioregulatory effects.
Assuntos
Proantocianidinas , Papilas Gustativas , Proantocianidinas/farmacologia , Adstringentes/farmacologia , Paladar , HomeostaseRESUMO
Studies indicated that cocoa-based products effectively mitigate the risks associated with metabolic syndrome (MetS), however, the effect varies based on cocoa types, dosages, and study durations. This review aimed to determine the flavanol-rich cocoa consumption on MetS outcomes within the last decade (2013-2023), adhering to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Seven randomized-controlled trials (RCTs) used cocoa-based products containing 0.3-1680 mg flavanol monomers and 3.5-1270 mg procyanidins. Cocoa-based products beneficially reduced glycemic response, blood pressure and lipid profiles. However, this review highlights little evidence pinpointing the best cocoa products type and required dosage for the observed effects. Further intervention aiming to improve MetS should justify the selection and concentration of flavanols (monomers and procyanidins). A robust study design should consider registering the trials before study commencement, consider multicenter RCT trials, and adjust for potential covariates that might "masked" the outcomes.
Assuntos
Cacau , Síndrome Metabólica , Proantocianidinas , Humanos , Proantocianidinas/farmacologia , Polifenóis/farmacologia , Pressão Sanguínea , Estudos Multicêntricos como AssuntoRESUMO
The different parts of Sorbus torminalis (L.) Crantz are used in traditional medicine for various conditions such as cardiac diseases, cough, and diabetes, indicating its significant medicinal potential. Therefore, the current investigation aimed to reveal the phenolic composition of the poorly studied S. torminalis methanol extract of the bark, as well as its capacity to inhibit enzymes relevant to cardiovascular, neurodegenerative, and metabolic diseases. A total of 28 phenolic components, including 20 procyanidins aglycones (A- and B-type), four procyanidin glycosides, catechin and its glycoside, and two (epi)catechin derivatives, were detected using LC-MS. The contents of total polyphenols (6.22 %), total tannins (3.04 %), condensed tannins (0.70 %), and total flavonoids (0.24 %) were determined spectrophotometrically, highlighting the considerable phenolic richness of the examined plant material. The concentration-dependent ability to inhibit α-amylase (IC50=130â µg /mL), α-glucosidase (IC50=312.13â µg /mL), acetylcholinesterase (IC50=156.46â µg /mL), butyrylcholinesterase (IC50=217.68â µg /mL), and angiotensin-converting enzyme (IC50=36.77â µg /mL) was demonstrated in vitro. The in silico approach showed that catechin, procyanidin B2 and C1, S. torminalis bark constituents, can form stable complexes with the target enzymes but with different binding affinity. The results supported the medicinal potential of S. torminalis bark and significantly expanded our knowledge of its chemistry, justifying further research.
RESUMO
Polyphenols from agro-food waste represent a valuable source of bioactive molecules that can be recovered to be used for their functional properties. Another option is to use them as starting material to generate molecules with new and better properties through semi-synthesis. A proanthocyanidin-rich (PACs) extract from avocado peels was used to prepare several semi-synthetic derivatives of epicatechin by acid cleavage in the presence of phenol and thiol nucleophiles. The adducts formed by this reaction were successfully purified using one-step centrifugal partition chromatography (CPC) and identified by chromatographic and spectroscopic methods. The nine derivatives showed a concentration-dependent free radical scavenging activity in the DPPH assay. All compounds were also tested against a panel of pathogenic bacterial strains formed by Listeria monocytogenes (ATCC 7644 and 19115), Staphylococcus aureus (ATCC 9144), Escherichia coli (ATCC 11775 and 25922), and Salmonella enterica (ATCC 13076). In addition, adducts were tested against two no-pathogenic strains, Limosilactobacillus fermentum UCO-979C and Lacticaseibacillus rhamnosus UCO-25A. Overall, thiol-derived adducts displayed antimicrobial properties and, in some specific cases, inhibited biofilm formation, particularly in Listeria monocytogenes (ATCC 7644). Interestingly, phenolic adducts were inactive against all the strains and could not inhibit its biofilm formation. Moreover, depending on the structure, in specific cases, biofilm formation was strongly promoted. These findings contribute to demonstrating that CPC is a powerful tool to isolate new semi-synthetic molecules using avocado peels as starting material for PACc extraction. These compounds represent new lead molecules with antioxidant and antimicrobial activity.
Assuntos
Antioxidantes , Catequina , Persea , Proantocianidinas , Persea/química , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/síntese química , Proantocianidinas/química , Proantocianidinas/farmacologia , Proantocianidinas/síntese química , Proantocianidinas/isolamento & purificação , Catequina/química , Catequina/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/síntese química , Compostos de Sulfidrila/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Antibacterianos/isolamento & purificação , Fenóis/química , Fenóis/farmacologia , Fenóis/isolamento & purificação , Fenóis/síntese químicaRESUMO
BACKGROUND: Rosaceae fruits have been used in traditional medicine for the prevention and treatment of diseases. However, these fruits have not extensively been studied regarding their phenolic composition. Thus, this research focuses on the determination of phenolic compounds by high-performance liquid chromatography electrospray ionization time-of-flight mass spectrometry, flavan-3-ols by high-performance liquid chromatography with fluorescence detection, and the antioxidant activity by 2,2-diphenyl-1-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), and ferric reducing antioxidant power of the fruits of five species of genera Crataegus and Sorbus (Rosaceae). RESULTS: We found a total of 71 phenolic compounds from which 30 were identified in these berries for the first time. Crataegus monogyna and Crataegus laciniata revealed higher total phenolic and flavan-3-ol contents than the other species and the highest antioxidant activities. CONCLUSIONS: Therefore, the fruits evaluated have demonstrated to be important sources of bioactive compounds with huge potential for being used in nutraceutical or food scopes. Additional studies could be needed to evaluate the influence of the different production areas on the phenolic content. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Assuntos
Antioxidantes , Rosaceae , Antioxidantes/química , Rosaceae/química , Frutas/química , Fenóis/química , Cromatografia Líquida de Alta Pressão/métodosRESUMO
Açaí palm (Euterpe oleracea Mart.) seeds are a rich source of mannans, which can be used to generate bioethanol or be converted to high-value D-mannose, in addition to being a source of polyphenols with beneficial health properties. Here, we present a quantitative proteome dataset of açaí seeds at four stages of development (S1, S2, S3, and S4 stages), in which 2465 high confidence proteins were identified and 524 of them show statistically different abundance profiles during development. Several enzymes involved in the biosynthesis of nucleotide-sugars were quantified, especially those dedicated to the formation of GDP-mannose, which showed an increase in abundance between stages S1 and S3. Our data suggest that linear mannans found abundantly in endosperm cell walls are initially deposited as galactomannans, and during development lose the galactosyl groups. Two isoforms of alpha-galactosidase enzymes showed significantly increased abundances in the S3 and S4 stages. Additionally, we quantified the enzymes participating in the central pathway of flavonoid biosynthesis responsible for the formation of catechin and epicatechin, which are subunits of procyanidins, the main class of polyphenols in the açaí seeds. These proteins showed the same pattern of deposition, in which higher abundances were seen in the S1 and S2 stages.
Assuntos
Euterpe , Mananas , Antioxidantes , Proteômica , Sementes/química , Polifenóis/análise , Extratos VegetaisRESUMO
Kiwifruit (Actinidia chinensis) is one of the popular fruits world-wide, and its quality is mainly determined by key metabolites (sugars, flavonoids, and vitamins). Previous works on kiwifruit are mostly done via a single omics approach or involve only limited metabolites. Consequently, the dynamic metabolomes during kiwifruit development and ripening and the underlying regulatory mechanisms are poorly understood. In this study, using high-resolution metabolomic and transcriptomic analyses, we investigated kiwifruit metabolic landscapes at 11 different developmental and ripening stages and revealed a parallel classification of 515 metabolites and their co-expressed genes into 10 distinct metabolic vs gene modules (MM vs GM). Through integrative bioinformatics coupled with functional genomic assays, we constructed a global map and uncovered essential transcriptomic and transcriptional regulatory networks for all major metabolic changes that occurred throughout the kiwifruit growth cycle. Apart from known MM vs GM for metabolites such as soluble sugars, we identified novel transcription factors that regulate the accumulation of procyanidins, vitamin C, and other important metabolites. Our findings thus shed light on the kiwifruit metabolic regulatory network and provide a valuable resource for the designed improvement of kiwifruit quality.
Assuntos
Actinidia , Actinidia/genética , Actinidia/metabolismo , Frutas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Açúcares/metabolismo , Transcriptoma/genéticaRESUMO
Diabetes mellitus (DM) is a complex disease with alarming worldwide health implications and high mortality rates, largely due to its complications such as cardiovascular disease, nephropathy, neuropathy, and retinopathy. Recent research has shown that procyanidins (PC), a type of flavonoid, have strong antioxidant and free radical elimination effects, and may be useful in improving glucose metabolism, enhancing pancreatic islet cell activity, and decreasing the prevalence of DM complications. This review article presents a systematic search for peer-reviewed articles on the use of PC in the treatment of DM, without any language restrictions. The article also discusses the potential for PC to sensitise DM medications and improve their efficacy. Recent in vivo and in vitro studies have demonstrated promising results in improving the biological activity and bioavailability of PC for the treatment of DM. The article concludes by highlighting the potential for novel materials and targeted drug delivery methods to enhance the pharmacokinetics and bioactivity of PC, leading to the creation of safer and more effective anti-DM medications in the future.
Assuntos
Complicações do Diabetes , Diabetes Mellitus Tipo 2 , Proantocianidinas , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Proantocianidinas/farmacologia , Proantocianidinas/uso terapêutico , Cicatrização , Complicações do Diabetes/complicações , GlucoseRESUMO
The impact that healthy aging can have on society has raised great interest in understanding aging mechanisms. However, the effects this biological process may have on the gastrointestinal tract (GIT) have not yet been fully described. Results in relation to changes observed in the enteroendocrine system along the GIT are controversial. Grape seed proanthocyanidin extracts (GSPE) have been shown to protect against several pathologies associated with aging. Based on previous results, we hypothesized that a GSPE pre-treatment could prevent the aging processes that affect the enteroendocrine system. To test this hypothesis, we treated 21-month-old female rats with GSPE for 10 days. Eleven weeks after the treatment, we analyzed the effects of GSPE by comparing these aged animals with young animals. Aging induced a greater endocrine response to stimulation in the upper GIT segments (cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1)), a decrease in the mRNA abundance of GLP-1, peptide YY (PYY) and chromogranin A (ChgA) in the colon, and an increase in colonic butyrate. GSPE-treated rats were protected against a decrease in enterohormone expression in the colon. This effect is not directly related to the abundance of microbiome or short-chain fatty acids (SCFA) at this location. GSPE may therefore be effective in preventing a decrease in the colonic abundance of enterohormone expression induced by aging.
Assuntos
Extrato de Sementes de Uva , Proantocianidinas , Ratos , Feminino , Animais , Extrato de Sementes de Uva/farmacologia , Proantocianidinas/farmacologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Colecistocinina , Ácidos Graxos Voláteis/metabolismo , Colo/metabolismoRESUMO
Colorectal cancer (CRC) is the second-leading cause of cancer death, with a worldwide incidence rate constantly increasing; thus, new strategies for its prevention or treatment are needed. Here, we describe the adjuvant effect of the polyphenol-enriched fractions of cinnamon, from cinnamon bark and buds, when co-administered with a potent anticancer drug, cetuximab, used for CRC therapy. The co-administration significantly reduces the cetuximab dose required for the antiproliferative activity against colorectal cancer cell line E705, which is sensitive to EGFR-targeted therapy. The anticancer activity of these cinnamon-derived fractions, whose major components (as assessed by UPLC-HRMS analysis) are procyanidins and other flavonoids, strictly correlates with their ability to induce apoptosis in cancer cell lines through ERK activation and the mitochondrial membrane potential impairment. Due to the severe side effects of cetuximab administration, our results suggest the use of nutraceuticals based on the polyphenolic fractions of cinnamon extracts as adjuvants in the therapy of CRC.
Assuntos
Antineoplásicos , Neoplasias Colorretais , Humanos , Cetuximab/farmacologia , Cetuximab/uso terapêutico , Cinnamomum zeylanicum , Proliferação de Células , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismoRESUMO
Urinary tract infections (UTIs) are the second most common type of bacterial infection worldwide. UTIs are gender-specific diseases, with a higher incidence in women. This type of infection could occur in the upper part of the urogenital tract, leading to pyelonephritis and kidney infections, or in the lower part of the urinary tract, leading to less serious pathologies, mainly cystitis and urethritis. The most common etiological agent is uropathogenic E. coli (UPEC), followed by Pseudomonas aeruginosa and Proteus mirabilis. Conventional therapeutic treatment involves the use of antimicrobial agents, but due to the dramatic increase in antimicrobial resistance (AMR), this strategy has partially lost its therapeutic efficacy. For this reason, the search for natural alternatives for UTI treatment represents a current research topic. Therefore, this review summarized the results of in vitro and animal- or human-based in vivo studies aimed to assess the potential therapeutic anti-UTI effects of natural polyphenol-based nutraceuticals and foods. In particular, the main in vitro studies were reported, describing the principal molecular therapeutic targets and the mechanism of action of the different polyphenols studied. Furthermore, the results of the most relevant clinical trials for the treatment of urinary tract health were described. Future research is needed to confirm and validate the potential of polyphenols in the clinical prophylaxis of UTIs.
Assuntos
Infecções Bacterianas , Infecções por Escherichia coli , Infecções Urinárias , Sistema Urinário , Escherichia coli Uropatogênica , Animais , Feminino , Humanos , Escherichia coli , Infecções por Escherichia coli/microbiologia , Infecções Urinárias/microbiologia , Sistema Urinário/microbiologiaRESUMO
This study was carried out to analyze the accumulation patterns of anthocyanins, proanthocyanidins, flavonols, chlorogenic acid, and triterpene compounds in fruit samples of Vaccinium oxycoccos L. berries growing in the Cepkeliai State Strict Nature Reserve in Lithuania. Studies were carried out on the phytochemical composition of cranberry fruit samples during the period of 2020-2022. Anthocyanins, flavonols, chlorogenic acid and triterpene compounds were identified and quantified using UPLC-DAD methods, and proanthocyanins were determined using spectrophotometric methods. The content of identified compounds varied, as reflected in the total amounts of anthocyanins (710.3 ± 40 µg/g to 6993.8 ± 119 µg/g), proanthocyanidins (378.4 ± 10 µg EE/g to 3557. 3 ± 75 µg EE/g), flavonols (479.6 ± 9 µg/g to 7291.2 ± 226 µg/g), chlorogenic acid (68.0 ± 1 µg/g to 3858.2 ± 119 µg/g), and triterpenoids (3780.8 ± 98 µg/g to 7226.9 ± 224 µg/g). Cranberry fruit samples harvested from open oligotrophic wetland habitats contained higher levels of anthocyanins, anthocyanidins, flavonol glycosides, and proanthocyanidins. The highest levels of triterpene compounds were found in the cranberry fruits harvested in the spring of the following year after the snowmelt. The use of principal component analysis showed that cranberry plant material harvested in October and November had higher levels of bioactive compounds.
Assuntos
Proantocianidinas , Vaccinium macrocarpon , Vaccinium , Vaccinium/química , Antocianinas/análise , Frutas/química , Proantocianidinas/análise , Ácido Clorogênico/análise , Vaccinium macrocarpon/química , Flavonóis/análise , Extratos Vegetais/química , Cromatografia Líquida de Alta PressãoRESUMO
Procyanidins (PCs), which are organic antioxidants, suppress oxidative stress, exhibit anti-apoptotic properties, and chelate metal ions. The potential defense mechanism of PCs against cerebral ischemia/reperfusion injury (CIRI) was investigated in this study. Pre-administration for 7 days of a PC enhanced nerve function and decreased cerebellar infarct volume in a mouse middle cerebral artery embolization paradigm. In addition, mitochondrial ferroptosis was enhanced, exhibited by mitochondrial shrinkage and roundness, increased membrane density, and reduced or absent ridges. The level of Fe2+ and lipid peroxidation that cause ferroptosis was significantly reduced by PC administration. According to the Western blot findings, PCs altered the expression of proteins associated with ferroptosis, promoting the expression of GPX4 and SLC7A11 while reducing the expression of TFR1, hence inhibiting ferroptosis. Moreover, the treatment of PCs markedly elevated the expression of HO-1 and Nuclear-Nrf2. The PCs' ability to prevent ferroptosis due to CIRI was decreased by the Nrf2 inhibitor ML385. Our findings showed that the protective effect of PCs may be achieved via activation of the Nrf2/HO-1 pathway and inhibiting ferroptosis. This study provides a new perspective on the treatment of CIRI with PCs.
Assuntos
Isquemia Encefálica , Ferroptose , Proantocianidinas , Traumatismo por Reperfusão , Animais , Camundongos , Proantocianidinas/farmacologia , Fator 2 Relacionado a NF-E2 , Transdução de Sinais , Traumatismo por Reperfusão/tratamento farmacológicoRESUMO
This study explored the mechanism by which grape seed procyanidins (GSPs) alleviate colon inflammatory injury induced by a high-concentrate diet in lambs. Forty-eight 1/2 Dorper (â) × 1/2 Small thin-tailed (â) crossed male lambs were randomly assigned into four groups: the control group (CON), fed with a high-concentrate diet (concentrate:forage = 7:3) and three GSPs groups fed a high-concentrate diet + 10 (LGSP), 20 (MGSP) and 40 (HGSP) mg/kg body weight (BW) GSPs per day, respectively. The results showed that the levels of interleukin (IL)-1ß and tumour necrosis factor (TNF)-α in plasma of lambs of the MGSP (0.155 and 38.52 pg/ml) and HGSP (0.165 and 39.60 pg/ml) groups were significantly lower than those in the CON (0.248 and 48.74 pg/ml) and LGSP (0.245 and 50.52 pg/ml) group (p < 0.05), and levels of IL-1ß in colon tissue in the MGSP (28.49 ng/g) and HGSP (26.67 ng/g) groups were also lower (p < 0.05) than that in CON (40.55 ng/g). Metabonomics analysis of colon tissue showed that differentially expressed metabolites were mainly enriched in the arachidonic acid metabolism, citric acid cycle, glycine, serine and threonine metabolism, and peroxisome proliferator-activated receptor signalling pathway (p < 0.05). In conclusion, GSPs alleviate the colonic epithelium inflammatory response induced by a high-concentrate diet by increasing energy metabolism, amino acid metabolism, antioxidant metabolism and inhibiting arachidonic acid metabolism.
Assuntos
Antioxidantes , Proantocianidinas , Ovinos , Animais , Masculino , Proantocianidinas/farmacologia , Ácido Araquidônico , Dieta/veterinária , Metaboloma , Colo , Ração Animal/análiseRESUMO
BACKGROUND: Procyanidins is a polyphenolic compound with multiple properties. However, the application of exogenous procyanidins in crops has not been reported. Aromatic rice is a high-quality rice with a special aroma and popular with consumers. The 2-acetyl-1-pyrroline (2-AP) is a key compound of aromatic rice aroma. In the current study, aromatic rice plants were sprayed with procyanidins solutions at 0.25 (Pr0.25), 0.50 (Pr0.50), 1.00 (Pr1.00), 2.00 (Pr2.00) g L-1, respectively and treatment sprayed with distilled water was taken as control (CK). The effects of exogenous procyanidins on growth and 2-AP biosynthesis of aromatic rice plants were explored. RESULTS: Compared with CK, Pr1.00 and Pr2.00 treatments significantly increased 2-AP content by 16.67% and 37.68%, respectively. Higher proline, 1-pyrroline-5-carboxylic acid (P5C), 1-pyrroline, methylglyoxal contents, and lower γ- aminobutyric acid (GABA) content were recorded in Pr1.00 and Pr2.00 treatments than CK. Compared with CK, Pr1.00 and Pr2.00 treatments significantly improved the activities of P5CS and OAT and diminished the activity of BADH. Furthermore, compared with CK, Pr1.00 and Pr2.00 treatments significantly up-regulated the transcript levels of P5CS2, P5CR, OAT, DAO4 and down-regulated the transcript levels of BADH2. Exogenous procyanidins had no substantial effects on plant height, stem diameter, fresh weight, and dry weight of aromatic rice plants. CONCLUSIONS: In conclusion, our findings reported the increment of 2-AP content in aromatic rice under exogenous procyanidins. Our results indicated that the application of exogenous procyanidins enhanced 2-AP biosynthesis by improving proline biosynthesis and inhibiting GABA formation.
Assuntos
Oryza , Proantocianidinas , Odorantes/análise , Oryza/genética , Prolina , Pirróis , Ácido gama-AminobutíricoRESUMO
Chronic exposure to solar ultraviolet (UV) light induces photoaging in human skin. Our previous results have shown that areca nut procyanidins (ANPs) have antioxidant capacity and possess potential anti-inflammatory effects. Here, we aimed to investigate the effect of ANPs on UVB-induced photoaging. In the present study, dorsal skin of CD-1 mice was exposed to UVB at a minimal erythema dose (130 mJ/cm2) throughout a 3-week period. The effects of ANPs and epigallocatechin-3-gallate (EGCG), a polyphenolic constituent of green tea, on UVB-induced photoaging were compared. The results show that oral administration of ANP prevented UVB-induced photoaging, indicated by epidermal thickness and collagen disorientation, and inhibited UVB-induced expression of cyclooxygenase-2 and matrix metalloproteinases (MMPs), such as MMP-2, MMP-9, and TIMP1. The protective potential of ANP on UVB-induced photodamage was comparable to that of EGCG. These data suggest that ANP could be useful as a dietary supplement to attenuate solar UVB-induced premature skin aging.
Assuntos
Proantocianidinas , Envelhecimento da Pele , Animais , Areca , Ciclo-Oxigenase 2 , Metaloproteinases da Matriz , Camundongos , Camundongos Pelados , Nozes , Proantocianidinas/farmacologia , Pele , Raios Ultravioleta/efeitos adversosRESUMO
This study aimed to evaluate the impact of mitigation practices (slurry application methods and inhibitors applications) on gas emissions and identify the soil N2O production pathways in cattle slurry applied soil using isotopocule mapping approach. First, we compared the NH3 and N2O emissions of cattle slurry applied soil in a summer maize field experiment in north China plain (NCP) with four treatments: control (CK, no fertilization), slurry application using surface (SA-S), slurry application using band application (BA-S), and chemical fertilizer application using band application (BA-C). Then, an incubation experiment was conducted to investigate the mitigation effect of nitrification inhibitors (dicyandiamide, DCD) and denitrification inhibitors (procyanidins, PC) and their combination (DCD + PC) on gaseous N emissions with slurry applied using incorporation (IA) or surface application (SA) methods. The results showed that the total gaseous N emissions (N2O-N and NH3-N) in field were in the order of SA-S (1534 mg m-2) > BA-S (338 mg m-2) > BA-C (128 mg m-2) > CK (55 mg m-2), and the dominant N loss contributor varied from NH3 in SA-S (â¼89%) to N2O in BA-S (â¼94%) and BA-C (â¼88%). Moreover, the isotopocule mapping approach indicated that emitted N2O of the slurry applied soil in field appeared to have lower rN2O values and led to more N2O + N2 emissions at the initial fertilization period. The incubation experiment indicated that the N2O emissions of slurry-applied soil were significantly reduced by DCD (â¼45%) and DCD + PC (â¼67%) application in comparison with CK (p < 0.05), and the stronger contributions of bacterial denitrification/nitrifier denitrification to N2O production were revealed by the lower δ15NSP in N2O using the isotopocule mapping approach. In conclusion, in NCP the gaseous losses of the slurry applied field can be largely reduced by using incorporation method, and greater reduction could be achieved given the simultaneous application of nitrification/denitrification inhibitors.