RESUMO
Natural products have played significant roles as medicine and food throughout human history. Here, we first provide a brief historical overview of natural products, their classification and biosynthetic origins, and the microbiological and genetic methods used for their discovery. We also describe and discuss the technologies that revolutionized the field, which transitioned from classic genetics to genome-centric discovery approximately two decades ago. We then highlight the most recent advancements and approaches in the current postgenomic era, in which genome mining is a standard operation and high-throughput analytical methods allow parallel discovery of genes and molecules at an unprecedented pace. Finally, we discuss the new challenges faced by the field of natural products and the future of systematic heterologous expression and strain-independent discovery, which promises to deliver more molecules in vials than ever before.
Assuntos
Produtos Biológicos , Genômica , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Produtos Biológicos/história , Genômica/métodos , Humanos , Descoberta de Drogas/métodos , Descoberta de Drogas/história , História do Século XX , História do Século XXIRESUMO
Subcellular compartmentalization is a defining feature of all cells. In prokaryotes, compartmentalization is generally achieved via protein-based strategies. The two main classes of microbial protein compartments are bacterial microcompartments and encapsulin nanocompartments. Encapsulins self-assemble into proteinaceous shells with diameters between 24 and 42 nm and are defined by the viral HK97-fold of their shell protein. Encapsulins have the ability to encapsulate dedicated cargo proteins, including ferritin-like proteins, peroxidases, and desulfurases. Encapsulation is mediated by targeting sequences present in all cargo proteins. Encapsulins are found in many bacterial and archaeal phyla and have been suggested to play roles in iron storage, stress resistance, sulfur metabolism, and natural product biosynthesis. Phylogenetic analyses indicate that they share a common ancestor with viral capsid proteins. Many pathogens encode encapsulins, and recent evidence suggests that they may contribute toward pathogenicity. The existing information on encapsulin structure, biochemistry, biological function, and biomedical relevance is reviewed here.
Assuntos
Bactérias , Proteínas de Bactérias , Archaea/genética , Archaea/metabolismo , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Ferro/metabolismo , FilogeniaRESUMO
Small molecules encoded by biosynthetic pathways mediate cross-species interactions and harbor untapped potential, which has provided valuable compounds for medicine and biotechnology. Since studying biosynthetic gene clusters in their native context is often difficult, alternative efforts rely on heterologous expression, which is limited by host-specific metabolic capacity and regulation. Here, we describe a computational-experimental technology to redesign genes and their regulatory regions with hybrid elements for cross-species expression in Gram-negative and -positive bacteria and eukaryotes, decoupling biosynthetic capacity from host-range constraints to activate silenced pathways. These synthetic genetic elements enabled the discovery of a class of microbiome-derived nucleotide metabolites-tyrocitabines-from Lactobacillus iners. Tyrocitabines feature a remarkable orthoester-phosphate, inhibit translational activity, and invoke unexpected biosynthetic machinery, including a class of "Amadori synthases" and "abortive" tRNA synthetases. Our approach establishes a general strategy for the redesign, expression, mobilization, and characterization of genetic elements in diverse organisms and communities.
Assuntos
Vias Biossintéticas , Interações entre Hospedeiro e Microrganismos , Microbiota , Biologia Sintética/métodos , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Eucariotos/genética , Eucariotos/metabolismo , Engenharia Genética , Humanos , MetabolômicaRESUMO
Polyketides are a large family of structurally complex natural products including compounds with important bioactivities. Polyketides are biosynthesized by polyketide synthases (PKSs), multienzyme complexes derived evolutionarily from fatty acid synthases (FASs). The focus of this review is to critically compare the properties of FASs with iterative aromatic PKSs, including type II PKSs and fungal type I nonreducing PKSs whose chemical logic is distinct from that of modular PKSs. This review focuses on structural and enzymological studies that reveal both similarities and striking differences between FASs and aromatic PKSs. The potential application of FAS and aromatic PKS structures for bioengineering future drugs and biofuels is highlighted.
Assuntos
Ácido Graxo Sintases/química , Ácido Graxo Sintases/metabolismo , Policetídeo Sintases/química , Policetídeo Sintases/metabolismo , Animais , Biocatálise , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Ácido Graxo Sintases/classificação , Humanos , Modelos Moleculares , Mimetismo Molecular , Estrutura Molecular , Policetídeo Sintases/classificação , Policetídeos/química , Policetídeos/metabolismo , Domínios Proteicos , Homologia Estrutural de Proteína , Especificidade por SubstratoRESUMO
The central dogma of molecular biology, that DNA is transcribed into RNA and RNA translated into protein, was coined in the early days of modern biology. Back in the 1950s and 1960s, bacterial genetics first opened the way toward understanding life as the genetically encoded interaction of macromolecules. As molecular biology progressed and our knowledge of gene control deepened, it became increasingly clear that expression relied on many more levels of regulation. In the process of dissecting mechanisms of gene expression, specific small-molecule inhibitors played an important role and became valuable tools of investigation. Small molecules offer significant advantages over genetic tools, as they allow inhibiting a process at any desired time point, whereas mutating or altering the gene of an important regulator would likely result in a dead organism. With the advent of modern sequencing technology, it has become possible to monitor global cellular effects of small-molecule treatment and thereby overcome the limitations of classical biochemistry, which usually looks at a biological system in isolation. This review focuses on several molecules, especially natural products, that have played an important role in dissecting gene expression and have opened up new fields of investigation as well as clinical venues for disease treatment.
Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Código das Histonas/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Histona Metiltransferases/antagonistas & inibidores , Humanos , Modelos Biológicos , Biologia Molecular , Biossíntese de Proteínas/efeitos dos fármacos , Splicing de RNA/efeitos dos fármacos , Estabilidade de RNA/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacosRESUMO
The gut microbiota modulate host biology in numerous ways, but little is known about the molecular mediators of these interactions. Previously, we found a widely distributed family of nonribosomal peptide synthetase gene clusters in gut bacteria. Here, by expressing a subset of these clusters in Escherichia coli or Bacillus subtilis, we show that they encode pyrazinones and dihydropyrazinones. At least one of the 47 clusters is present in 88% of the National Institutes of Health Human Microbiome Project (NIH HMP) stool samples, and they are transcribed under conditions of host colonization. We present evidence that the active form of these molecules is the initially released peptide aldehyde, which bears potent protease inhibitory activity and selectively targets a subset of cathepsins in human cell proteomes. Our findings show that an approach combining bioinformatics, synthetic biology, and heterologous gene cluster expression can rapidly expand our knowledge of the metabolic potential of the microbiota while avoiding the challenges of cultivating fastidious commensals.
Assuntos
Bactérias/metabolismo , Microbioma Gastrointestinal , Microbiota , Peptídeo Sintases/metabolismo , Pirazinas/metabolismo , Animais , Bacillus subtilis/genética , Bactérias/classificação , Bactérias/genética , Escherichia coli/genética , Fezes/microbiologia , Humanos , Peptídeo Sintases/genética , FilogeniaRESUMO
We describe a multiplex genome engineering technology in Saccharomyces cerevisiae based on annealing synthetic oligonucleotides at the lagging strand of DNA replication. The mechanism is independent of Rad51-directed homologous recombination and avoids the creation of double-strand DNA breaks, enabling precise chromosome modifications at single base-pair resolution with an efficiency of >40%, without unintended mutagenic changes at the targeted genetic loci. We observed the simultaneous incorporation of up to 12 oligonucleotides with as many as 60 targeted mutations in one transformation. Iterative transformations of a complex pool of oligonucleotides rapidly produced large combinatorial genomic diversity >105. This method was used to diversify a heterologous ß-carotene biosynthetic pathway that produced genetic variants with precise mutations in promoters, genes, and terminators, leading to altered carotenoid levels. Our approach of engineering the conserved processes of DNA replication, repair, and recombination could be automated and establishes a general strategy for multiplex combinatorial genome engineering in eukaryotes.
Assuntos
Engenharia Genética/métodos , Saccharomyces cerevisiae/genética , Replicação do DNA , Escherichia coli/genética , Edição de Genes , Oligonucleotídeos/químicaRESUMO
Hyperglycemia and hyperlipidemia are often observed in individuals with type II diabetes (T2D) and related mouse models. One dysmetabolic biochemical consequence is the non-enzymatic reaction between sugars, lipids, and proteins, favoring protein glycation, glycoxidation, and lipoxidation. Here, we identified oxidative alterations in key components of the major histocompatibility complex (MHC) class II molecule antigen processing and presentation machinery in vivo under conditions of hyperglycemia-induced metabolic stress. These modifications were linked to epitope-specific changes in endosomal processing efficiency, MHC class II-peptide binding, and DM editing activity. Moreover, we observed some quantitative and qualitative changes in the MHC class II immunopeptidome of Ob/Ob mice on a high-fat diet compared with controls, including changes in the presentation of an apolipoprotein B100 peptide associated previously with T2D and metabolic syndrome-related clinical complications. These findings highlight a link between glycation reactions and altered MHC class II antigen presentation that may contribute to T2D complications.
Assuntos
Apresentação de Antígeno/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Estresse Fisiológico/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Tipo 2/imunologia , Modelos Animais de Doenças , Epitopos/imunologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/imunologia , Ligação Proteica/imunologiaRESUMO
The increasing prevalence of immune-mediated non-communicable chronic diseases, such as food allergies, has prompted a deeper investigation into the role of the gut microbiome in modulating immune responses. Here, we explore the complex interactions between commensal microbes and the host immune system, highlighting the critical role of gut bacteria in maintaining immune homeostasis. We examine how modern lifestyle practices and environmental factors have disrupted co-evolved host-microbe interactions and discuss how changes in microbiome composition impact epithelial barrier function, responses to food allergens, and susceptibility to allergic diseases. Finally, we examine the potential of bioengineered microbiome-based therapies, and live biotherapeutic products, for reestablishing immune homeostasis to prevent or treat food allergies.
Assuntos
Hipersensibilidade Alimentar , Microbioma Gastrointestinal , Simbiose , Humanos , Animais , Microbioma Gastrointestinal/imunologia , Hipersensibilidade Alimentar/imunologia , Simbiose/imunologia , Homeostase , Alérgenos/imunologia , Alimentos , Imunomodulação , Interações entre Hospedeiro e Microrganismos/imunologia , Probióticos/uso terapêuticoRESUMO
Interactions between microorganisms are often mediated by specialized metabolites. Although the structures and biosynthesis of these compounds may have been elucidated, microbes exist within complex microbiomes and chemical signals can thus also be subject to community-dependent modifications. Increasingly powerful chemical and biological tools allow to shed light on this poorly understood aspect of chemical ecology. We provide an overview of loss-of-function and gain-of-function chemical mediator (CM) modifications within microbial multipartner relationships. Although loss-of-function modifications are abundant in the literature, few gain-of-function modifications have been described despite their important role in microbial interactions. Research in this field holds great potential for our understanding of microbial interactions and may also provide novel tools for targeted interference with microbial signaling.
Assuntos
MicrobiotaRESUMO
Prenylation is a post-translational modification (PTM) widely found in primary and secondary metabolism. This modification can enhance the lipophilicity of molecules, enabling them to interact with lipid membranes more effectively. The prenylation of peptides is often carried out by cyanobactin prenyltransferases (PTases) from cyanobacteria. These enzymes are of interest due to their ability to add prenyl groups to unmodified peptides, thus making them more effective therapeutics through the subsequent acquisition of increased membrane permeability and bioavailability. Herein we review the current knowledge of cyanobactin PTases, focusing on their discovery, biochemistry, and bioengineering, and highlight the potential application of them as peptide alkylation biocatalysts to generate peptide therapeutics.
Assuntos
Dimetilaliltranstransferase , Dimetilaliltranstransferase/química , Dimetilaliltranstransferase/metabolismo , Peptídeos Cíclicos/química , Peptídeos , BioengenhariaRESUMO
The formation and accumulation of methylglyoxal (MGO), a highly reactive dicarbonyl compound, has been implicated in the pathogenesis of type 2 diabetes, vascular complications of diabetes, and several other age-related chronic inflammatory diseases such as cardiovascular disease, cancer, and disorders of the central nervous system. MGO is mainly formed as a byproduct of glycolysis and, under physiological circumstances, detoxified by the glyoxalase system. MGO is the major precursor of nonenzymatic glycation of proteins and DNA, subsequently leading to the formation of advanced glycation end products (AGEs). MGO and MGO-derived AGEs can impact on organs and tissues affecting their functions and structure. In this review we summarize the formation of MGO, the detoxification of MGO by the glyoxalase system, and the biochemical pathways through which MGO is linked to the development of diabetes, vascular complications of diabetes, and other age-related diseases. Although interventions to treat MGO-associated complications are not yet available in the clinical setting, several strategies to lower MGO have been developed over the years. We will summarize several new directions to target MGO stress including glyoxalase inducers and MGO scavengers. Targeting MGO burden may provide new therapeutic applications to mitigate diseases in which MGO plays a crucial role.
Assuntos
Doenças Cardiovasculares/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Neoplasias/metabolismo , Aldeído Pirúvico/metabolismo , Animais , Doenças Cardiovasculares/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Humanos , Lactoilglutationa Liase/metabolismo , Neoplasias/fisiopatologia , Tioléster Hidrolases/metabolismoRESUMO
Lasso peptides are a large and sequence-diverse class of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products characterized by their slip knot-like shape. These unique, highly stable peptides are produced by bacteria for various purposes. Their stability and sequence diversity make them a potentially useful scaffold for biomedically relevant folded peptides. However, many questions remain about lasso peptide biosynthesis, ecological function, and diversification potential for biomedical and agricultural applications. This review discusses new insights and open questions about lasso peptide biosynthesis and biological function. The role that genome mining has played in the development of new methodologies for discovering and diversifying lasso peptides is also discussed.
RESUMO
Antibiotic resistance is a serious public health concern, and new drugs are needed to ensure effective treatment of many bacterial infections. Bacterial type II fatty acid synthesis (FASII) is a vital aspect of bacterial physiology, not only for the formation of membranes but also to produce intermediates used in vitamin production. Nature has evolved a repertoire of antibiotics inhibiting different aspects of FASII, validating these enzymes as potential targets for new antibiotic discovery and development. However, significant obstacles have been encountered in the development of FASII antibiotics, and few FASII drugs have advanced beyond the discovery stage. Most bacteria are capable of assimilating exogenous fatty acids. In some cases they can dispense with FASII if fatty acids are present in the environment, making the prospects for identifying broad-spectrum drugs against FASII targets unlikely. Single-target, pathogen-specific FASII drugs appear the best option, but a major drawback to this approach is the rapid acquisition of resistance via target missense mutations. This complication can be mitigated during drug development by optimizing the compound design to reduce the potential impact of on-target missense mutations at an early stage in antibiotic discovery. The lessons learned from the difficulties in FASII drug discovery that have come to light over the last decade suggest that a refocused approach to designing FASII inhibitors has the potential to add to our arsenal of weapons to combat resistance to existing antibiotics.
Assuntos
Antibacterianos , Ácidos Graxos , Antibacterianos/farmacologia , Bactérias/genética , Descoberta de DrogasRESUMO
Target RNA binding to crRNA-bound type III-A CRISPR-Cas multi-subunit Csm surveillance complexes activates cyclic-oligoadenylate (cAn) formation from ATP subunits positioned within the composite pair of Palm domain pockets of the Csm1 subunit. The generated cAn second messenger in turn targets the CARF domain of trans-acting RNase Csm6, triggering its HEPN domain-based RNase activity. We have undertaken cryo-EM studies on multi-subunit Thermococcus onnurineus Csm effector ternary complexes, as well as X-ray studies on Csm1-Csm4 cassette, both bound to substrate (AMPPNP), intermediates (pppAn), and products (cAn), to decipher mechanistic aspects of cAn formation and release. A network of intermolecular hydrogen bond alignments accounts for the observed adenosine specificity, with ligand positioning dictating formation of linear pppAn intermediates and subsequent cAn formation by cyclization. We combine our structural results with published functional studies to highlight mechanistic insights into the role of the Csm effector complex in mediating the cAn signaling pathway.
Assuntos
Nucleotídeos de Adenina/química , Proteínas Arqueais/química , Sistemas CRISPR-Cas , Oligorribonucleotídeos/química , Ribonucleases/química , Sistemas do Segundo Mensageiro , Thermococcus/química , Nucleotídeos de Adenina/metabolismo , Proteínas Arqueais/metabolismo , Microscopia Crioeletrônica , Oligorribonucleotídeos/metabolismo , Ribonucleases/metabolismo , Thermococcus/metabolismo , Thermococcus/ultraestruturaRESUMO
Bacitracin is a macrocyclic peptide antibiotic that is widely used as a topical treatment for infections caused by gram-positive bacteria. Mechanistically, bacitracin targets bacteria by specifically binding to the phospholipid undecaprenyl pyrophosphate (C55PP), which plays a key role in the bacterial lipid II cycle. Recent crystallographic studies have shown that when bound to C55PP, bacitracin adopts a highly ordered amphipathic conformation. In doing so, all hydrophobic side chains align on one face of the bacitracin-C55PP complex, presumably interacting with the bacterial cell membrane. These insights led us to undertake structure-activity investigations into the individual contribution of the nonpolar amino acids found in bacitracin. To achieve this we designed, synthesized, and evaluated a series of bacitracin analogues, a number of which were found to exhibit significantly enhanced antibacterial activity against clinically relevant, drug-resistant pathogens. As for the natural product, these next-generation bacitracins were found to form stable complexes with C55PP. The structure-activity insights thus obtained serve to inform the design of C55PP-targeting antibiotics, a key and underexploited antibacterial strategy.
Assuntos
Antibacterianos , Bacitracina , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química , Bacitracina/farmacologia , Bacitracina/química , Relação Estrutura-Atividade , Farmacorresistência Bacteriana/efeitos dos fármacos , Vancomicina/farmacologia , Vancomicina/química , Vancomicina/análogos & derivados , Desenho de Fármacos , Fosfatos de Poli-Isoprenil/metabolismo , Fosfatos de Poli-Isoprenil/química , Fosfatos de Poli-Isoprenil/farmacologiaRESUMO
Mammalian cell culture processes are widely utilized for biotherapeutics production, disease diagnostics, and biosensors, and hence, should be optimized to support robust cell growth and viability. However, toxic by-products accumulate in cultures due to inefficiencies in metabolic activities and nutrient utilization. In this study, we applied comprehensive 13C stable-isotope tracing of amino acids and glucose to two Immunoglobulin G (IgG) producing Chinese Hamster Ovary (CHO) cell lines to identify secreted by-products and trace their origins. CHO cells were cultured in media formulations missing a single amino acid or glucose supplemented with a 13C-tracer of the missing substrate, followed by gas chromatography-mass spectrometry (GC-MS) analysis to track labeled carbon flows and identify by-products. We tracked the sources of all secreted by-products and verified the identity of 45 by-products, majority of which were derived from glucose, leucine, isoleucine, valine, tyrosine, tryptophan, methionine, and phenylalanine. In addition to by-products identified previously, we identified several metabolites including 2-hydroxyisovaleric acid, 2-aminobutyric acid, L-alloisoleucine, ketoisoleucine, 2-hydroxy-3-methylvaleric acid, desmeninol, and 2-aminobutyric acid. When added to CHO cell cultures at different concentrations, certain metabolites inhibited cell growth while others including 2-hydroxy acids, surprisingly, reduced lactate accumulation. In vitro enzymatic analysis indicated that 2-hydroxy acids were metabolized by lactate dehydrogenase suggesting a possible mechanism for lowered lactate accumulation, e.g., competitive substrate inhibition. The 13C-labeling assisted metabolomics pipeline developed and the metabolites identified will serve as a springboard to reduce undesirable by-products accumulation and alleviate inefficient substrate utilization in mammalian cultures used for biomanufacturing and other applications through altered media formulations and pathway engineering strategies.
Assuntos
Aminoácidos , Isótopos de Carbono , Cricetulus , Glucose , Animais , Células CHO , Glucose/metabolismo , Aminoácidos/metabolismo , Isótopos de Carbono/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Técnicas de Cultura de Células/métodos , Cricetinae , Imunoglobulina G/metabolismo , Marcação por Isótopo/métodosRESUMO
In bacteria, more than half of the genes in the genome are organized in operons. In contrast, in eukaryotes, functionally related genes are usually dispersed across the genome. There are, however, numerous examples of functional clusters of nonhomologous genes for metabolic pathways in fungi and plants. Despite superficial similarities with operons (physical clustering, coordinate regulation), these clusters have not usually originated by horizontal gene transfer from bacteria, and (unlike operons) the genes are typically transcribed separately rather than as a single polycistronic message. This clustering phenomenon raises intriguing questions about the origins of clustered metabolic pathways in eukaryotes and the significance of clustering for pathway function. Here we review metabolic gene clusters from fungi and plants, highlight commonalities and differences, and consider how these clusters form and are regulated. We also identify opportunities for future research in the areas of large-scale genomics, synthetic biology, and experimental evolution.
Assuntos
Fungos/genética , Redes e Vias Metabólicas/genética , Família Multigênica/genética , Plantas/genética , Eucariotos/genética , Eucariotos/metabolismo , Fungos/metabolismo , Transferência Genética Horizontal , Genoma/genética , Óperon/genética , Plantas/metabolismoRESUMO
Natural products (NPs) are indispensable in drug development, particularly in combating infections, cancer, and neurodegenerative diseases. However, their limited availability poses significant challenges. Template-free de novo biosynthetic pathway design provides a strategic solution for NP production, with deep learning standing out as a powerful tool in this domain. This review delves into state-of-the-art deep learning algorithms in NP biosynthesis pathway design. It provides an in-depth discussion of databases like Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome, and UniProt, which are essential for model training, along with chemical databases such as Reaxys, SciFinder, and PubChem for transfer learning to expand models' understanding of the broader chemical space. It evaluates the potential and challenges of sequence-to-sequence and graph-to-graph translation models for accurate single-step prediction. Additionally, it discusses search algorithms for multistep prediction and deep learning algorithms for predicting enzyme function. The review also highlights the pivotal role of deep learning in improving catalytic efficiency through enzyme engineering, which is essential for enhancing NP production. Moreover, it examines the application of large language models in pathway design, enzyme discovery, and enzyme engineering. Finally, it addresses the challenges and prospects associated with template-free approaches, offering insights into potential advancements in NP biosynthesis pathway design.
Assuntos
Produtos Biológicos , Vias Biossintéticas , Aprendizado Profundo , Produtos Biológicos/metabolismo , Algoritmos , Biologia Computacional/métodos , HumanosRESUMO
Despite identification of numerous associations between microbiomes and diseases, the complexity of the human microbiome has hindered identification of individual species and strains that are causative in host phenotype or disease. Uncovering causative microbes is vital to fully understand disease processes and to harness the potential therapeutic benefits of microbiota manipulation. Developments in sequencing technology, animal models, and bacterial culturing have facilitated the discovery of specific microbes that impact the host and are beginning to advance the characterization of host-microbiome interaction mechanisms. We summarize the historical and contemporary experimental approaches taken to uncover microbes from the microbiota that affect host biology and describe examples of commensals that have specific effects on the immune system, inflammation, and metabolism. There is still much to learn, and we lay out challenges faced by the field and suggest potential remedies for common pitfalls encountered in the hunt for causative commensal microbes.