Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Microbiol ; 22(9): e13212, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32329212

RESUMO

The phylum Apicomplexa includes a number of significant human pathogens like Toxoplasma gondii and Plasmodium species. These obligate intracellular parasites possess a membranous structure, the inner membrane complex (IMC), composed of flattened vesicles apposed to the plasma membrane. Numerous proteins associated with the IMC are anchored via a lipid post-translational modification termed palmitoylation. This acylation is catalysed by multi-membrane spanning protein S-acyl-transferases (PATs) containing a catalytic Asp-His-His-Cys (DHHC) motif, commonly referred to as DHHCs. Contrasting the redundancy observed in other organisms, several PATs are essential for T. gondii tachyzoite survival; 2 of them, TgDHHC2 and TgDHHC14 being IMC-resident. Disruption of either of these TgDHHCs results in a rapid collapse of the IMC in the developing daughter cells leading to dramatic morphological defects of the parasites while the impact on the other organelles is limited to their localisation but not to their biogenesis. The acyl-transferase activity of TgDHHC2 and TgDHHC14 is involved sequentially in the formation of the sub-compartments of the IMC. Investigation of proteins known to be palmitoylated and localised to these sub-compartments identified TgISP1/3 as well as TgIAP1/2 to lose their membrane association revealing them as likely substrates of TgDHHC2, while these proteins are not impacted by TgDHHC14 depletion.


Assuntos
Aciltransferases/metabolismo , Membranas Intracelulares/fisiologia , Lipoilação/genética , Biogênese de Organelas , Toxoplasma/enzimologia , Toxoplasma/fisiologia , Acilação , Aciltransferases/classificação , Aciltransferases/genética , Lipoilação/fisiologia , Processamento de Proteína Pós-Traducional , Toxoplasma/genética
2.
Plant J ; 100(4): 754-767, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31369173

RESUMO

S-Acylation is a reversible post-translational lipid modification in which a long chain fatty acid covalently attaches to specific cysteine(s) of proteins via a thioester bond. It enhances the hydrophobicity of proteins, contributes to their membrane association and plays roles in protein trafficking, stability and signalling. A family of Protein S-Acyl Transferases (PATs) is responsible for this reaction. PATs are multi-pass transmembrane proteins that possess a catalytic Asp-His-His-Cys cysteine-rich domain (DHHC-CRD). In Arabidopsis, there are currently 24 such PATs, five having been characterized, revealing their important roles in growth, development, senescence and stress responses. Here, we report the functional characterization of another PAT, AtPAT21, demonstrating the roles it plays in Arabidopsis sexual reproduction. Loss-of-function mutation by T-DNA insertion in AtPAT21 results in the complete failure of seed production. Detailed studies revealed that the sterility of the mutant is caused by defects in both male and female sporogenesis and gametogenesis. To determine if the sterility observed in atpat21-1 was caused by upstream defects in meiosis, we assessed meiotic progression in pollen mother cells and found massive chromosome fragmentation and the absence of synapsis in the initial stages of meiosis. Interestingly, the fragmentation phenotype was substantially reduced in atpat21-1 spo11-1 double mutants, indicating that AtPAT21 is required for repair, but not for the formation, of SPO11-induced meiotic DNA double-stranded breaks (DSBs) in Arabidopsis. Our data highlight the importance of protein S-acylation in the early meiotic stages that lead to the development of male and female sporophytic reproductive structures and associated gametophytes in Arabidopsis.


Assuntos
Aciltransferases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Óvulo Vegetal/fisiologia , Pólen/fisiologia , Acilação , Aciltransferases/química , Aciltransferases/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Regulação da Expressão Gênica de Plantas , Meiose , Mutação , Plantas Geneticamente Modificadas , Polinização
3.
Int J Mol Sci ; 20(3)2019 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-30699892

RESUMO

Lipid modification is an important post-translational modification. S-acylation is unique among lipid modifications, as it is reversible and has thus attracted much attention. We summarize some proteins that have been shown experimentally to be S-acylated in plants. Two of these S-acylated proteins have been matched to the S-acyl transferase. More importantly, the first protein thioesterase with de-S-acylation activity has been identified in plants. This review shows that S-acylation is important for a variety of different functions in plants and that there are many unexplored aspects of S-acylation in plants.


Assuntos
Acilação/fisiologia , Metabolismo dos Lipídeos/fisiologia , Proteínas de Plantas/metabolismo , Modelos Biológicos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Processamento de Proteína Pós-Traducional , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa