Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(5): 1703-1709, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38278134

RESUMO

The development of methods to synthesize artificial protein complexes with precisely controlled configurations will enable diverse biological and medical applications. Using DNA to link proteins provides programmability that can be difficult to achieve with other methods. Here, we use DNA origami as an "assembler" to guide the linking of protein-DNA conjugates using a series of oligonucleotide hybridization and displacement operations. We constructed several isomeric protein nanostructures, including a dimer, two types of trimer structures, and three types of tetramer assemblies, on a DNA origami platform by using a C3-symmetric building block composed of a protein trimer modified with DNA handles. Our approach expands the scope for the precise assembly of protein-based nanostructures and will enable the formulation of functional protein complexes with stoichiometric and geometric control.


Assuntos
Nanoestruturas , Nanoestruturas/química , DNA/química , Oligonucleotídeos , Polímeros , Conformação de Ácido Nucleico , Nanotecnologia
2.
J Pharm Biomed Anal ; 241: 115995, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309096

RESUMO

Polysaccharide-based vaccines cannot stimulate long-lasting immune response in infants due to their inability to elicit a T-cell-dependent immune response. This has been addressed using conjugation technology, where conjugates were produced by coupling a carrier protein to polysaccharides using different conjugation chemistries, such as cyanylation, reductive amination, ethylene diamine reaction, and others. Many glycoconjugate vaccines that are manufactured using different conjugation technologies are already in the market for neonates, infants and young children (e.g., Haemophilus influenzae type-b, Streptococcus pneumoniae and Neisseria meningitidis vaccines), and all of them elicit a T-cell dependent immune response. To manufacture glycoconjugate vaccines, the capsular polysaccharide is first activated by converting its hydroxyl groups to aldehyde-, cyanyl-, or cyanate ester groups, depending on the conjugation chemistry selected. The oxidized and reduced aldehyde functional groups of the polysaccharides are subsequently reacted with the amino groups of carrier protein by reductive amination to form a stable amide bond. In CDAP-based conjugation, the polysaccharide -OH groups are activated to form cyanyl-, or cyanate ester groups to react with the amino groups of carrier protein and forms an isourea bond. Understanding the extent of polysaccharide activation/modification is essential since it directly influences the molar mass of the conjugate, its stability, and the immunogenicity of the product. Reported methods are available to estimate the aldehyde groups of polysaccharides generated by reductive amination. However, no method is available to quantify the cyanyl or cyanate ester (-OCN) groups generated by cyanylation with 1-cyano-4-dimethylaminopyridinium tetrafluoroborate (CDAP). We report a novel strategy using an O-phthalaldehyde (OPA) derivatization process followed by size-exclusion chromatography (SEC) high-performance liquid chromatography (HPLC) separation and UV detection. The cyanate ester groups on the activated polysaccharide directly reveal the extent of polysaccharide activation/modification and the residual activated groups in the purified conjugates. This method would be useful for conjugate vaccine manufacturing using CDAP chemistry.


Assuntos
Polissacarídeos Bacterianos , o-Ftalaldeído , Lactente , Criança , Recém-Nascido , Humanos , Pré-Escolar , Vacinas Conjugadas/química , Proteínas de Transporte , Glicoconjugados , Cianatos , Ésteres , Anticorpos Antibacterianos
3.
Food Res Int ; 178: 113935, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309906

RESUMO

Whey proteins are a major group of dairy proteins with high potential for various food based applications. Whey protein isolate has a limited range of functionalities. This functional range can be expanded using diverse modification methods to suit specific applications. This review summarizes the recent advances in the modifications of whey proteins using chemical, physical, and enzymatic methods and their combinations as well as the modification effects on the physicochemical properties. The uses of these modified whey proteins in emulsion based food and beverage systems are described. The limitations in the studies summarized are critically discussed, while future research directions are suggested on how to better utilize whey proteins for emulsion based uses through modifications.


Assuntos
Proteínas do Leite , Proteínas do Soro do Leite , Proteínas do Leite/química , Emulsões , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa