Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Biochem Genet ; 62(1): 40-58, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37243753

RESUMO

This study aimed to develop and validate a cuproptosis-related gene signature for the prognosis of gastric cancer. The data in TCGA GC TPM format from UCSC were extracted for analysis, and GC samples were randomly divided into training and validation groups. Pearson correlation analysis was used to obtain cuproptosis-related genes co-expressed with 19 Cuproptosis genes. Univariate Cox and Lasso regression analyses were used to obtain cuproptosis-related prognostic genes. Multivariate Cox regression analysis was used to construct the final prognostic risk model. The risk score curve, Kaplan-Meier survival curves, and ROC curve were used to evaluate the predictive ability of Cox risk model. Finally, the functional annotation of the risk model was obtained through enrichment analysis. Then, a six-gene signature was identified in the training cohort and verified among all cohorts using Cox regression analyses and Kaplan-Meier plots, demonstrating its independent prognostic significance for gastric cancer. In addition, ROC analysis confirmed the significant predictive potential of this signature for the prognosis of gastric cancer. Functional enrichment analysis was mainly related to cell-matrix function. Therefore, a new cuproptosis-related six-gene signature (ACLY, FGD6, SERPINE1, SPATA13, RANGAP1, and ADGRE5) was constructed for the prognosis of gastric cancer, allowing for tailored prediction of outcome and the formulation of novel therapeutics for gastric cancer patients.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Estimativa de Kaplan-Meier , Curva ROC , Fatores de Risco , Apoptose
2.
Biochem Genet ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042347

RESUMO

Breast cancer represents the predominant malignant neoplasm in women, posing significant threats to both life and health. N6-methyladenosine (m6A) methylation, the most prevalent RNA modification, plays a crucial role in cancer development. This study aims to delineate the prognostic implications of m6A-associated long non-coding RNAs (m6AlncRNAs) and identify potential m6AlncRNA candidates as novel therapeutic targets for breast cancer. Through univariate Cox, Least Absolute Shrinkage and Selection Operator and multiple Cox regression analysis, m6AlncRNA was analyzed and a risk-prognosis model was constructed. Kaplan-Meier analysis, principal component analysis and nomogram were used to evaluate the risk model. Finally, we screened candidate lncRNAs and validated them in breast cancer cell lines. m6AlncRNAs were stratified into three subtypes, and their associations with survival outcomes and immune infiltrating capacities were systematically analyzed. Subsequently, breast cancer patients were stratified into high and low-risk groups based on median risk scores, revealing distinct clinical characteristics, tumor immunoinvasive profiles, tumor mutation burden, and survival probabilities. Additionally, a prognostic model was established, highlighting three promising candidate lncRNAs: ECE1-AS1, NDUFA6-DT, and COL4A2-AS1. This study investigated the prognostic implications of m6A-associated long non-coding RNAs (m6AlncRNAs) and developed a prognostic risk model to identify three potential m6AlncRNA candidates. These findings provide valuable insights into the potential application of these m6AlncRNAs in guiding immunotherapeutic strategies for breast cancer.

3.
Int J Mol Sci ; 25(2)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38256104

RESUMO

The progression and metastasis of oral squamous cell carcinoma (OSCC) are highly influenced by cancer stem cells (CSCs) due to their unique self-renewal and plasticity. In this study, data were obtained from a single-cell RNA-sequencing dataset (GSE172577) in the GEO database, and LASSO-Cox regression analysis was performed on 1344 CSCs-related genes to establish a six-gene prognostic signature (6-GPS) consisting of ADM, POLR1D, PTGR1, RPL35A, PGK1, and P4HA1. High-risk scores were significantly associated with unfavorable survival outcomes, and these features were thoroughly validated in the ICGC. The results of nomograms, calibration plots, and ROC curves confirmed the good prognostic accuracy of 6-GPS for OSCC. Additionally, the knockdown of ADM or POLR1D genes may significantly inhibit the proliferation, migration, and invasion of OSCC cells through the JAK/HIF-1 pathway. Furthermore, cell-cycle arrest occurred in the G1 phase by suppressing Cyclin D1. In summary, 6-GPS may play a crucial role in the occurrence and development of OSCC and has the potential to be developed further as a diagnostic, therapeutic, and prognostic tool for OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço , Prognóstico , Neoplasias Bucais/genética , Células-Tronco Neoplásicas , RNA Polimerases Dirigidas por DNA
4.
Cancer Cell Int ; 23(1): 232, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803446

RESUMO

Ovarian cancer (OV) is the most lethal gynecological malignancies worldwide. The coagulation cascade could induce tumor cell infiltration and contribute to OV progression. However, coagulation-related gene (CRG) signature for OV prognosis hasn't been determined yet. In this study, we evaluated the prognostic value of coagulation scores through receiver operating characteristics (ROC) analysis and K-M curves, among OV patients at our institution. Based on the transcriptome data of TCGA-OV cohort, we stratified two coagulation-related subtypes with distinct differences in prognosis and tumor immune microenvironment (p < 0.05). Moreover, from the 6406 differentially-expressed genes (DEGs) between the GTEx (n = 180) and TCGA-OV cohorts (n = 376), we identified 138 potential CRGs. Through LASSO-Cox algorithm, we finally distinguished a 3-gene signature (SERPINA10, CD38, and ZBTB16), with promising prognostic ability in both TCGA (p < 0.001) and ICGC cohorts (p = 0.040). Stepwise, we constructed a nomogram based on the clinical features and coagulation-related signature for overall survival prediction, with the C-index of 0.6761, which was evaluated by calibration curves. Especially, based on tissue microarrays analysis, Quantitative real-time fluorescence PCR (qRT-PCR), and Western Blot, we found that aberrant upregulation of CRGs was related to poor prognosis in OV at both mRNA and protein level (p < 0.05). Collectively, the coagulation-related signature was a robust prognostic biomarker, which could provide therapeutic benefits for chemotherapy/immunotherapy and assist clinical decision in OV patients.

5.
BMC Cancer ; 22(1): 404, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35418066

RESUMO

BACKGROUND: In this study, we performed a molecular evaluation of primary pancreatic adenocarcinoma (PAAD) based on the comprehensive analysis of energy metabolism-related gene (EMRG) expression profiles. METHODS: Molecular subtypes were identified by nonnegative matrix clustering of 565 EMRGs. An overall survival (OS) predictive gene signature was developed and internally and externally validated based on three online PAAD datasets. Hub genes were identified in molecular subtypes by weighted gene correlation network analysis (WGCNA) coexpression algorithm analysis and considered as prognostic genes. LASSO cox regression was conducted to establish a robust prognostic gene model, a four-gene signature, which performed better in survival prediction than four previously reported models. In addition, a novel nomogram constructed by combining clinical features and the 4-gene signature showed high-confidence clinical utility. According to gene set enrichment analysis (GSEA), gene sets related to the high-risk group participate in the neuroactive ligand receptor interaction pathway. CONCLUSIONS: In summary, EMRG-based molecular subtypes and prognostic gene models may provide a novel research direction for patient stratification and trials of targeted therapies.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Adenocarcinoma/genética , Metabolismo Energético/genética , Humanos , Processos Neoplásicos , Neoplasias Pancreáticas/genética , Prognóstico , Neoplasias Pancreáticas
6.
BMC Cancer ; 22(1): 719, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35768833

RESUMO

BACKGROUND: Ferroptosis is an iron-dependent programmed cell death modality that may have a tumor-suppressive function. Therefore, regulating ferroptosis in tumor cells could serve as a novel therapeutic approach. This article focuses on ferroptosis-associated long non-coding RNAs (lncRNAs) and their potential application as a prognostic predictor for bladder cancer (BCa). METHODS: We retrieved BCa-related transcriptome information and clinical information from the TCGA database and ferroptosis-related gene sets from the FerrDb database. Least absolute shrinkage and selection operator regression (LASSO) and Cox regression models were used to identify and develop predictive models and validate the model accuracy. Finally, we explored the inter-regulatory relationships between ferroptosis-related genes and immune cell infiltration, immune checkpoints, and m6A methylation genes. RESULTS: Kaplan-Meier analyses screened 11 differentially expressed lncRNAs associated with poor BCa prognosis. The signature (AUC = 0.720) could be utilized to predict BCa prognosis. Additionally, GSEA revealed immune and tumor-related pathways in the low-risk group. TCGA showed that the p53 signaling pathway, ferroptosis, Kaposi sarcoma - associated herpesvirus infection, IL - 17 signaling pathway, MicroRNAs in cancer, TNF signaling pathway, PI3K - Akt signaling pathway and HIF - 1 signaling pathway were significantly different from those in the high-risk group. Immune checkpoints, such as PDCD-1 (PD-1), CTLA4, and LAG3, were differentially expressed between the two risk groups. m6A methylation-related genes were significantly differentially expressed between the two risk groups. CONCLUSION: A new ferroptosis-associated lncRNAs signature developed for predicting the prognosis of BCa patients will improve the treatment and management of BCa patients.


Assuntos
Ferroptose , RNA Longo não Codificante , Neoplasias da Bexiga Urinária , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Ferroptose/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Prognóstico , RNA Longo não Codificante/metabolismo , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia
7.
Brief Bioinform ; 20(6): 2130-2140, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30184043

RESUMO

Breast cancer is a very complex and heterogeneous disease with variable molecular mechanisms of carcinogenesis and clinical behaviors. The identification of prognostic risk factors may enable effective diagnosis and treatment of breast cancer. In particular, numerous gene-expression-based prognostic signatures were developed and some of them have already been applied into clinical trials and practice. In this study, we summarized several representative gene-expression-based signatures with significant prognostic value and separately assessed their ability of prognosis prediction in their originally targeted populations of breast cancer. Notably, many of the collected signatures were originally designed to predict the outcomes of estrogen receptor positive (ER+) patients or the whole breast cancer cohort; there are no typical signatures used for the prognostic prediction in a specific population of patients with the intrinsic subtype. We thus attempted to identify subtype-specific prognostic signatures via a computational framework for analyzing multi-omics profiles and patient survival. For both the discovery and an independent data set, we confirmed that subtype-specific signature is a strong and significant independent prognostic factor in the corresponding cohort. These results indicate that the subtype-specific prognostic signature has a much higher resolution in the risk stratification, which may lead to improved therapies and precision medicine for patients with breast cancer.


Assuntos
Neoplasias da Mama/patologia , Prognóstico , Neoplasias da Mama/genética , Metilação de DNA , Feminino , Humanos , Pessoa de Meia-Idade , Risco
8.
BMC Cancer ; 21(1): 835, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34284753

RESUMO

BACKGROUND: The prognosis of oral squamous cell carcinoma (OSCC) patients is difficult to predict or describe due to its high-level heterogeneity and complex aetiologic factors. Ferroptosis is a novel form of iron-dependent cell death that is closely related to tumour growth and progression. This study aims to clarify the predictive value of ferroptosis-related genes (FRGs) on the overall survival(OS) of OSCC patients. METHODS: The mRNA expression profile of FRGs and clinical information of patients with OSCC were collected from the TCGA database. Candidate differentially expressed ferroptosis-related genes (DE-FRGs) were identified by analysing differences between OSCC and adjacent normal tissues. A gene signature of prognosis-related DE-FRGs was established by univariate Cox analysis and LASSO analysis in the training set. Patients were then divided into high- and low-risk groups according to the cut-off value of risk scores, A nomogram was constructed to quantify the contributions of gene signature and clinical parameters to OS. Then several bioinformatics analyses were used to verify the reliability and accuracy of the model in the validation set. Finally, single-sample gene set enrichment analysis (ssGSEA) was also performed to reveal the underlying differences in immune status between different risk groups. RESULTS: A prognostic model was constructed based on 10 ferroptosis-related genes. Patients in high-risk group had a significantly worse OS (p < 0.001). The gene signature was verified as an independent predictor for the OS of OSCC patients (HR > 1, p < 0.001). The receiver operating characteristic curve displayed the favour predictive performance of the risk model. The prediction nomogram successfully quantified each indicator's contribution to survival and the concordance index and calibration plots showed its superior predictive capacity. Finally, ssGSEA preliminarily indicated that the poor prognosis in the high-risk group might result from the dysregulation of immune status. CONCLUSION: This study established a 10-ferroptosis-releated gene signature and nomogram that can be used to predict the prognosis of OSCC patients, which provides new insight for future anticancer therapies based on potential FRG targets.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/genética , Ferroptose/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Bucais/genética , Carcinoma de Células Escamosas/patologia , Humanos , Pessoa de Meia-Idade , Neoplasias Bucais/patologia , Prognóstico
9.
Hum Genomics ; 13(1): 36, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31416476

RESUMO

PURPOSE: This study aimed to describe the use of a novel 4-lncRNA signature to predict prognosis in patients with laryngeal cancer and to explore its possible mechanisms. METHODS: We identified lncRNAs that were differentially expressed between 111 tumor tissue samples and 12 matched normal tissue samples from The Cancer Genome Atlas Database (TCGA). We used Cox regression analysis to identify lncRNAs that were correlated with prognosis. A 4-lncRNA signature was developed to predict the prognosis of patients with laryngeal cancer. The receiver operating characteristic (ROC) curves and area under the curve (AUC) were used to verify the validity of this Cox regression model, and an independent prognosis analysis was used to confirm that the 4-lncRNA signature was an independent prognostic factor. Furthermore, the function of these lncRNAs was inferred using related gene prediction and Gene ontology (GO) enrichment analysis in order to clarify the possible mechanisms underlying their predictive ability. RESULTS: In total, 214 differentially expressed lncRNAs were identified, and a 4-lncRNA signature was constructed using Cox survival analysis. The risk coefficients in the multivariate Cox analysis revealed that LINC02154 and MNX1-AS1 are risk factors for laryngeal cancer, whereas MYHAS and LINC01281 appear to be protective factors. The results of a functional annotation analysis suggested that the mechanisms by which these lncRNAs influence prognosis in laryngeal cancer may involve the extracellular exosome, the Notch signaling pathway, voltage-gated calcium channels, and the Wnt signaling pathway. CONCLUSION: We identified a novel 4-lncRNA signature that can predict the prognosis of patients with laryngeal cancer and that may influence the prognosis of laryngeal cancer by regulating immunity, tumor apoptosis, metastasis, invasion, and other characteristics through the Notch signaling pathway, voltage-gated calcium channels, and the Wnt signaling pathway.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Laríngeas/genética , Prognóstico , RNA Longo não Codificante/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Intervalo Livre de Doença , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Laríngeas/patologia , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Fatores de Risco
10.
Cell Commun Signal ; 18(1): 34, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32122386

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy and its mortality continues to rise globally. Because of its high heterogeneity and complex molecular landscapes, published gene signatures have demonstrated low specificity and robustness. Functional signatures containing a group of genes involved in similar biological functions may display a more robust performance. METHODS: The present study was designed to excavate potential functional signatures for PDAC by analyzing maximal number of datasets extracted from available databases with a recently developed method of FAIME (Functional Analysis of Individual Microarray Expression) in a comprehensive and integrated way. RESULTS: Eleven PDAC datasets were extracted from GEO, ICGC and TCGA databases. By systemically analyzing these datasets, we identified a robust functional signature of subpathway (path:00982_1), which belongs to the drug metabolism-cytochrome P450 pathway. The signature has displayed a more powerful and robust capacity in predicting prognosis, drug response and chemotherapeutic efficacy for PDAC, particularly for the classical subtype, in comparison with published gene signatures and clinically used TNM staging system. This signature was verified by meta-analyses and validated in available cell line and clinical datasets with chemotherapeutic efficacy. CONCLUSION: The present study has identified a novel functional PDAC signature, which has the potential to improve the current systems for predicting the prognosis and monitoring drug response, and to serve a linkage to therapeutic options for combating PDAC. However, the involvement of path:00982_1 subpathway in the metabolism of anti-PDAC chemotherapeutic drugs, particularly its biological interpretation, requires a further investigation. Video Abstract.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Expressão Gênica , Neoplasias Pancreáticas/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/genética , Linhagem Celular Tumoral , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pancreáticas/genética
11.
BMC Med Inform Decis Mak ; 20(Suppl 3): 136, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32646427

RESUMO

BACKGROUND: Bladder cancer (BC) is regarded as one of the most fatal cancer around the world. Nevertheless, there still lack of sufficient markers to predict the prognosis of BC patients. Herein, we aim to establish a prognosis predicting signature based on long-noncoding RNA (lncRNA) for the invasive BC patients. METHODS: The lncRNA expression profile was downloaded from The Cancer Genome Atlas (TCGA) database, along with the correlated clinicopathological information. The univariate Cox regression test was employed to screen out the recurrence-free survival (RFS)-related lncRNAs. Then, the LASSO method was conducted to construct the signature based on these RFS-related lncRNA candidates. Genes correlated with these fourteen lncRNAs were extracted from the mRNA expression profile, with the Pearson correlation coefficient > 0.60 or < - 0.40. Subsequently, the Proteomap pathway enrichment analyses were conducted to classify the function of these correlated genes. Furthermore, the multivariate analyses were executed to reveal the independent role of the proposed signature with the clinicopathological features. RESULTS: We established an lncRNA-based RFS predicting signature by the LASSO Cox regression test, and proved its usage and stability on both the training and validation cohorts by the Kaplan-Meier and receiver operating characteristic (ROC) curves. Notably, the multivariate Cox regression analysis found that our classifier was an independent indicator for muscle-invasive BC patients rather than sex, age and tumor grade, with higher predictive value than the existing ones. Besides, we did the pathway analyses for these genes that highly correlated with the proposed fourteen lncRNAs, as well as the differentially expressed genes (DEGs) derived from the high-risk vs. low-risk groups, and the recurrence vs. non-recurrence groups, respectively. Notably, these results were consistent, and these genes were mostly enriched in the transcription factors, G protein-coupled receptors, MAPK signaling pathways, which were proved significantly associated with tumor progression and drug resistance. CONCLUSIONS: Our results suggested that the fourteen-lncRNA-based RFS predicting signature is an independent indicator for BC patients. Further prospective studies with more samples are needed to verify our findings.


Assuntos
RNA Longo não Codificante , Neoplasias da Bexiga Urinária , Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Músculos , Prognóstico , Estudos Prospectivos , RNA Longo não Codificante/genética , Neoplasias da Bexiga Urinária/genética
12.
Zhonghua Zhong Liu Za Zhi ; 42(5): 396-402, 2020 May 23.
Artigo em Chinês | MEDLINE | ID: mdl-32482029

RESUMO

Objective: To investigate the differential gene expression profiles of alpha-fetoprotein (AFP) high- and low-expressing hepatocellular carcinoma (HCC), and to provide a theoretical basis for the molecular mechanism and prognosis analysis of HCC. Methods: The transcriptome data and related clinical information from 368 HCC cases were obtained from the Cancer Gene Atlas (TCGA) public database. The samples were divided into AFP high expression (AFP(high)) group and low expression (AFP(low)) group according to the quartile of AFP mRNA expression, with 92 cases in each group. The differential gene analysis was carried out using the DEseq2 package in the R software. The functional and KEGG pathway enrichment analysis of the differential genes was performed using ClusterProfiler package. The protein-protein interaction network was constructed to screen hub genes using the String database and Cytoscape software. The single-sample GSEA analysis was performed to enrich and score signature gene sets using the GSVA package. And then RNAseq data and real-time quantitative polymerase chain reaction (RT-qPCR) were used for independent dataset validation and tissue validation. Results: The clinical analysis showed that high expression of AFP was significantly associated with poor pathological differentiation and ethnicity (P<0.05 for both). A total of 1 382 differential genes were obtained by bioinformatics analysis, of which 931 genes were up-regulated and 451 genes were down-regulated in AFP(high) group. GO enrichment analysis showed that the highly expressed genes were mainly correlated with the processes of appendage development, limb development, and skeletal system development, while lowly expressed genes were related to metabolic-related processes such as xenobiotic metabolism, steroid metabolism, and cellular response to xenobiotic stimuli. KEGG pathway enrichment analysis revealed that highly expressed genes were mainly involved in primary immunodeficiency, neuroactive ligand-receptor interaction, and cytokine-cytokine receptor interaction, while lowly expressed genes were mainly involved in retinol metabolism, chemical carcinogenesis, steroid hormone biosynthesis and other pathways. A prognostic related gene set that was consisted of AURKB, TTK, CENPA, UBE2C, HJURP, and KIF15 was identified. And the high expression of this gene set was related to the shorter recurrence-free survival and overall survival time in HCC patients, and its enrichment score was positively correlated with AFP expression (r=0.475, P<0.001). The validation results of RNAseq data were basically consistent with the TCGA data. The RT-qPCR results showed that AURKB, KIF15, and UBE2C were significantly overexpressed in HCC tissues with high AFP expression. Although the expression of AURKB, TTK, KIF15, and UBE2C was not related to recurrence-free survival and overall survival of HCC patients, there was a tendency that the patients with high AFP levels showed relatively shorter recurrence-free survival time and overall survival time. Conclusions: There is a large difference in gene expression profiles between AFP(high) and AFP(low) HCC. The prognostic signature may cooperate with AFP to promote the initiation and development of HCC. It also may explain the tumorigenesis in HCC with different AFP levels, and provide new clues for the prognosis of HCC.


Assuntos
Carcinoma Hepatocelular/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , alfa-Fetoproteínas/genética , Carcinoma Hepatocelular/patologia , Perfilação da Expressão Gênica , Humanos , Cinesinas , Neoplasias Hepáticas/patologia , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma , Enzimas de Conjugação de Ubiquitina , alfa-Fetoproteínas/metabolismo
13.
Front Immunol ; 15: 1454977, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39380994

RESUMO

Background: Hepatocellular carcinoma (HCC) is highly aggressive, with delayed diagnosis, poor prognosis, and a lack of comprehensive and accurate prognostic models to assist clinicians. This study aimed to construct an HCC prognosis-related gene signature (HPRGS) and explore its clinical application value. Methods: TCGA-LIHC cohort was used for training, and the LIRI-JP cohort and HCC cDNA microarray were used for validation. Machine learning algorithms constructed a prognostic gene label for HCC. Kaplan-Meier (K-M), ROC curve, multiple analyses, algorithms, and online databases were used to analyze differences between high- and low-risk populations. A nomogram was constructed to facilitate clinical application. Results: We identified 119 differential genes based on transcriptome sequencing data from five independent HCC cohorts, and 53 of these genes were associated with overall survival (OS). Using 101 machine learning algorithms, the 10 most prognostic genes were selected. We constructed an HCC HPRGS with four genes (SOCS2, LCAT, ECT2, and TMEM106C). Good predictive performance of the HPRGS was confirmed by ROC, C-index, and K-M curves. Mutation analysis showed significant differences between the low- and high-risk patients. The low-risk group had a higher response to transcatheter arterial chemoembolization (TACE) and immunotherapy. Treatment response of high- and low-risk groups to small-molecule drugs was predicted. Linifanib was a potential drug for high-risk populations. Multivariate analysis confirmed that HPRGS were independent prognostic factors in TCGA-LIHC. A nomogram provided a clinical practice reference. Conclusion: We constructed an HPRGS for HCC, which can accurately predict OS and guide the treatment decisions for patients with HCC.


Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular , Neoplasias Hepáticas , Aprendizado de Máquina , Nomogramas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/mortalidade , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/mortalidade , Prognóstico , Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Transcriptoma , Feminino , Masculino , Regulação Neoplásica da Expressão Gênica , Pessoa de Meia-Idade
14.
Genes Genomics ; 46(2): 171-185, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38180715

RESUMO

BACKGROUND: Aberrant DNA methylation is one of the major epigenetic alterations in neuroblastoma. OBJECTIVE: Exploring the prognostic significance of methylation driver genes in neuroblastoma could help to comprehensively assess patient prognosis. METHODS: After identifying methylation driver genes (MDGs), we used the LASSO algorithm and stepwise Cox regression to construct methylation driver gene-related risk score (MDGRS), and evaluated its predictive performance by multiple methods. By combining risk grouping and MDGRS grouping, we developed a new prognostic stratification strategy and explored the intrinsic differences between the different groupings. RESULTS: We identified 44 stably expressed MDGs in neuroblastoma. MDGRS showed superior predictive performance in both internal and external cohorts and was strongly correlated with immune-related scores. MDGRS can be an independent prognostic factor for neuroblastoma, and we constructed the nomogram to facilitate clinical application. Based on the new prognostic stratification strategy, we divided the patients into three groups and found significant differences in overall prognosis, clinical characteristics, and immune infiltration between the different subgroups. CONCLUSION: MDGRS was an accurate and promising tool to facilitate comprehensive pre-treatment assessment. And the new prognostic stratification strategy could be helpful for clinical decision making.


Assuntos
Neuroblastoma , Processamento de Proteína Pós-Traducional , Humanos , Prognóstico , Expressão Gênica , Neuroblastoma/genética , Estratificação de Risco Genético , Metilação
15.
Clin Exp Med ; 24(1): 169, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052154

RESUMO

Endoplasmic reticulum stress (ERS) is a critical factor influencing lung adenocarcinoma (LUAD) progression and patient outcomes. In this study, we analyzed gene expression data from LUAD samples sourced from The Cancer Genomic Atlas and Gene Expression Omnibus databases. Utilizing advanced statistical methods including LASSO and Cox regression, we developed a ERS-associated signature (ERAS) based on ten ERS-related genes. This model stratified patients into high- and low-risk groups, with the high-risk group exhibiting decreased survival rates, elevated tumor mutational burden, and heightened chemotherapy sensitivity. Additionally, we observed lower immune and ESTIMATE scores in the high-ERAS group, indicating a potentially compromised immune response. Experimental validation through quantitative real-time polymerase chain reaction confirmed the utility of our model. Furthermore, we constructed a nomogram to predict 1-, 3-, and 5-year survival rates, providing clinicians with a valuable tool for personalized patient management. In conclusion, our study demonstrates the efficacy of the ERAS in identifying high-ERAS LUAD patients, offering promising implications for improved prognostication and treatment strategies.


Assuntos
Adenocarcinoma de Pulmão , Estresse do Retículo Endoplasmático , Imunoterapia , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/terapia , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/imunologia , Prognóstico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Imunoterapia/métodos , Feminino , Masculino , Nomogramas , Pessoa de Meia-Idade , Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Idoso , Regulação Neoplásica da Expressão Gênica , Análise de Sobrevida
16.
Front Immunol ; 15: 1323199, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38742112

RESUMO

Background: Hepatocellular carcinoma (HCC) is one of the most lethal malignancies worldwide. PANoptosis is a recently unveiled programmed cell death pathway, Nonetheless, the precise implications of PANoptosis within the context of HCC remain incompletely elucidated. Methods: We conducted a comprehensive bioinformatics analysis to evaluate both the expression and mutation patterns of PANoptosis-related genes (PRGs). We categorized HCC into two clusters and identified differentially expressed PANoptosis-related genes (DEPRGs). Next, a PANoptosis risk model was constructed using LASSO and multivariate Cox regression analyses. The relationship between PRGs, risk genes, the risk model, and the immune microenvironment was studies. In addition, drug sensitivity between high- and low-risk groups was examined. The expression profiles of these four risk genes were elucidate by qRT-PCR or immunohistochemical (IHC). Furthermore, the effect of CTSC knock down on HCC cell behavior was verified using in vitro experiments. Results: We constructed a prognostic signature of four DEPRGs (CTSC, CDCA8, G6PD, and CXCL9). Receiver operating characteristic curve analyses underscored the superior prognostic capacity of this signature in assessing the outcomes of HCC patients. Subsequently, patients were stratified based on their risk scores, which revealed that the low-risk group had better prognosis than those in the high-risk group. High-risk group displayed a lower Stromal Score, Immune Score, ESTIMATE score, and higher cancer stem cell content, tumor mutation burden (TMB) values. Furthermore, a correlation was noted between the risk model and the sensitivity to 56 chemotherapeutic agents, as well as immunotherapy efficacy, in patient with. These findings provide valuable guidance for personalized clinical treatment strategies. The qRT-PCR analysis revealed that upregulated expression of CTSC, CDCA8, and G6PD, whereas downregulated expression of CXCL9 in HCC compared with adjacent tumor tissue and normal liver cell lines. The knockdown of CTSC significantly reduced both HCC cell proliferation and migration. Conclusion: Our study underscores the promise of PANoptosis-based molecular clustering and prognostic signatures in predicting patient survival and discerning the intricacies of the tumor microenvironment within the context of HCC. These insights hold the potential to advance our comprehension of the therapeutic contribution of PANoptosis plays in HCC and pave the way for generating more efficacious treatment strategies.


Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular , Biologia Computacional , Neoplasias Hepáticas , Microambiente Tumoral , Feminino , Humanos , Masculino , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Quimiocina CXCL9/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Prognóstico , Transcriptoma , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
17.
BMC Med Genomics ; 17(1): 16, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191397

RESUMO

BACKGROUND: The six-transmembrane epithelial antigen of prostate (STEAP) family members are known to be involved in various tumor-related biological processes and showed its huge potential role in tumor immunotherapy. METHODS: Biological differences were investigated through Gene set enrichment analysis (GSEA) and tumor microenvironment analysis by CIBERSORT. Tumor mutation burden (TMB), immunotherapy response and chemotherapeutic drugs sensitivity were estimated in R. RESULTS: We established a prognostic signature with the formula: risk score = STEAP1 × 0.3994 + STEAP4 × (- 0.7596), which had a favorable concordance with the prediction. The high-risk group were enriched in cell cycle and RNA and protein synthesis related pathways, while the low-risk group were enriched in complement and metabolic related pathways. And the risk score was significantly correlated with immune cell infiltration. Most notably, the patients in the low-risk group were characterized with increased TMB and decreased tumor immune dysfunction and exclusion (TIDE) score, indicating that these patients showed better immune checkpoint blockade response. Meanwhile, we found the patients with high-risk were more sensitive to some drugs related to cell cycle and apoptosis. CONCLUSIONS: The novel signature based on STEAPs may be effective indicators for predicting prognosis, and provides corresponding clinical treatment recommendations for HCC patients based on this classification.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Masculino , Humanos , Prognóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Próstata , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Imunoterapia , Microambiente Tumoral , Antígenos de Neoplasias , Oxirredutases
18.
World J Gastrointest Oncol ; 16(3): 945-967, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38577477

RESUMO

BACKGROUND: Gastric cancer (GC) is a highly aggressive malignancy with a heterogeneous nature, which makes prognosis prediction and treatment determination difficult. Inflammation is now recognized as one of the hallmarks of cancer and plays an important role in the aetiology and continued growth of tumours. Inflammation also affects the prognosis of GC patients. Recent reports suggest that a number of inflammatory-related biomarkers are useful for predicting tumour prognosis. However, the importance of inflammatory-related biomarkers in predicting the prognosis of GC patients is still unclear. AIM: To investigate inflammatory-related biomarkers in predicting the prognosis of GC patients. METHODS: In this study, the mRNA expression profiles and corresponding clinical information of GC patients were obtained from the Gene Expression Omnibus (GEO) database (GSE66229). An inflammatory-related gene prognostic signature model was constructed using the least absolute shrinkage and selection operator Cox regression model based on the GEO database. GC patients from the GSE26253 cohort were used for validation. Univariate and multivariate Cox analyses were used to determine the independent prognostic factors, and a prognostic nomogram was established. The calibration curve and the area under the curve based on receiver operating characteristic analysis were utilized to evaluate the predictive value of the nomogram. The decision curve analysis results were plotted to quantify and assess the clinical value of the nomogram. Gene set enrichment analysis was performed to explore the potential regulatory pathways involved. The relationship between tumour immune infiltration status and risk score was analysed via Tumour Immune Estimation Resource and CIBERSORT. Finally, we analysed the association between risk score and patient sensitivity to commonly used chemotherapy and targeted therapy agents. RESULTS: A prognostic model consisting of three inflammatory-related genes (MRPS17, GUF1, and PDK4) was constructed. Independent prognostic analysis revealed that the risk score was a separate prognostic factor in GC patients. According to the risk score, GC patients were stratified into high- and low-risk groups, and patients in the high-risk group had significantly worse prognoses according to age, sex, TNM stage and Lauren type. Consensus clustering identified three subtypes of inflammation that could predict GC prognosis more accurately than traditional grading and staging. Finally, the study revealed that patients in the low-risk group were more sensitive to certain drugs than were those in the high-risk group, indicating a link between inflammation-related genes and drug sensitivity. CONCLUSION: In conclusion, we established a novel three-gene prognostic signature that may be useful for predicting the prognosis and personalizing treatment decisions of GC patients.

19.
Heliyon ; 10(19): e38527, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39391517

RESUMO

Background: Cancer prognosis-related signatures have traditionally been constructed based on gene expression profiles derived from tumor or normal tissues. However, the potential benefits of incorporating gene expression profiles from both tumor and normal tissues to improve signature performance have not been explored. Methods: In this study, we developed three prognostic models for lung adenocarcinoma (LUAD) using gene expression profiles from tumor tissues, normal tissues, and a combination (COM) of both, sourced from The Cancer Genome Atlas (TCGA). To ensure comparability, the same workflow was followed for all three models. Results: When applied to the TCGA LUAD dataset, the tumor-derived model exhibited the best overall performance, except in calibration analysis, where the normal-derived model performed better. The COM-derived model demonstrated intermediate performance. Validation on three independent test datasets revealed that the COM-derived model showed the best performance, while the normal-derived model showed the worst. In overall survival (OS) analysis, the low-risk group defined by the COM-derived model consistently exhibited longer mean survival times. The tumor-derived model did not consistently show this trend, and the normal-derived model produced opposite results. In discrimination analysis, no significant differences were observed. The COM-derived model demonstrated good discrimination ability for short periods, while the tumor-derived model performed better for longer periods. In calibration analysis, both the COM and tumor-derived models had similar absolute prediction errors, which were better than those of the normal-derived model. However, the tumor-derived model tended to underestimate survival rates. The clinical feature analysis and validation in GSE229705 indicate that the risk score (RS) from the COM model is the most clinically significant. These results demonstrate that the COM model's RS aligns more closely with clinical data, maintaining stable performance and the strongest generalizability. Conclusions: Overall, the COM-derived model demonstrated the best generalization ability. The superior performance of the tumor-derived model in the TCGA LUAD dataset might be due to overfitting. Our results suggest that appropriate combinations of gene expression data from tumor and normal tissues can enhance the predictive power of prognostic signatures.

20.
Sci Rep ; 14(1): 9146, 2024 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644411

RESUMO

Uveal melanoma (UVM) is the most common primary tumor in adult human eyes. Costimulatory molecules (CMs) are important in maintaining T cell biological functions and regulating immune responses. To investigate the role of CMs in UVM and exploit prognostic signature by bioinformatics analysis. This study aimed to identify and validate a CMs associated signature and investigate its role in the progression and prognosis of UVM. The expression profile data of training cohort and validation cohort were downloaded from The Cancer Genome Atlas (TCGA) dataset and the Gene Expression Omnibus (GEO) dataset. 60 CM genes were identified, and 34 genes were associated with prognosis by univariate Cox regression. A prognostic signature was established with six CM genes. Further, high- and low-risk groups were divided by the median, and Kaplan-Meier (K-M) curves indicated that high-risk patients presented a poorer prognosis. We analyzed the correlation of gender, age, stage, and risk score on prognosis by univariate and multivariate regression analysis. We found that risk score was the only risk factor for prognosis. Through the integration of the tumor immune microenvironment (TIME), it was found that the high-risk group presented more immune cell infiltration and expression of immune checkpoints and obtained higher immune scores. Enrichment analysis of the biological functions of the two groups revealed that the differential parts were mainly related to cell-cell adhesion, regulation of T-cell activation, and cytokine-cytokine receptor interaction. No differences in tumor mutation burden (TMB) were found between the two groups. GNA11 and BAP1 have higher mutation frequencies in high-risk patients. Finally, based on the Genomics of Drug Sensitivity in Cancer 2 (GDSC2) dataset, drug sensitivity analysis found that high-risk patients may be potential beneficiaries of the treatment of crizotinib or temozolomide. Taken together, our CM-related prognostic signature is a reliable biomarker that may provide ideas for future treatments for the disease.


Assuntos
Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica , Melanoma , Neoplasias Uveais , Humanos , Neoplasias Uveais/genética , Neoplasias Uveais/mortalidade , Neoplasias Uveais/imunologia , Melanoma/genética , Melanoma/mortalidade , Melanoma/imunologia , Melanoma/patologia , Prognóstico , Masculino , Feminino , Pessoa de Meia-Idade , Biomarcadores Tumorais/genética , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Perfilação da Expressão Gênica , Ubiquitina Tiolesterase/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Adulto , Idoso , Transcriptoma , Estimativa de Kaplan-Meier
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa