Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Nano Lett ; 23(7): 2623-2629, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36926919

RESUMO

Polymer electrolytes have been studied as an alternative to organic liquid electrolytes but suffer from low ionic conductivity. Propylene carbonate (PC) proves to be an interesting solvent but is incompatible with graphitic anodes due to its cointercalation effect. In this work, adding poly(ethylene oxide) (PEO) into a PC-based electrolyte can alter the solvation structure as well as transform the solution into a polymer electrolyte with high ionic conductivity. By spectroscopic techniques and calculations, we demonstrate that PEO can compete with PC in solvating the Li+ ions, reducing the Li+-PC bond strength, and making it easier for PC to be desolvated. Due to the unique solvation structure, PC-cointercalation-induced graphite exfoliation is inhibited, and the reduction stability of the electrolyte is improved. This work will extend the applications of the PC-based electrolytes, deepen the understandings of the solvation structure, and spur designs of advanced electrolytes.

2.
Int J Mol Sci ; 25(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38791560

RESUMO

A new, eco-friendly process utilising the green solvent propylene carbonate (PC) has been developed to perform N-alkylation of N-, O- and/or S-containing heterocyclic compounds. PC in these reactions served as both the reagent and solvent. Importantly, no genotoxic alkyl halides were required. No auxiliary was necessary when using anhydrous PC. Product formation includes nucleophilic substitution with the concomitant loss of water and carbon dioxide. Substrates prepared, including the newly invented PROTAC drugs, are widely used.


Assuntos
Compostos Heterocíclicos , Propano , Alquilação , Compostos Heterocíclicos/química , Propano/química , Propano/análogos & derivados , Solventes/química , Química Verde/métodos
3.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474185

RESUMO

Poly(propylene carbonate) (PPC) is an emerging "carbon fixation" polymer that holds the potential to become a "biomaterial of choice" in healthcare owing to its good biocompatibility, tunable biodegradability and safe degradation products. However, the commercialization and wide application of PPC as a biomedical material are still hindered by its narrow processing temperature range, poor mechanical properties and hydrophobic nature. Over recent decades, several physical, chemical and biological modifications of PPC have been achieved by introducing biocompatible polymers, inorganic ions or small molecules, which can endow PPC with better cytocompatibility and desirable biodegradability, and thus enable various applications. Indeed, a variety of PPC-based degradable materials have been used in medical applications including medical masks, surgical gowns, drug carriers, wound dressings, implants and scaffolds. In this review, the molecular structure, catalysts for synthesis, properties and modifications of PPC are discussed. Recent biomedical applications of PPC-based biomaterials are highlighted and summarized.


Assuntos
Materiais Biocompatíveis , Polímeros , Propano/análogos & derivados , Materiais Biocompatíveis/química , Polímeros/química , Próteses e Implantes
4.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731949

RESUMO

To enrich the properties of polylactic acid (PLA)-based composite films and improve the base degradability, in this study, a certain amount of poly(propylene carbonate) (PPC) was added to PLA-based composite films, and PLA/PPC-based composite films were prepared by melt blending and hot-press molding. The effects of the introduction of PPC on the composite films were analyzed through in-depth studies on mechanical properties, water vapor and oxygen transmission rates, thermal analysis, compost degradability, and bacterial inhibition properties of the composite films. When the introduction ratio coefficient of PPC was 30%, the tensile strength of the composite film increased by 19.68%, the water vapor transmission coefficient decreased by 14.43%, and the oxygen transmission coefficient decreased by 18.31% compared to that of the composite film without PPC, the cold crystallization temperature of the composite film increased gradually from 96.9 °C to 104.8 °C, and PPC improved the crystallization ability of composite film. The degradation rate of the composite film with PPC increased significantly compared to the previous one, and the degradation rate increased with the increase in the PPC content. The degradation rate was 49.85% and 46.22% faster on average than that of the composite film without PPC when the degradation was carried out over 40 and 80 days; the composite film had certain inhibition, and the maximum diameter of the inhibition circle was 2.42 cm. This study provides a strategy for the development of PLA-based biodegradable laminates, which can promote the application of PLA-based laminates in food packaging.


Assuntos
Poliésteres , Propano/análogos & derivados , Resistência à Tração , Poliésteres/química , Polipropilenos/química , Embalagem de Alimentos/métodos , Vapor , Polímeros/química , Antibacterianos/química , Antibacterianos/farmacologia , Temperatura
5.
Int J Mol Sci ; 25(3)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38338873

RESUMO

State-of-the-art Li batteries suffer from serious safety hazards caused by the reactivity of lithium and the flammable nature of liquid electrolytes. This work develops highly efficient solid-state electrolytes consisting of imidazolium-containing polyionic liquids (PILs) and lithium bis(trifluoromethane sulfonyl)imide (LiTFSI). By employing PIL/LiTFSI electrolyte membranes blended with poly(propylene carbonate) (PPC), we addressed the problem of combining ionic conductivity and mechanical properties in one material. It was found that PPC acts as a mechanically reinforcing component that does not reduce but even enhances the ionic conductivity. While pure PILs are liquids, the tricomponent PPC/PIL/LiTFSI blends are rubber-like materials with a Young's modulus in the range of 100 MPa. The high mechanical strength of the material enables fabrication of mechanically robust free-standing membranes. The tricomponent PPC/PIL/LiTFSI membranes have an ionic conductivity of 10-6 S·cm-1 at room temperature, exhibiting conductivity that is two orders of magnitude greater than bicomponent PPC/LiTFSI membranes. At 60 °C, the conductivity of PPC/PIL/LiTFSI membranes increases to 10-5 S·cm-1 and further increases to 10-3 S·cm-1 in the presence of plasticizers. Cyclic voltammetry measurements reveal good electrochemical stability of the tricomponent PIL/PPC/LiTFSI membrane that potentially ranges from 0 to 4.5 V vs. Li/Li+. The mechanically reinforced membranes developed in this work are promising electrolytes for potential applications in solid-state batteries.


Assuntos
Líquidos Iônicos , Propano/análogos & derivados , Lítio , Eletrólitos , Íons , Poli A , Polímeros
6.
Waste Manag Res ; 42(1): 74-80, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37102342

RESUMO

Since the majority of valuable components in spent lithium-ion batteries, such as lithium, exists in the electrode materials, common studies focused on the treatment of the cathode materials, which ignored the harm of residual electrolyte. The cavitation and thermal effects produced by ultrasonic can not only be used for the separation of electrode materials, but also have a wide range of applications in the field of sewage pollutant degradation. This work used ultrasonic to treat simulated electrolyte (propylene carbonate (PC)) solution of spent lithium-ion batteries, explored the effect of ultrasonic power, the addition amount of H2O2 solution (30 wt%) and reaction temperature on the degradation of electrolyte, and analysed the ultrasonic degradation reaction from the perspective of reaction kinetics. And the synchronous experiment of cathode material separation and electrolyte degradation was conducted under the optimal conditions. The results showed that the highest degradation efficiency of PC in the electrolyte was 83.08% under the condition of ultrasonic power of 900 W, the addition of H2O2 solution (30 wt%) of 10.2 mL, reaction temperature of 120°C and reaction time of 120 minutes, and the separation efficiency was 100%. This work reduced the environmental and health risks in the cathode material separation process and was conducive to the green development of spent lithium-ion battery recycling technology.


Assuntos
Lítio , Ultrassom , Peróxido de Hidrogênio , Reciclagem/métodos , Fontes de Energia Elétrica , Eletrodos
7.
Small ; 19(1): e2204336, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36403243

RESUMO

This study focuses on the applicability of single-atom Mo-doped graphitic carbon nitride (GCN) nanosheets which are specifically engineered with high surface area (exfoliated GCN), NH2 rich edges, and maximum utilization of isolated atomic Mo for propylene carbonate (PC) production through CO2 cycloaddition of propylene oxide (PO). Various operational parameters are optimized, for example, temperature (130 °C), pressure (20 bar), catalyst (Mo2 GCN), and catalyst mass (0.1 g). Under optimal conditions, 2% Mo-doped GCN (Mo2 GCN) has the highest catalytic performance, especially the turnover frequency (TOF) obtained, 36.4 h-1 is higher than most reported studies. DFT simulations prove the catalytic performance of Mo2 GCN significantly decreases the activation energy barrier for PO ring-opening from 50-60 to 4.903 kcal mol-1 . Coexistence of Lewis acid/base group improves the CO2 cycloaddition performance by the formation of coordination bond between electron-deficient Mo atom with O atom of PO, while NH2 surface group disrupts the stability of CO2 bond by donating electrons into its low-level empty orbital. Steady-state process simulation of the industrial-scale consumes 4.4 ton h-1 of CO2 with PC production of 10.2 ton h-1 . Techno-economic assessment profit from Mo2 GCN is estimated to be 60.39 million USD year-1 at a catalyst loss rate of 0.01 wt% h-1 .

8.
Anal Bioanal Chem ; 415(13): 2383-2398, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35922675

RESUMO

Grape juices and wines are rich in numerous groups of polyphenolic compounds which require a dedicated separation technique for such complex samples. LC × LC is considered the best technique for the analysis of such samples as it can achieve better resolution and higher peak capacity compared to 1D LC. The ever-growing demand for protecting the environment necessitates reducing or eliminating hazardous solvents to improve the environmental friendliness of analytical procedures. In this study, propylene carbonate was used as an eco-friendly mobile phase component in comprehensive two-dimensional liquid chromatography to analyze phenolic compounds in grape juices and a dealcoholized wine sample. Novel green RPLC × RPLC-DAD and RPLC × RPLC-MS methods were developed for the first time to identify phenolic compounds in five samples (two red grape juice samples, two white grape juice samples, and one dealcoholized wine sample). Four different RPLC × RPLC systems were developed; three systems were connected to a diode array detector (RPLC × RPLC-DAD), while the fourth system was connected to DAD and MS detectors (RPLC × RPLC-DAD-ESI-MS). Solvent X (propylene carbonate:ethanol, 60:40) was adopted as a green organic modifier in the first dimension (1D) and methanol in the second dimension (2D). The practical peak capacity and the surface coverage were calculated as metrics to measure the separation performance of all proposed systems. The orthogonality values for the setups ranged from 0.64 to 0.92 when calculated by the convex hull method, and from 0.54 to 0.80 when calculated by the asterisk equations method. The practical peak capacity production rate ranged from 14.58 to 22.52 peaks/min. The results revealed that the phenolic compounds were separated efficiently with good coverage of the 2D separation space and high peak capacity. A total of 70 phenolic compounds were detected based on MS data and information from the literature.


Assuntos
Sucos de Frutas e Vegetais , Vitis , Vinho , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Fenóis/análise , Propano/análise , Solventes/análise , Vitis/química , Vinho/análise
9.
Environ Res ; 218: 114962, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36460072

RESUMO

Extraction and chromatographic techniques for analyzing pharmaceutically active compounds necessitate large quantities of organic solvents, resulting in a high volume of hazardous waste. The concept of green solvents focuses on protecting the environment by reducing or even eliminating the use of toxic solvents. The main objective of this critical review article is to build a framework for choosing green solvents for antibiotic analyses. The article briefly discusses the chemical properties of ciprofloxacin, sulfamethoxazole, tetracycline, and trimethoprim, and the current state of methodologies for their analyses in water and wastewater. It evaluates the greenness of solvents used for antibiotic analyses and includes insights on the comparison between conventional and green solvents for the analyses. An economic and environmental health and safety analysis combined with a Conductor-like Screening Model for Real Solvent (COSMO-RS) molecular simulation technique for predicting extraction efficiency was used in the evaluation. Methyl acetate and propylene carbonate tied for the greenest solvents from an environmental and economic perspective, whereas the COSMO-RS approach suggests dimethyl sulfoxide (DMSO) as the most suitable candidate. Although DMSO ranked third environmentally and economically, after methyl acetate and propylene carbonate, it would be an ideal replacement of hazardous solvents if it could be manufactured at a lower cost. DMSO showed the highest extraction capacity, as it can interact with antibiotics through hydrophobic interaction and hydrogen bonding. This article can be used as a green solvent selection guide for developing sustainable processes for antibiotic analyses.


Assuntos
Antibacterianos , Dimetil Sulfóxido , Solventes/química , Saúde Ambiental
10.
J Environ Sci (China) ; 126: 408-422, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36503768

RESUMO

A series of organic compounds were successfully immobilized on an N-doped graphene quantum dot (N-GQD) to prepare a multifunctional organocatalyst for coupling reaction between CO2 and propylene oxide (PO). The simultaneous presence of halide ions in conjunction with acidic- and basic-functional groups on the surface of the nanoparticles makes them highly active for the production of propylene carbonate (PC). The effects of variables such as catalyst loading, reaction temperature, and structure of substituents are discussed. The proposed catalysts were characterized by different techniques, including Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy/energy dispersive X-ray microanalysis (FESEM/EDX), thermogravimetric analysis (TGA), elemental analysis, atomic force microscopy (AFM), and ultraviolet-visible (UV-Vis) spectroscopy. Under optimal reaction conditions, 3-bromopropionic acid (BPA) immobilized on N-GQD showed a remarkable activity, affording the highest yield of 98% at 140°C and 106 Pa without any co-catalyst or solvent. These new metal-free catalysts have the advantage of easy separation and reuse several times. Based on the experimental data, a plausible reaction mechanism is suggested, where the hydrogen bonding donors and halogen ion can activate the epoxide, and amine functional groups play a vital role in CO2 adsorption.


Assuntos
Carbono , Grafite , Nitrogênio , Dióxido de Carbono , Carbonatos , Compostos de Epóxi
11.
J Food Sci Technol ; 59(1): 144-156, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35068559

RESUMO

Blend films with poly(ε-caprolactone)(PCL) and poly(propylene carbonate)(PPC)with thickness of approximately 40 µm and 60 µm, respectively, were prepared using a uniaxial-stretching extrusion process to modify the property of PCL. PCL/PPC blend films with better comprehensive properties with thickness about 60 µm were used for equilibrium-modified atmosphere packaging of button mushrooms at 5 °C. The gas barrier property together with water vapor permeability were evaluated as well as its effects on the shelf life button mushrooms. The results showed that the PCL/PPC20 and PCL/PPC50 blend films have suitable gas barrier property and water vapor permeability, which was helpful to generate an appropriate storage environment and more importantly no condensation occurred in these two packages. The lower weight loss of button mushrooms was observed for PCL/PPC20 and PCL/PPC50 blend films 4.43 and 4.46, respectively. The PCL/PPC blend films was more effective in decreasing the activity of PPO and preserving the color of the button mushrooms. The over market acceptability of button mushrooms packaged in PCL/PPC blend films still maintained good and within the limit of marketability after 17 days of storage.

12.
Angew Chem Int Ed Engl ; 61(5): e202113152, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-34905260

RESUMO

The direct ring-opening polymerization (ROP) of propylene carbonate (PC) only affords oligomers with substantial unidentified by-products, which hinders the efficient utilization of PC. Through detailed studies, for the first time, a careful mechanism involving the in situ release of propylene oxide (PO) from PC decarboxylation is proposed. Further, we report a novel strategy of copolymerization of PC/cyclic anhydrides via in situ capture of the formed intermediates. Results show that PC is successfully transformed into polyesters. Especially for the ring-opening alternating copolymerization (ROAC) of PC/phthalic anhydride (PA), a variety of advantages are manifold: i) slow-release of PO ensuring a perfectly alternating structure; ii) quantitative and fast transformation of PC; iii) visualization of polymerization process by a CO2 pressure gauge. Of importance, through tandem polymerizations, PC is fully transformed into polyesters and polycarbonates concurrently, thus achieving PC utilization with a high atom-economy.

13.
Sensors (Basel) ; 21(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34640761

RESUMO

Infrared attenuated total reflection (ATR) spectroscopy is a common laboratory technique for the analysis of highly absorbing liquids or solid samples. However, ATR spectroscopy is rarely found in industrial processes, where inline measurement, continuous operation, and minimal maintenance are important issues. Most materials for mid-infrared (MIR) spectroscopy and specifically for ATR elements do not have either high enough infrared transmission or sufficient mechanical and chemical stability to be exposed to process fluids, abrasive components, and aggressive cleaning agents. Sapphire is the usual choice for infrared wavelengths below 5 µm, and beyond that, only diamond is an established material. The use of diamond coatings on other ATR materials such as silicon will increase the stability of the sensor and will enable the use of larger ATR elements with increased sensitivity at lower cost for wavelengths above 5 µm. Theoretical and experimental investigations of the dependence of ATR absorbances on the incidence angle and thickness of nanocrystalline diamond (NCD) coatings on silicon were performed. By optimizing the coating thickness, a substantial amplification of the ATR absorbance can be achieved compared to an uncoated silicon element. Using a compact FTIR instrument, ATR spectra of water, acetonitrile, and propylene carbonate were measured with planar ATR elements made of coated and uncoated silicon. Compared to sapphire, the long wavelength extreme of the spectral range is extended to approximately 8 µm. With effectively nine ATR reflections, the sensitivity is expected to exceed the performance of typical diamond tip probes.

14.
J Microencapsul ; 38(1): 1-10, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32930025

RESUMO

AIM: This study aimed for a detailed understanding of the impact of different process parameters involved during celecoxib-loaded microsphere preparation based on propylene carbonate emulsion-precursors. METHODS: Microspheres were prepared by a modified emulsification-solvent extraction method. Performed investigations included polymer solubility and viscosity, microsphere size, morphology and stability, propylene carbonate content as well as celecoxib solid state, content and release. RESULTS: Rough-walled round microspheres with sizes between 21 µm and 122 µm and an internal sponge-like structure filled with residual propylene carbonate (content between 1.9 ± 0.1% and 6.7 ± 0.5% w/w) were obtained. Encapsulation efficiencies varied between 28.3 ± 0.1% and 66.8 ± 1.0%. The release rates were affected by the polymer concentration, the emulsion phase ratio and the residual propylene carbonate content (t50% varied between 2.2 hours and 23.4 hours). CONCLUSIONS: This study identified the most relevant process parameters for this new preparation method for the model drug celecoxib.


Assuntos
Celecoxib/administração & dosagem , Microesferas , Polipropilenos/química , Varredura Diferencial de Calorimetria , Química Farmacêutica/métodos , Portadores de Fármacos , Composição de Medicamentos , Liberação Controlada de Fármacos , Emulsões , Ácido Láctico/química , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Ácido Poliglicólico/química , Polímeros , Solubilidade , Solventes , Propriedades de Superfície , Viscosidade
15.
Contact Dermatitis ; 82(5): 307-309, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31879957

RESUMO

Patch tests are highly recommended in eczema patients with eyelid involvement. Sunscreen constitutes a potential cause of eyelid or facial allergic contact dermatitis, and should be considered in patients with refractory eczema on these locations. We report a patient sensitized to several emerging allergens such as bis-ethylhexyloxyphenol methoxyphenyl triazine (Tinosorb S), Scutellaria baicalensis extract, and propylene glycol with an eyelid dermatitis. Patch tests to the combined ingredients propylene carbonate, cyclopentasiloxane, and disteardimonium hectorite; and talc, Cl 77 491, and dimethicone/methicone copolymer were also positive. We highlight the importance of systematically patch testing with the cosmetics brought in by our patients, as well as with the individual ingredients whenever positive. The identification of emerging allergies to new compounds in cosmetics mainly depends on this practice.


Assuntos
Dermatite Alérgica de Contato/etiologia , Doenças Palpebrais/induzido quimicamente , Fenóis/efeitos adversos , Extratos Vegetais/efeitos adversos , Propilenoglicol/efeitos adversos , Triazinas/efeitos adversos , Adulto , Feminino , Humanos , Testes do Emplastro , Scutellaria baicalensis
16.
Molecules ; 25(18)2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32911616

RESUMO

Based on the ligand H4Salen-8tBu (salen-4), a new dinuclear cobalt complex (salen-4)[Co(III)TFA]2 (salen-4 = 3,5-di-tert-butylsalicylaldehyde-3,3'-diaminobiphenylamine; TFA = trifluoroacetic acid) has been firstly synthesized and characterized. It shows high catalytic activity for the copolymerization of propylene oxide (PO) and carbon dioxide (CO2), yielding regioregular poly(propylene carbonate) (PPC) with little generation of propylene carbonate (PC) by-product. It has been found that (salen-4)[Co(III)TFA]2 shows higher activity at milder conditions, generating a polymer with maximum Mn of 293 kg/mol and a narrow molecular weight distribution PDI of 1.35. The influences of reaction time, CO2 pressure, reaction temperature, nature of the cocatalyst, catalyst dosage and substrate concentration on the molecular weight, yield and selectivity of the polymer were explored in detail. The results showed that the (salen-4)[Co(III)TFA]2/[PPN]TFA catalyst system demonstrated a remarkable TOF as high as 735 h-1. In addition, a hypothetical catalytic reaction mechanism was proposed based on density functional theory (DFT) calculations and the catalytic reaction results of the (salen-4)[Co(III)TFA]2.


Assuntos
Dióxido de Carbono/química , Cobalto/química , Compostos de Epóxi/química , Compostos Organometálicos/química , Cátions/química , Técnicas de Química Sintética , Ligantes , Modelos Químicos , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Polimerização , Teoria Quântica , Análise Espectral , Temperatura
17.
Angew Chem Int Ed Engl ; 58(40): 14311-14318, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31282122

RESUMO

Switchable polymerization provides the opportunity to regulate polymer sequence and structure in a one-pot process from mixtures of monomers. Herein we report the use of O2 as an external stimulus to switch the polymerization mechanism from the radical polymerization of vinyl monomers mediated by (Salen)CoIII -R [Salen=N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediamine; R=alkyl] to the ring-opening copolymerization (ROCOP) of CO2 /epoxides. Critical to this process is unprecedented monooxygen insertion into the Co-C bond, as rationalized by DFT calculations, leading to the formation of (Salen)CoIII -O-R as an active species to initiate ROCOP. Diblock poly(vinyl acetate)-b-polycarbonate could be obtained by ROCOP of CO2 /epoxides with preactivation of (Salen)Co end-capped poly(vinyl acetate). Furthermore, a poly(vinyl acetate)-b-poly(methyl acrylate)-b-polycarbonate triblock copolymer was successfully synthesized by a (Salen)cobalt-mediated sequential polymerization with an O2 -triggered switch in a one-pot process.

18.
Int J Mol Sci ; 19(7)2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30011782

RESUMO

The blends of Poly(propylene carbonate) (PPC) and polyester-based thermoplastic polyurethane (TPU) were melt compounded in an internal mixer. The compatibility, thermal behaviors, mechanical properties and toughening mechanism of the blends were investigated using Fourier transform infrared spectra (FTIR), tensile tests, impact tests, differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and dynamic mechanical analysis technologies. FTIR and SEM examination reveal strong interfacial adhesion between PPC matrix and suspended TPU particles. Dynamic mechanical analyzer (DMA) characterize the glass transition temperature, secondary motion and low temperature properties. By the incorporation of TPU, the thermal stabilities are greatly enhanced and the mechanical properties are obviously improved for the PPC/TPU blends. Moreover, PPC/TPU blends exhibit a brittle-ductile transition with the addition of 20 wt % TPU. It is considered that the enhanced toughness results in the shear yielding occurred in both PPC matrix and TPU particles of the blends.


Assuntos
Plásticos Biodegradáveis/química , Polímeros/química , Poliuretanos/química , Propano/análogos & derivados , Varredura Diferencial de Calorimetria , Ligação de Hidrogênio , Microscopia Eletrônica de Varredura , Propano/química , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Resistência à Tração
19.
Molecules ; 23(9)2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30201888

RESUMO

We aimed to develop new effective catalysts for the synthesis of propylene carbonate from propylene oxide and carbon dioxide. A kind of Mx+LClx coordination complex was fabricated based on the chelating tridentate ligand 2,6-bis[1-(phenylimino)ethyl] pyridine (L). The obtained products were characterized by elemental analysis, infrared spectroscopy, ultraviolet spectroscopy, thermogravimetric analysis, and single-crystal X-ray diffraction. It was found that the catalytic activity of the complexes with different metal ions, the same ligand differed and co-catalyst, where the order of greatest to least catalytic activity was 2 > 3 > 1. The catalytic system composed of complex 2 and DMAP proved to have the better catalytic performance. The yields for complex 2 systems was 86.7% under the reaction conditions of 100 °C, 2.5 MPa, and 4 h. The TOF was 1026 h-¹ under the reaction conditions of 200 °C, 2.5 MPa, and 1 h. We also explored the influence of time, pressure, temperature, and reaction substrate concentration on the catalytic reactions. A hypothetical catalytic reaction mechanism is proposed based on density functional theory (DFT) calculations and the catalytic reaction results.


Assuntos
Dióxido de Carbono/química , Complexos de Coordenação/química , Compostos de Epóxi/química , Propano/análogos & derivados , Piridinas/química , Catálise , Cristalografia por Raios X , Reação de Cicloadição , Ligantes , Conformação Molecular , Propano/síntese química , Propano/química , Eletricidade Estática
20.
Chemistry ; 20(37): 11870-82, 2014 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-25056457

RESUMO

A mechanistic study on the synthesis of propylene carbonate (PC) from CO2 and propylene oxide (PO) catalyzed by NbCl5 and organic nucleophiles such as 4-dimethylaminopyridine (DMAP) or tetra-n-butylammonium bromide (NBu4 Br) is reported. A combination of in situ spectroscopic techniques and kinetic studies has been used to provide detailed insight into the reaction mechanism, the formation of intermediates, and interactions between the reaction partners. The results of DFT calculations support the experimental observations and allow us to propose a mechanism for this reaction.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa