Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 356
Filtrar
1.
Brain ; 147(1): 26-38, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37633259

RESUMO

Restless legs syndrome (RLS) is responsive to opioid, dopaminergic and iron-based treatments. Receptor blocker studies in RLS patients suggest that the therapeutic efficacy of opioids is specific to the opioid receptor and mediated indirectly through the dopaminergic system. An RLS autopsy study reveals decreases in endogenous opioids, ß-endorphin and perhaps Met-enkephalin in the thalamus of RLS patients. A total opioid receptor knock-out (mu, delta and kappa) and a mu-opioid receptor knock-out mouse model of RLS show circadian motor changes akin to RLS and, although both models show sensory changes, the mu-opioid receptor knock mouse shows circadian sensory changes closest to those seen in idiopathic RLS. Both models show changes in striatal dopamine, anaemia and low serum iron. However, only in the total receptor knock-out mouse do we see the decreases in serum ferritin that are normally found in RLS. There are also decreases in serum iron when wild-type mice are administered a mu-opioid receptor blocker. In addition, the mu-opioid receptor knock-out mouse also shows increases in striatal zinc paralleling similar changes in RLS. Adrenocorticotropic hormone and α-melanocyte stimulating hormone are derived from pro-opiomelanocortin as is ß-endorphin. However, they cause RLS-like symptoms and periodic limb movements when injected intraventricularly into rats. These results collectively suggest that an endogenous opioid deficiency is pathogenetic to RLS and that an altered melanocortin system may be causal to RLS as well.


Assuntos
Analgésicos Opioides , Síndrome das Pernas Inquietas , Humanos , Ratos , Camundongos , Animais , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , Síndrome das Pernas Inquietas/diagnóstico , Síndrome das Pernas Inquietas/tratamento farmacológico , Melanocortinas/uso terapêutico , beta-Endorfina/uso terapêutico , Ferro , Dopamina
2.
Cell Mol Life Sci ; 81(1): 343, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39129011

RESUMO

The coordination of food intake, energy storage, and expenditure involves complex interactions between hypothalamic neurons and peripheral tissues including pancreatic islets, adipocytes, muscle, and liver. Previous research shows that deficiency of the transcription factor Alx3 alters pancreatic islet-dependent glucose homeostasis. In this study we carried out a comprehensive assessment of metabolic alterations in Alx3 deficiency. We report that Alx3-deficient mice exhibit decreased food intake without changes in body weight, along with reduced energy expenditure and altered respiratory exchange ratio. Magnetic resonance imaging reveals increased adiposity and decreased muscle mass, which was associated with markers of motor and sympathetic denervation. By contrast, Alx3-deficient mice on a high-fat diet show attenuated weight gain and improved insulin sensitivity, compared to control mice. Gene expression analysis demonstrates altered lipogenic and lipolytic gene profiles. In wild type mice Alx3 is expressed in hypothalamic arcuate nucleus neurons, but not in major peripheral metabolic organs. Functional diffusion-weighted magnetic resonance imaging reveals selective hypothalamic responses to fasting in the arcuate nucleus of Alx3-deficient mice. Additionally, altered expression of proopiomelanocortin and melanocortin-3 receptor mRNA in the hypothalamus suggests impaired regulation of feeding behavior. This study highlights the crucial role for Alx3 in governing food intake, energy homeostasis, and metabolic nutrient partitioning, thereby influencing body mass composition.


Assuntos
Composição Corporal , Ingestão de Alimentos , Metabolismo Energético , Proteínas de Homeodomínio , Homeostase , Hipotálamo , Camundongos Knockout , Animais , Masculino , Camundongos , Núcleo Arqueado do Hipotálamo/metabolismo , Dieta Hiperlipídica , Ingestão de Alimentos/genética , Metabolismo Energético/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Hipotálamo/metabolismo , Resistência à Insulina/genética , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Pró-Opiomelanocortina/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
3.
J Neuroinflammation ; 21(1): 250, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39367382

RESUMO

BACKGROUND: IL-2 regulates T cell differentiation: low-dose IL-2 induces immunoregulatory Treg differentiation, while high-dose IL-2 acts as a potent activator of cytotoxic T cells and NK cells. Therefore, high-dose IL-2 has been studied for use in cancer immunotherapy. We aimed to utilize low-dose IL-2 to treat inflammatory diseases such as obesity and insulin resistance, which involve low-grade chronic inflammation. MAIN BODY: Systemic administration of low-dose IL-2 increased Treg cells and decreased inflammation in gonadal white adipose tissue (gWAT), leading to improved insulin sensitivity in high-fat diet-fed obese mice. Additionally, central administration of IL-2 significantly enhanced insulin sensitivity through the activation of the sympathetic nervous system. The sympathetic signaling induced by central IL-2 administration not only decreased interferon γ (IFNγ) + Th1 cells and the expression of pro-inflammatory cytokines, including Il-1ß, Il-6, and Il-8, but also increased CD4 + CD25 + FoxP3 + Treg cells and Tgfß expression in the gWAT of obese mice. These phenomena were accompanied by hypothalamic microgliosis and activation of pro-opiomelanocortin neurons. Furthermore, sympathetic denervation in gWAT reversed the enhanced insulin sensitivity and immune cell polarization induced by central IL-2 administration. CONCLUSION: Overall, we demonstrated that IL-2 improves insulin sensitivity through two mechanisms: direct action on CD4 + T cells and via the neuro-immune axis triggered by hypothalamic microgliosis.


Assuntos
Hipotálamo , Resistência à Insulina , Interleucina-2 , Camundongos Endogâmicos C57BL , Obesidade , Sistema Nervoso Simpático , Animais , Camundongos , Resistência à Insulina/fisiologia , Interleucina-2/metabolismo , Obesidade/metabolismo , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos , Sistema Nervoso Simpático/efeitos dos fármacos , Masculino , Dieta Hiperlipídica/efeitos adversos , Camundongos Obesos , Linfócitos T Reguladores/efeitos dos fármacos
4.
Neuroendocrinology ; 114(7): 681-697, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38631315

RESUMO

INTRODUCTION: Owing to their privileged anatomical location, neurons of the arcuate nucleus of the hypothalamus (ARC) play critical roles in sensing and responding to metabolic signals such as leptin and glucagon-like peptide 1 (GLP-1). In addition to the well-known proopiomelanocortin (POMC)- and agouti-related peptide (AgRP)-expressing neurons, subpopulations of GABAergic neurons are emerging as key regulators of energy balance. However, the precise identity of these metabolic neurons is still elusive. Here, we identified and characterized the molecular signature of a novel population of GABAergic neurons of the ARC expressing Cellular retinoic acid binding protein 1 (Crabp1). METHODS: Using a combination of immunohistochemistry and in situ hybridization techniques, we investigated the expression of Crabp1 across the mouse brain and characterized the molecular identity of Crabp1ARC neurons. We also determined whether Crabp1ARC neurons are sensitive to fasting, leptin, and GLP1R agonism by assessing cFOS immunoreactivity as a marker of neuronal activity. RESULTS: Crabp1ARC neurons represent a novel GABAergic neuronal population robustly enriched in the ARC and are distinct from the prototypical melanocortin neurons. Crabp1ARC neurons overlap with three subpopulations of yet uncharacterized ARC neurons expressing Htr3b, Tbx19, and Tmem215. Notably, Crabp1ARC neurons express receptors for metabolic hormones and their activity is modulated by the nutritional state and GLP1R agonism. CONCLUSION: Crabp1ARC neurons represent a novel heterogeneous population of GABAergic neurons sensitive to metabolic status.


Assuntos
Neurônios GABAérgicos , Liraglutida , Receptores do Ácido Retinoico , Animais , Masculino , Neurônios GABAérgicos/metabolismo , Camundongos , Receptores do Ácido Retinoico/metabolismo , Receptores do Ácido Retinoico/agonistas , Liraglutida/farmacologia , Camundongos Endogâmicos C57BL , Leptina/metabolismo , Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Hipoglicemiantes/farmacologia
5.
Adv Exp Med Biol ; 1460: 463-487, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39287862

RESUMO

Leptin resistance is induced via leptin signaling blockade by chronic overstimulation of the leptin receptor and intracellular signaling defect or increased hypothalamic inflammation and suppressor of cytokine signaling (SOCS)-3 expression. High-fat diet triggers leptin resistance induced by at least two independent causes: first, the limited ability of peripheral leptin to activate hypothalamic signaling transducers and activators of transcription (STAT) signaling and secondly a signaling defect in leptin-responsive hypothalamic neurons. Central leptin resistance is dependent on decreased leptin transport efficiency across the blood brain barrier (BBB) rather than hypothalamic leptin insensitivity. Since the hypothalamic phosphorylated STAT3 (pSTAT3) represents a sensitive and specific readout of leptin receptor-B signaling, the assessment of pSTAT3 levels is the gold standard. Hypertriglyceridemia is one of important factors to inhibit the transport of leptin across BBB in obesity. Mismatch between high leptin and the amount of leptin receptor expression in obesity triggers brain leptin resistance via increasing hypothalamic inflammation and SOCS-3 expression. Therapeutic strategies that regulate the passage of leptin to the brain include the development of modifications in the structure of leptin analogues as well as the synthesis of new leptin receptor agonists with increased BBB permeability. In the hyperleptinemic state, polyethylene glycol (PEG)-modified leptin is unable to pass through the BBB. Peripheral histone deacetylase (HDAC) 6 inhibitor, tubastatin, and metformin increase central leptin sensitization. While add-on therapy with anagliptin, metformin and miglitol reduce leptin concentrations, the use of long-acting leptin analogs, and exendin-4 lead to the recovery of leptin sensitivity. Contouring surgery with fat removal, and bariatric surgery independently of the type of surgery performed provide significant improvement in leptin concentrations. Although approaches to correcting leptin resistance have shown some success, no clinically effective application has been developed to date. Due to the impairment of central and peripheral leptin signaling, as well as the extensive integration of leptin-sensitive metabolic pathways with other neurons, the effectiveness of methods used to eliminate leptin resistance is extremely limited.


Assuntos
Leptina , Obesidade , Transdução de Sinais , Humanos , Leptina/metabolismo , Obesidade/metabolismo , Animais , Receptores para Leptina/metabolismo , Hipotálamo/metabolismo , Barreira Hematoencefálica/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética , Fator de Transcrição STAT3/metabolismo
6.
J Environ Sci (China) ; 141: 304-313, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38408830

RESUMO

Fragmented data suggest that bisphenol AF (BPAF), a chemical widely used in a variety of products, might have potential impacts on the hypothalamus. Here, we employed male neonatal mice following maternal exposure to explore the effects of low-dose BPAF on hypothalamic development by RNA-sequencing. We found that maternal exposure to approximately 50 µg/(kg·day) BPAF from postanal day (PND) 0 to PND 15 altered the hypothalamic transcriptome, primarily involving the pathways and genes associated with extracellular matrix (ECM) and intercellular adhesion, neuroendocrine regulation, and neurological processes. Further RNA analysis confirmed the changes in the expression levels of concerned genes. Importantly, we further revealed that low-dose BPAF posed a stimulatory impact on pro-opiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus and induced the browning of inguinal white adipose tissue. All findings indicate that developmental exposure to low-dose BPAF could interfere with hypothalamic development and thereby lead to alterations in the metabolism. Interestingly, 5000 µg/(kg·day) BPAF caused slighter, non-significant or even inverse alterations than the low dose of 50 µg/(kg·day), displaying a dose-independent effect. Further observations suggest that the the dose-independent effects of BPAF might be associated with oxidative stress and inflammatory responses caused by the high dose. Overall, our study highlights a risk of low-dose BPAF to human neuroendocrine regulation and metabolism.


Assuntos
Compostos Benzidrílicos , Fluorocarbonos , Exposição Materna , Humanos , Feminino , Camundongos , Animais , Masculino , Animais Recém-Nascidos , Compostos Benzidrílicos/toxicidade , Perfilação da Expressão Gênica , RNA
7.
Neuroendocrinology ; 113(8): 844-858, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36948162

RESUMO

INTRODUCTION: Early life ethanol exposure is known to program hypothalamic proopiomelanocortin (POMC) neurons to express a reduced level of POMC and its control of stress axis functions throughout the life span. In this study, we tested whether miRNAs contribute to the ethanol-induced suppression of Pomc gene expression during the developmental period. METHODS: In in vivo studies, POMC-EGFP male mice were fed with 2.5 g/kg ethanol using milk formula (AF), pair-fed isocaloric milk formula, or left in the litter during postnatal days (PNDs) 2-6. In in vitro studies, mHypoA-POMC/GFP cells were treated with ethanol (50 mM) for a 24-h period. Hypothalamic tissues or cell extracts were used for measurement of miRNAs and POMC mRNA. RESULTS: Determination of genome-wide microRNA expression profile identified 40 miRNAs significantly altered in hypothalamic tissues of AF mice. In silico analysis further identified miRNA-383, -384, and -488 have putative binding sites at the POMC 3'UTR. However, only miR-383 and miR-384 are identified to be responsive to ethanol. Administration of miR-383 or -384 inhibitor oligos suppressed ethanol-stimulated miR-383 or -384 expression and restored Pomc mRNA and protein expression in AF mice. mHypoA-POMC/GFP cells when treated with ethanol showed elevated levels of miR-383 and miR-384 and reduced level of Pomc mRNA. Treatment with miR-383 or -384 mimic oligos reduced the level of Pomc mRNA, while treatment with miR-383 or -384 inhibitor oligos increased the level of Pomc mRNA. Reporter assay further confirms the binding specificity of miR-383 and miR-384 to Pomc 3'UTR. CONCLUSION: These data suggest that miR-383 and miR-384 suppress Pomc gene expression and may contribute to the ethanol-induced alteration of the stress axis functions.


Assuntos
Etanol , Pró-Opiomelanocortina , Camundongos , Masculino , Animais , Pró-Opiomelanocortina/metabolismo , Etanol/metabolismo , Etanol/farmacologia , Regiões 3' não Traduzidas , Hipotálamo/metabolismo , Expressão Gênica
8.
J Physiol ; 600(22): 4939-4961, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36217719

RESUMO

We tested the hypothesis that N/OFQ neurones in the arcuate nucleus (N/OFQARC ) inhibit proopiomelanocortin (POMCARC ) neurones in a diet- and hormone-dependent manner to promote a more extensive rebound hyperphagia upon re-feeding following an 18 h fast. We utilized intact male or ovariectomized (OVX) female mice subjected to ad libitum-feeding or fasting conditions. N/OFQARC neurones under negative energy balance conditions displayed heightened sensitivity as evidenced by a decreased rheobase threshold, increased firing frequency, and increased burst duration and frequency compared to ad libitum-feeding conditions. Stimulation of N/OFQARC neurones more robustly inhibited POMCARC neurones under fasting conditions compared to ad libitum-feeding conditions. N/OFQARC inhibition of POMCARC neurones is hormone dependent as chemostimulation of N/OFQARC neurones from fasted males and OVX females produced a sizable outward current in POMCARC neurones. Oestradiol (E2 ) markedly attenuated the N/OFQ-induced POMCARC outward current. Additionally, N/OFQ tonically inhibits POMCARC neurones to a greater degree under fasting conditions than in ad libitum-feeding conditions as evidenced by the abrogation of N/OFQ-nociceptin opioid peptide (NOP) receptor signalling and inhibition of N/OFQ release via chemoinhibition of N/OFQARC neurones. Intra-arcuate nucleus application of N/OFQ further elevated the hyperphagic response and increased meal size during the 6 h re-feed period, and these effects were mimicked by chemostimulation of N/OFQARC neurones in vivo. E2 attenuated the robust N/OFQ-induced rebound hyperphagia seen in vehicle-treated OVX females. These data demonstrate that N/OFQARC neurones play a vital role in mitigating the impact of negative energy balance by inhibiting the excitability of anorexigenic neural substrates, an effect that is diminished by E2 in females. KEY POINTS: Nociceptin/orphanin FQ (N/OFQ) promotes increased energy intake and decreased energy expenditure under conditions of positive energy balance in a sex- and hormone-dependent manner. Here it is shown that under conditions of negative energy balance, i.e. fasting, N/OFQ inhibits anorexigenic proopiomelanocortin (POMC) neurones to a greater degree compared to homeostatic conditions due to fasting-induced hyperexcitability of N/OFQ neurones. Additionally, N/OFQ promotes a sustained increase in rebound hyperphagia and increase in meal size during the re-feed period following a fast. These results promote greater understanding of how energy balance influences the anorexigenic circuitry of the hypothalamus, and aid in understanding the neurophysiological pathways implicated in eating disorders promoting cachexia.


Assuntos
Estradiol , Pró-Opiomelanocortina , Masculino , Feminino , Camundongos , Animais , Pró-Opiomelanocortina/metabolismo , Estradiol/farmacologia , Peptídeos Opioides/farmacologia , Peptídeos Opioides/metabolismo , Metabolismo Energético , Hiperfagia , Nociceptina
9.
Biochem Biophys Res Commun ; 613: 159-165, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35561584

RESUMO

A rare sugar D-Allulose has sweetness without calorie. Previous studies have shown that D-Allulose improves glucose and energy metabolism and ameliorates obesity. However, underlying mechanisms remain elusive. This study explored the effect of central injection of D-Allulose on feeding behavior in mice. We also examined direct effects of D-Allulose on the neurons in the hypothalamic arcuate nucleus (ARC) that regulate feeding, including the anorexigenic glucagon-like peptide-1 (GLP-1)-responsive neurons and proopiomelanocortin (POMC) neurons. Single neurons were isolated from ARC and cytosolic Ca2+ concentration ([Ca2+]i) was measured by fura-2 microfluorometry. Administration of D-Allulose at 5.6, 16.7 and 56 mM concentration-dependently increased [Ca2+]i in ARC neurons. The [Ca2+]i increases took place similarly when the osmolarity of superfusion solution was kept constant. The majority (40%) of the D-Allulose-responsive neurons also responded to GLP-1 with [Ca2+]i increases. D-Allulose increased [Ca2+]i in 33% of POMC neurons in ARC. D-Allulose potentiated the GLP-1 action to increase [Ca2+]i in ARC neurons including POMC neurons. Intracerebroventricular injection of D-Allulose significantly decreased food intake at 1 and 2 h after injection. These results demonstrate that D-Allulose cooperates with glucagon-like peptide-1 and activates the ARC neurons including POMC neurons. Furthermore, central injection of D-Allulose inhibits feeding. These central actions of D-Allulose may underlie the ability of D-Allulose to counteract obesity and diabetes.


Assuntos
Núcleo Arqueado do Hipotálamo , Pró-Opiomelanocortina , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Frutose , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Camundongos , Neurônios/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Pró-Opiomelanocortina/metabolismo
10.
Am J Physiol Regul Integr Comp Physiol ; 322(3): R219-R227, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35043681

RESUMO

Anorexia nervosa (AN) is a debilitating eating disorder characterized by severely restricted eating and significant body weight loss. In addition, many individuals also report engaging in excessive exercise. Previous research using the activity-based anorexia (ABA) model has implicated the hypothalamic proopiomelanocortin (POMC) system. Using the ABA model, Pomc mRNA has been shown to be transiently elevated in both male and female rodents undergoing ABA. In addition, the POMC peptide ß-endorphin appears to contribute to food anticipatory activity (FAA), a characteristic of ABA, as both deletion and antagonism of the µ opioid receptor (MOR) that ß-endorphin targets, results in decreased FAA. The role of ß-endorphin in reduced food intake in ABA is unknown and POMC neurons release multiple transmitters in addition to ß-endorphin. In the current study, we set out to determine whether targeted inhibition of POMC neurons themselves rather than their peptide products would lessen the severity of ABA. Inhibition of POMC neurons during ABA via chemogenetic Designer Receptors Exclusively Activated by Designer Drugs (DREADD) technology resulted in reduced FAA in both male and female mice with no significant changes in body weight or food intake. The selective reduction in FAA persisted even in the face of concurrent chemogenetic inhibition of additional cell types in the hypothalamic arcuate nucleus. The results suggest that POMC neurons could be contributing preferentially to excessive exercise habits in patients with AN. Furthermore, the results also suggest that metabolic control during ABA appears to take place via a POMC neuron-independent mechanism.


Assuntos
Anorexia/metabolismo , Peso Corporal/fisiologia , Alimentos , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Hipotálamo/metabolismo , Camundongos , beta-Endorfina/metabolismo , beta-Endorfina/farmacologia
11.
Neuroendocrinology ; 112(3): 287-297, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33906196

RESUMO

OBJECTIVES: The control of energy balance relies on the counterbalancing release of neuropeptides encoded by the pro-opiomelanocortin (Pomc) and agouti-related protein (Agrp) genes, expressed by 2 distinct neuronal populations of the arcuate (ARC) nucleus of the hypothalamus. Although largely segregated, single-cell resolution techniques demonstrate some degree of co-expression. We studied whether challenges to the control of energy balance influence the degree of Agrp and Pomc co-expression in ARC melanocortin neurons. METHODS: We used fluorescence-activated cell sorting followed by quantitative polymerase chain reaction and fluorescent in situ hybridization to measure Pomc and Agrp gene co-expression in POMC or AGRP neurons in response to (1) acute or chronic calorie restriction, or (2) obesity due to loss of leptin receptor expression or chronic high-fat diet feeding in male mice. RESULTS: Melanocortin ARC neurons of fed mice exhibited low, yet detectable, levels of Pomc and Agrp gene co-expression. Calorie restriction significantly increased and decreased total Agrp and Pomc expression, respectively, and reduced the expression of Pomc relative to Agrp in AGRP neurons. Leptin-deficient db/db mice showed increased total Agrp levels and decreased Pomc expression, as well as significantly increased Agrp expression relative to Pomc in POMC neurons. Expression or co-expression levels did not differ between diet-induced obese mice and lean controls. CONCLUSIONS: Changes in Agrp and Pomc co-expression within POMC and AGRP neurons following chronic calorie restriction or in db/db mice suggest an additional mechanism to further suppress the melanocortin signaling during conditions of severely reduced leptin action.


Assuntos
Leptina , Pró-Opiomelanocortina , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Animais , Hipotálamo/metabolismo , Hibridização in Situ Fluorescente , Leptina/metabolismo , Masculino , Melanocortinas , Camundongos , Neurônios/metabolismo , Estado Nutricional , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo
12.
Gen Comp Endocrinol ; 315: 113796, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33901496

RESUMO

Adrenocorticotropic hormone (ACTH), a bioactive peptide of the family of melanocortins, is generated from pro-opiomelanocortin (POMC). So far, the research on the specific functions of ACTH in the immune system of teleosts is limited. We determined two complementary DNA (cDNA) sequences of POMC in ayu (Plecoglossus altivelis), termed PaPOMC-A and PaPOMC-B. PaPOMCs transcripts occurred in all examined tissues, and their expression in immune tissues changed following experimental infection with Vibrio anguillarum. PaACTH-B, but not PaACTH-A, suppressed the phagocytosis of monocytes/macrophages (MO/MФ). Two isoforms of PaACTH increased the bactericidal capacity of MO/MФ. PaACTH-A increased anti-inflammatory cytokine expression, while PaACTH-B decreased pro-inflammatory cytokine expression in MO/MФ. Compared with PaACTH-B treatment, the PaACTH-A treatment improved survival rate and reduced the bacterial load in V. anguillarum-infected ayu through interleukin (IL)-10. Our results indicate that the two PaACTH isoforms exert different effects in the host defense against bacterial infection.


Assuntos
Doenças dos Peixes , Osmeriformes , Vibrioses , Vibrio , Hormônio Adrenocorticotrópico/metabolismo , Hormônio Adrenocorticotrópico/farmacologia , Animais , Doenças dos Peixes/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiologia , Monócitos/metabolismo , Monócitos/microbiologia , Osmeriformes/genética , Osmeriformes/metabolismo , Vibrioses/genética , Vibrioses/microbiologia
13.
Endocr J ; 69(9): 1053-1060, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-35296577

RESUMO

Cushing's disease is an endocrine disorder characterized by hypercortisolism, mainly caused by autonomous production of ACTH from pituitary adenomas. Autonomous ACTH secretion results in excess cortisol production from the adrenal glands, and corticotroph adenoma cells disrupt the normal cortisol feedback mechanism. Pan-histone deacetylase (HDAC) inhibitors inhibit cell proliferation and ACTH production in AtT-20 corticotroph tumor cells. A selective HDAC6 inhibitor has been known to exert antitumor effects and reduce adverse effects related to the inhibition of other HDACs. The current study demonstrated that the potent and selective HDAC6 inhibitor tubastatin A has inhibitory effects on proopiomelanocortin (Pomc) and pituitary tumor-transforming gene 1 (Pttg1) mRNA expression, involved in cell proliferation. The phosphorylated Akt/Akt protein levels were increased after treatment with tubastatin A. Therefore, the proliferation of corticotroph cells may be regulated through the Akt-Pttg1 pathway. Dexamethasone treatment also decreased the Pomc mRNA level. Combined tubastatin A and dexamethasone treatment showed additive effects on the Pomc mRNA level. Thus, tubastatin A may have applications in the treatment of Cushing's disease.


Assuntos
Adenoma Hipofisário Secretor de ACT , Adenoma , Hipersecreção Hipofisária de ACTH , Adenoma Hipofisário Secretor de ACT/metabolismo , Adenoma/metabolismo , Hormônio Adrenocorticotrópico/farmacologia , Proliferação de Células , Corticotrofos , Dexametasona/farmacologia , Histona Desacetilases/metabolismo , Histona Desacetilases/farmacologia , Humanos , Hidrocortisona/metabolismo , Ácidos Hidroxâmicos , Indóis , Hipersecreção Hipofisária de ACTH/metabolismo , Pró-Opiomelanocortina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo
14.
Proc Natl Acad Sci U S A ; 116(26): 13116-13121, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31189592

RESUMO

Synthesis of triiodothyronine (T3) in the hypothalamus induces marked seasonal neuromorphology changes across taxa. How species-specific responses to T3 signaling in the CNS drive annual changes in body weight and energy balance remains uncharacterized. These experiments sequenced and annotated the Siberian hamster (Phodopus sungorus) genome, a model organism for seasonal physiology research, to facilitate the dissection of T3-dependent molecular mechanisms that govern predictable, robust, and long-term changes in body weight. Examination of the Phodopus genome, in combination with transcriptome sequencing of the hamster diencephalon under winter and summer conditions, and in vivo-targeted expression analyses confirmed that proopiomelanocortin (pomc) is a primary genomic target for the long-term T3-dependent regulation of body weight. Further in silico analyses of pomc promoter sequences revealed that thyroid hormone receptor 1ß-binding motif insertions have evolved in several genera of the Cricetidae family of rodents. Finally, experimental manipulation of food availability confirmed that hypothalamic pomc mRNA expression is dependent on longer-term photoperiod cues and is unresponsive to acute, short-term food availability. These observations suggest that species-specific responses to hypothalamic T3, driven in part by the receptor-binding motif insertions in some cricetid genomes, contribute critically to the long-term regulation of energy balance and the underlying physiological and behavioral adaptations associated with the seasonal organization of behavior.


Assuntos
Metabolismo Energético/fisiologia , Hipotálamo/metabolismo , Phodopus/fisiologia , Fotoperíodo , Pró-Opiomelanocortina/metabolismo , Aclimatação/fisiologia , Animais , Peso Corporal/fisiologia , Temperatura Baixa/efeitos adversos , Biologia Computacional , Regulação para Baixo , Ingestão de Alimentos/fisiologia , Evolução Molecular , Feminino , Privação de Alimentos/fisiologia , Perfilação da Expressão Gênica , Masculino , Anotação de Sequência Molecular , Neuropeptídeos/metabolismo , Pró-Opiomelanocortina/genética , Regiões Promotoras Genéticas/genética , Domínios e Motivos de Interação entre Proteínas/genética , Receptores dos Hormônios Tireóideos/metabolismo , Estações do Ano , Especificidade da Espécie , Tri-Iodotironina/administração & dosagem , Tri-Iodotironina/metabolismo , Aumento de Peso/efeitos dos fármacos , Aumento de Peso/fisiologia , Sequenciamento Completo do Genoma
15.
J Neurosci ; 40(41): 7965-7979, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32887744

RESUMO

Microglia, a type of CNS immune cell, have been shown to contribute to ethanol-activated neuronal death of the stress regulatory proopiomelanocortin (POMC) neuron-producing ß-endorphin peptides in the hypothalamus in a postnatal rat model of fetal alcohol spectrum disorders. We determined whether the microglial extracellular vesicle exosome is involved in the ethanol-induced neuronal death of the ß-endorphin neuron. Extracellular vesicles were prepared from hypothalamic tissues collected from postnatal rats (both males and females) fed daily with 2.5 mg/kg ethanol or control milk formula for 5 d or from hypothalamic microglia cells obtained from postnatal rats, grown in cultures for several days, and then challenged with ethanol or vehicle for 24 h. Nanoparticle tracking analysis and transmission electron microscopy indicated that these vesicles had the size range and shape of exosomes. Ethanol treatments increased the number and the ß-endorphin neuronal killing activity of microglial exosomes both in vivo and in vitro Proteomics analyses of exosomes of cultured microglial cells identified a large number of proteins, including various complements, which were elevated following ethanol treatment. Proteomics data involving complements were reconfirmed using quantitative protein assays. Ethanol treatments also increased deposition of the complement protein C1q in ß-endorphin neuronal cells in both in vitro and in vivo systems. Recombinant C1q protein increased while C1q blockers reduced ethanol-induced C3a/b, C4, and membrane attack complex/C5b9 formations; ROS production; and ultimately cellular death of ß-endorphin neurons. These data suggest that the complement system involving C1q-C3-C4-membrane attack complex and ROS regulates exosome-mediated, ethanol-induced ß-endorphin neuronal death.SIGNIFICANCE STATEMENT Neurotoxic action of alcohol during the developmental period is recognized for its involvement in fetal alcohol spectrum disorders, but the lack of clear understanding of the mechanism of alcohol action has delayed the progress in therapeutic intervention of this disease. Proopiomelanocortin neurons known to regulate stress, energy homeostasis, and immune functions are reported to be killed by developmental alcohol exposure because of activation of microglial immune cells in the brain. While microglia are known to use extracellular vesicles to communicate with neurons for maintaining homeostasis, we show here that ethanol exposure during the developmental period hijacks this system to spread apoptotic factors, including complement protein C1q, to induce the membrane attack complex and reactive super-oxygen species for proopiomelanocortin neuronal killing.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Complemento C1q/farmacologia , Etanol/farmacologia , Exossomos/efeitos dos fármacos , Transtornos do Espectro Alcoólico Fetal/patologia , Microglia/efeitos dos fármacos , Pró-Opiomelanocortina/genética , Animais , Animais Recém-Nascidos , Morte Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Transtornos do Espectro Alcoólico Fetal/metabolismo , Hipotálamo/metabolismo , Hipotálamo/patologia , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Gravidez , Proteômica , Ratos , Ratos Sprague-Dawley , beta-Endorfina/metabolismo
16.
J Cell Mol Med ; 25(5): 2404-2417, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33491272

RESUMO

Drug options for the life-threatening Cushing's disease are limited, and surgical resection or radiation therapy is not invariably effective. Testicular receptor 4 (TR4) has been identified as a novel drug target to treat Cushing's disease. We built the structure model of TR4 and searched the TR4 antagonist candidate via in silico virtual screening. Bexarotene was identified as an antagonist of TR4 that can directly interact with TR4 ligand binding domain (TR4-LBD) and induces a conformational change in the secondary structure of TR4-LBD. Bexarotene suppressed AtT-20 cell growth, proopiomelanocortin (POMC) expression and adrenocorticotropin (ACTH) secretion. Mechanism dissection revealed that bexarotene could suppress TR4-increased POMC expression via promoting the TR4 translocation from the nucleus to the cytoplasm. This TR4 translocation might then result in reducing the TR4 binding to the TR4 response element (TR4RE) on the 5' promoter region of POMC. Results from in vivo mouse model also revealed that oral bexarotene administration markedly suppressed ACTH-secreting tumour growth, adrenal enlargement and the secretion of ACTH and corticosterone in mice with already established tumours. Together, these results suggest that bexarotene may be developed as a potential novel therapeutic drug to better suppress Cushing's disease.


Assuntos
Bexaroteno/farmacologia , Membro 2 do Grupo C da Subfamília 2 de Receptores Nucleares/antagonistas & inibidores , Pró-Opiomelanocortina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Adenoma Hipofisário Secretor de ACT , Hormônio Adrenocorticotrópico/biossíntese , Animais , Bexaroteno/química , Sítios de Ligação , Linhagem Celular Tumoral , Modelos Animais de Doenças , Descoberta de Drogas , Expressão Gênica , Humanos , Camundongos , Modelos Moleculares , Conformação Molecular , Membro 2 do Grupo C da Subfamília 2 de Receptores Nucleares/química , Membro 2 do Grupo C da Subfamília 2 de Receptores Nucleares/metabolismo , Hipersecreção Hipofisária de ACTH , Pró-Opiomelanocortina/genética , Ligação Proteica , Transporte Proteico , Relação Estrutura-Atividade , Transcrição Gênica , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Neuroendocrinology ; 111(10): 986-997, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33152734

RESUMO

Glucagon-like peptide-1 (GLP-1) exerts its anorexigenic effect at least partly via the proopiomelanocortin (POMC) neurons of the arcuate (ARC) nucleus. These neurons are known to express GLP-1 receptor (GLP-1R). The aim of the study was to determine whether in addition to its direct effect, GLP-1 also modulates how neuronal inputs can regulate the POMC neurons by acting on presynaptic terminals, ultrastructural and electrophysiological studies were performed on tissues of adult male mice. GLP-1R-immunoreactivity was associated with the cell membrane of POMC neurons and with axon terminals forming synapses on these cells. The GLP-1 analog exendin 4 (Ex4) markedly increased the firing rate of all examined POMC neurons and depolarized these cells. These effects of Ex4 were prevented by intracellular administration of the G-protein blocker guanosine 5'-[ß-thio]diphosphate trilithium salt (GDP-ß-S). Ex4 also influenced the miniature postsynaptic currents (mPSCs) and evoked PSCs of POMC neurons. Ex4 increased the frequency of miniature excitatory PSCs (EPSCs) and the amplitude of the evoked EPSCs in half of the POMC neurons. Ex4 increased the frequency of miniature inhibitory PSCs (IPSCs) and the amplitudes of the evoked IPSCs in one-third of neurons. These effects of Ex4 were not influenced by intracellular GDP-ß-S, indicating that GLP-1 signaling directly stimulates a population of axon terminals innervating the POMC neurons. The different Ex4 responsiveness of their mPSCs indicates the heterogeneity of the POMC neurons of the ARC. In summary, our data demonstrate that in addition to its direct excitatory effect on the POMC neurons, GLP-1 signaling also facilitates the presynaptic input of these cells by acting on presynaptically localized GLP-1R.


Assuntos
Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Exenatida/farmacologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Hipoglicemiantes/farmacologia , Neurônios/efeitos dos fármacos , Pró-Opiomelanocortina/efeitos dos fármacos , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Peptídeo 1 Semelhante ao Glucagon/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo
18.
Neuroendocrinology ; 111(1-2): 45-69, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32028278

RESUMO

OBJECTIVE: We examined whether pituitary adenylate cyclase-activating polypeptide (PACAP) excites proopiomelanocortin (POMC) neurons via PAC1 receptor mediation and transient receptor potential cation (TRPC) channel activation. METHODS: Electrophysiological recordings were done in slices from both intact male and ovariectomized (OVX) female PACAP-Cre mice and eGFP-POMC mice. RESULTS: In recordings from POMC neurons in eGFP-POMC mice, PACAP induced a robust inward current and increase in conductance in voltage clamp, and a depolarization and increase in firing in current clamp. These postsynaptic actions were abolished by inhibitors of the PAC1 receptor, TRPC channels, phospholipase C, phosphatidylinositol-3-kinase, and protein kinase C. Estradiol augmented the PACAP-induced inward current, depolarization, and increased firing, which was abrogated by estrogen receptor (ER) antagonists. In optogenetic recordings from POMC neurons in PACAP-Cre mice, high-frequency photostimulation induced inward currents, depolarizations, and increased firing that were significantly enhanced by Gq-coupled membrane ER signaling in an ER antagonist-sensitive manner. Importantly, the PACAP-induced excitation of POMC neurons was notably reduced in obese, high-fat (HFD)-fed males. In vivo experiments revealed that intra-arcuate nucleus (ARC) PACAP as well as chemogenetic and optogenetic stimulation of ventromedial nucleus (VMN) PACAP neurons produced a significant decrease in energy intake accompanied by an increase in energy expenditure, effects blunted by HFD in males and partially potentiated by estradiol in OVX females. CONCLUSIONS: These findings reveal that the PACAP-induced activation of PAC1 receptor and TRPC5 channels at VMN PACAP/ARC POMC synapses is potentiated by estradiol and attenuated under conditions of diet-induced obesity/insulin resistance. As such, they advance our understanding of how PACAP regulates the homeostatic energy balance circuitry under normal and pathophysiological circumstances.


Assuntos
Núcleo Arqueado do Hipotálamo/fisiologia , Metabolismo Energético/fisiologia , Neurônios/fisiologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/fisiologia , Pró-Opiomelanocortina , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/fisiologia , Canais de Potencial de Receptor Transitório/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Fenômenos Eletrofisiológicos , Metabolismo Energético/efeitos dos fármacos , Feminino , Cobaias , Homeostase , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/efeitos dos fármacos , Canais de Potencial de Receptor Transitório/efeitos dos fármacos
19.
Crit Care ; 25(1): 65, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33593393

RESUMO

BACKGROUND: Sepsis is typically hallmarked by high plasma (free) cortisol and suppressed cortisol breakdown, while plasma adrenocorticotropic hormone (ACTH) is not increased, referred to as 'ACTH-cortisol dissociation.' We hypothesized that sepsis acutely activates the hypothalamus to generate, via corticotropin-releasing hormone (CRH) and vasopressin (AVP), ACTH-induced hypercortisolemia. Thereafter, via increased availability of free cortisol, of which breakdown is reduced, feedback inhibition at the pituitary level interferes with normal processing of pro-opiomelanocortin (POMC) into ACTH, explaining the ACTH-cortisol dissociation. We further hypothesized that, in this constellation, POMC leaches into the circulation and can contribute to adrenocortical steroidogenesis. METHODS: In two human studies of acute (ICU admission to day 7, N = 71) and prolonged (from ICU day 7 until recovery; N = 65) sepsis-induced critical illness, POMC plasma concentrations were quantified in relation to plasma ACTH and cortisol. In a mouse study of acute (1 day), subacute (3 and 5 days) and prolonged (7 days) fluid-resuscitated, antibiotic-treated sepsis (N = 123), we further documented alterations in hypothalamic CRH and AVP, plasma and pituitary POMC and its glucocorticoid-receptor-regulated processing into ACTH, as well as adrenal cortex integrity and steroidogenesis markers. RESULTS: The two human studies revealed several-fold elevated plasma concentrations of the ACTH precursor POMC from the acute to the prolonged phase of sepsis and upon recovery (all p < 0.0001), coinciding with the known ACTH-cortisol dissociation. Elevated plasma POMC and ACTH-corticosterone dissociation were confirmed in the mouse model. In mice, sepsis acutely increased hypothalamic mRNA of CRH (p = 0.04) and AVP (p = 0.03) which subsequently normalized. From 3 days onward, pituitary expression of CRH receptor and AVP receptor was increased. From acute throughout prolonged sepsis, pituitary POMC mRNA was always elevated (all p < 0.05). In contrast, markers of POMC processing into ACTH and of ACTH secretion, negatively regulated by glucocorticoid receptor ligand binding, were suppressed at all time points (all p ≤ 0.05). Distorted adrenocortical structure (p < 0.05) and lipid depletion (p < 0.05) were present, while most markers of adrenocortical steroidogenic activity were increased at all time points (all p < 0.05). CONCLUSION: Together, these findings suggest that increased circulating POMC, through CRH/AVP-driven POMC expression and impaired processing into ACTH, could represent a new piece in the puzzling ACTH-cortisol dissociation.


Assuntos
Hormônio Adrenocorticotrópico/análise , Hidrocortisona/análise , Pró-Opiomelanocortina/análise , Sepse/sangue , Hormônio Adrenocorticotrópico/sangue , Idoso , Animais , Modelos Animais de Doenças , Feminino , Humanos , Hidrocortisona/sangue , Masculino , Camundongos , Pessoa de Meia-Idade , Pró-Opiomelanocortina/sangue , Sepse/fisiopatologia
20.
J Paediatr Child Health ; 57(4): 484-490, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33666293

RESUMO

Proopiomelanocortin (POMC) deficiency is a rare monogenic disorder characterised by adrenocorticotropic hormone (ACTH) deficiency, red hair and hyperphagic obesity. Two unrelated cases presented with hypoglycaemia due to isolated ACTH deficiency in the neonatal period. POMC deficiency was suspected at age 2 years (c.133-2A>C) and at age 9 months (c.64del) due to infantile hyperphagic obesity. Neither patient had a convincing red hair phenotype at the time of diagnostic suspicion, illustrating the importance of suspecting POMC deficiency in isolated ACTH deficiency. Both patients have normal psychomotor development, whereas the only other reported case of c.64del had significant delay. This suggests, if ACTH deficiency is treated early in the neonatal period, that psychomotor retardation is not a part of the phenotype. We review 24 reported cases of POMC deficiency published to date. Although there is no current specific treatment for obesity in POMC deficiency, we anticipate that setmelanotide may be a useful future treatment option.


Assuntos
Insuficiência Adrenal , Pró-Opiomelanocortina , Insuficiência Adrenal/diagnóstico , Hormônio Adrenocorticotrópico , Pré-Escolar , Humanos , Lactente , Masculino , Obesidade , Pró-Opiomelanocortina/deficiência , Pró-Opiomelanocortina/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa