Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-39038936

RESUMO

Sequence database searches followed by homology-based function transfer form one of the oldest and most popular approaches for predicting protein functions, such as Gene Ontology (GO) terms. These searches are also a critical component in most state-of-the-art machine learning and deep learning-based protein function predictors. Although sequence search tools are the basis of homology-based protein function prediction, previous studies have scarcely explored how to select the optimal sequence search tools and configure their parameters to achieve the best function prediction. In this paper, we evaluate the effect of using different options from among popular search tools, as well as the impacts of search parameters, on protein function prediction. When predicting GO terms on a large benchmark dataset, we found that BLASTp and MMseqs2 consistently exceed the performance of other tools, including DIAMOND-one of the most popular tools for function prediction-under default search parameters. However, with the correct parameter settings, DIAMOND can perform comparably to BLASTp and MMseqs2 in function prediction. Additionally, we developed a new scoring function to derive GO prediction from homologous hits that consistently outperform previously proposed scoring functions. These findings enable the improvement of almost all protein function prediction algorithms with a few easily implementable changes in their sequence homolog-based component. This study emphasizes the critical role of search parameter settings in homology-based function transfer and should have an important contribution to the development of future protein function prediction algorithms.


Assuntos
Bases de Dados de Proteínas , Proteínas , Proteínas/química , Proteínas/metabolismo , Proteínas/genética , Biologia Computacional/métodos , Ontologia Genética , Algoritmos , Análise de Sequência de Proteína/métodos , Software , Aprendizado de Máquina
2.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38701416

RESUMO

Predicting protein function is crucial for understanding biological life processes, preventing diseases and developing new drug targets. In recent years, methods based on sequence, structure and biological networks for protein function annotation have been extensively researched. Although obtaining a protein in three-dimensional structure through experimental or computational methods enhances the accuracy of function prediction, the sheer volume of proteins sequenced by high-throughput technologies presents a significant challenge. To address this issue, we introduce a deep neural network model DeepSS2GO (Secondary Structure to Gene Ontology). It is a predictor incorporating secondary structure features along with primary sequence and homology information. The algorithm expertly combines the speed of sequence-based information with the accuracy of structure-based features while streamlining the redundant data in primary sequences and bypassing the time-consuming challenges of tertiary structure analysis. The results show that the prediction performance surpasses state-of-the-art algorithms. It has the ability to predict key functions by effectively utilizing secondary structure information, rather than broadly predicting general Gene Ontology terms. Additionally, DeepSS2GO predicts five times faster than advanced algorithms, making it highly applicable to massive sequencing data. The source code and trained models are available at https://github.com/orca233/DeepSS2GO.


Assuntos
Algoritmos , Biologia Computacional , Redes Neurais de Computação , Estrutura Secundária de Proteína , Proteínas , Proteínas/química , Proteínas/metabolismo , Proteínas/genética , Biologia Computacional/métodos , Bases de Dados de Proteínas , Ontologia Genética , Análise de Sequência de Proteína/métodos , Software
3.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38446740

RESUMO

Protein annotation has long been a challenging task in computational biology. Gene Ontology (GO) has become one of the most popular frameworks to describe protein functions and their relationships. Prediction of a protein annotation with proper GO terms demands high-quality GO term representation learning, which aims to learn a low-dimensional dense vector representation with accompanying semantic meaning for each functional label, also known as embedding. However, existing GO term embedding methods, which mainly take into account ancestral co-occurrence information, have yet to capture the full topological information in the GO-directed acyclic graph (DAG). In this study, we propose a novel GO term representation learning method, PO2Vec, to utilize the partial order relationships to improve the GO term representations. Extensive evaluations show that PO2Vec achieves better outcomes than existing embedding methods in a variety of downstream biological tasks. Based on PO2Vec, we further developed a new protein function prediction method PO2GO, which demonstrates superior performance measured in multiple metrics and annotation specificity as well as few-shot prediction capability in the benchmarks. These results suggest that the high-quality representation of GO structure is critical for diverse biological tasks including computational protein annotation.


Assuntos
Benchmarking , Biologia Computacional , Ontologia Genética , Aprendizagem , Anotação de Sequência Molecular
4.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-39003530

RESUMO

Protein function prediction is critical for understanding the cellular physiological and biochemical processes, and it opens up new possibilities for advancements in fields such as disease research and drug discovery. During the past decades, with the exponential growth of protein sequence data, many computational methods for predicting protein function have been proposed. Therefore, a systematic review and comparison of these methods are necessary. In this study, we divide these methods into four different categories, including sequence-based methods, 3D structure-based methods, PPI network-based methods and hybrid information-based methods. Furthermore, their advantages and disadvantages are discussed, and then their performance is comprehensively evaluated and compared. Finally, we discuss the challenges and opportunities present in this field.


Assuntos
Biologia Computacional , Proteínas , Proteínas/química , Proteínas/metabolismo , Biologia Computacional/métodos , Humanos , Análise de Sequência de Proteína/métodos , Algoritmos
5.
Brief Bioinform ; 24(3)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-36964722

RESUMO

Protein function prediction is an essential task in bioinformatics which benefits disease mechanism elucidation and drug target discovery. Due to the explosive growth of proteins in sequence databases and the diversity of their functions, it remains challenging to fast and accurately predict protein functions from sequences alone. Although many methods have integrated protein structures, biological networks or literature information to improve performance, these extra features are often unavailable for most proteins. Here, we propose SPROF-GO, a Sequence-based alignment-free PROtein Function predictor, which leverages a pretrained language model to efficiently extract informative sequence embeddings and employs self-attention pooling to focus on important residues. The prediction is further advanced by exploiting the homology information and accounting for the overlapping communities of proteins with related functions through the label diffusion algorithm. SPROF-GO was shown to surpass state-of-the-art sequence-based and even network-based approaches by more than 14.5, 27.3 and 10.1% in area under the precision-recall curve on the three sub-ontology test sets, respectively. Our method was also demonstrated to generalize well on non-homologous proteins and unseen species. Finally, visualization based on the attention mechanism indicated that SPROF-GO is able to capture sequence domains useful for function prediction. The datasets, source codes and trained models of SPROF-GO are available at https://github.com/biomed-AI/SPROF-GO. The SPROF-GO web server is freely available at http://bio-web1.nscc-gz.cn/app/sprof-go.


Assuntos
Proteínas , Software , Proteínas/metabolismo , Algoritmos , Biologia Computacional/métodos , Ontologia Genética
6.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36403184

RESUMO

The prediction of peptide and protein function is important for research and industrial applications, and many machine learning methods have been developed for this purpose. The existing models have encountered many challenges, including the lack of effective and comprehensive features and the limited applicability of each model. Here, we introduce an Integrated Peptide and Protein function prediction Framework based on Fused features and Ensemble models (IPPF-FE), which can accurately capture the relationship between features and labels. The results indicated that IPPF-FE outperformed existing state-of-the-art (SOTA) models on more than 8 different categories of peptide and protein tasks. In addition, t-distributed Stochastic Neighbour Embedding demonstrated the advantages of IPPF-FE. We anticipate that our method will become a versatile tool for peptide and protein prediction tasks and shed light on the future development of related models. The model is open source and available in the GitHub repository https://github.com/Luo-SynBioLab/IPPF-FE.


Assuntos
Federação Internacional de Planejamento Familiar , Proteínas , Peptídeos , Aprendizado de Máquina
7.
Brief Bioinform ; 24(4)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37401369

RESUMO

As the volume of protein sequence and structure data grows rapidly, the functions of the overwhelming majority of proteins cannot be experimentally determined. Automated annotation of protein function at a large scale is becoming increasingly important. Existing computational prediction methods are typically based on expanding the relatively small number of experimentally determined functions to large collections of proteins with various clues, including sequence homology, protein-protein interaction, gene co-expression, etc. Although there has been some progress in protein function prediction in recent years, the development of accurate and reliable solutions still has a long way to go. Here we exploit AlphaFold predicted three-dimensional structural information, together with other non-structural clues, to develop a large-scale approach termed PredGO to annotate Gene Ontology (GO) functions for proteins. We use a pre-trained language model, geometric vector perceptrons and attention mechanisms to extract heterogeneous features of proteins and fuse these features for function prediction. The computational results demonstrate that the proposed method outperforms other state-of-the-art approaches for predicting GO functions of proteins in terms of both coverage and accuracy. The improvement of coverage is because the number of structures predicted by AlphaFold is greatly increased, and on the other hand, PredGO can extensively use non-structural information for functional prediction. Moreover, we show that over 205 000 ($\sim $100%) entries in UniProt for human are annotated by PredGO, over 186 000 ($\sim $90%) of which are based on predicted structure. The webserver and database are available at http://predgo.denglab.org/.


Assuntos
Biologia Computacional , Proteínas , Humanos , Biologia Computacional/métodos , Proteínas/química , Sequência de Aminoácidos , Redes Neurais de Computação , Bases de Dados Factuais , Bases de Dados de Proteínas
8.
Brief Bioinform ; 24(5)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37649370

RESUMO

Protein function prediction based on amino acid sequence alone is an extremely challenging but important task, especially in metagenomics/metatranscriptomics field, in which novel proteins have been uncovered exponentially from new microorganisms. Many of them are extremely low homology to known proteins and cannot be annotated with homology-based or information integrative methods. To overcome this problem, we proposed a Homology Independent protein Function annotation method (HiFun) based on a unified deep-learning model by reassembling the sequence as protein language. The robustness of HiFun was evaluated using the benchmark datasets and metrics in the CAFA3 challenge. To navigate the utility of HiFun, we annotated 2 212 663 unknown proteins and discovered novel motifs in the UHGP-50 catalog. We proved that HiFun can extract latent function related structure features which empowers it ability to achieve function annotation for non-homology proteins. HiFun can substantially improve newly proteins annotation and expand our understanding of microorganisms' adaptation in various ecological niches. Moreover, we provided a free and accessible webservice at http://www.unimd.org/HiFun, requiring only protein sequences as input, offering researchers an efficient and practical platform for predicting protein functions.


Assuntos
Benchmarking , Idioma , Sequência de Aminoácidos , Metagenômica , Anotação de Sequência Molecular
9.
Brief Bioinform ; 24(4)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37258453

RESUMO

Protein is the most important component in organisms and plays an indispensable role in life activities. In recent years, a large number of intelligent methods have been proposed to predict protein function. These methods obtain different types of protein information, including sequence, structure and interaction network. Among them, protein sequences have gained significant attention where methods are investigated to extract the information from different views of features. However, how to fully exploit the views for effective protein sequence analysis remains a challenge. In this regard, we propose a multi-view, multi-scale and multi-attention deep neural model (MMSMA) for protein function prediction. First, MMSMA extracts multi-view features from protein sequences, including one-hot encoding features, evolutionary information features, deep semantic features and overlapping property features based on physiochemistry. Second, a specific multi-scale multi-attention deep network model (MSMA) is built for each view to realize the deep feature learning and preliminary classification. In MSMA, both multi-scale local patterns and long-range dependence from protein sequences can be captured. Third, a multi-view adaptive decision mechanism is developed to make a comprehensive decision based on the classification results of all the views. To further improve the prediction performance, an extended version of MMSMA, MMSMAPlus, is proposed to integrate homology-based protein prediction under the framework of multi-view deep neural model. Experimental results show that the MMSMAPlus has promising performance and is significantly superior to the state-of-the-art methods. The source code can be found at https://github.com/wzy-2020/MMSMAPlus.


Assuntos
Redes Neurais de Computação , Proteínas , Sequência de Aminoácidos , Software , Análise de Sequência de Proteína
10.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36567619

RESUMO

With the development of genome sequencing technology, using computing technology to predict grain protein function has become one of the important tasks of bioinformatics. The protein data of four grains, soybean, maize, indica and japonica are selected in this experimental dataset. In this paper, a novel neural network algorithm Chemical-SA-BiLSTM is proposed for grain protein function prediction. The Chemical-SA-BiLSTM algorithm fuses the chemical properties of proteins on the basis of amino acid sequences, and combines the self-attention mechanism with the bidirectional Long Short-Term Memory network. The experimental results show that the Chemical-SA-BiLSTM algorithm is superior to other classical neural network algorithms, and can more accurately predict the protein function, which proves the effectiveness of the Chemical-SA-BiLSTM algorithm in the prediction of grain protein function. The source code of our method is available at https://github.com/HwaTong/Chemical-SA-BiLSTM.


Assuntos
Proteínas de Grãos , Redes Neurais de Computação , Algoritmos , Proteínas/química , Software
11.
Proteomics ; : e2300471, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38996351

RESUMO

Predicting protein function from protein sequence, structure, interaction, and other relevant information is important for generating hypotheses for biological experiments and studying biological systems, and therefore has been a major challenge in protein bioinformatics. Numerous computational methods had been developed to advance protein function prediction gradually in the last two decades. Particularly, in the recent years, leveraging the revolutionary advances in artificial intelligence (AI), more and more deep learning methods have been developed to improve protein function prediction at a faster pace. Here, we provide an in-depth review of the recent developments of deep learning methods for protein function prediction. We summarize the significant advances in the field, identify several remaining major challenges to be tackled, and suggest some potential directions to explore. The data sources and evaluation metrics widely used in protein function prediction are also discussed to assist the machine learning, AI, and bioinformatics communities to develop more cutting-edge methods to advance protein function prediction.

12.
BMC Bioinformatics ; 25(1): 146, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38600441

RESUMO

BACKGROUND: The advent of high-throughput technologies has led to an exponential increase in uncharacterized bacterial protein sequences, surpassing the capacity of manual curation. A large number of bacterial protein sequences remain unannotated by Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology, making it necessary to use auto annotation tools. These tools are now indispensable in the biological research landscape, bridging the gap between the vastness of unannotated sequences and meaningful biological insights. RESULTS: In this work, we propose a novel pipeline for KEGG orthology annotation of bacterial protein sequences that uses natural language processing and deep learning. To assess the effectiveness of our pipeline, we conducted evaluations using the genomes of two randomly selected species from the KEGG database. In our evaluation, we obtain competitive results on precision, recall, and F1 score, with values of 0.948, 0.947, and 0.947, respectively. CONCLUSIONS: Our experimental results suggest that our pipeline demonstrates performance comparable to traditional methods and excels in identifying distant relatives with low sequence identity. This demonstrates the potential of our pipeline to significantly improve the accuracy and comprehensiveness of KEGG orthology annotation, thereby advancing our understanding of functional relationships within biological systems.


Assuntos
Proteínas de Bactérias , Processamento de Linguagem Natural , Genoma , Anotação de Sequência Molecular , Sequência de Aminoácidos
13.
Proteins ; 92(3): 395-410, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37915276

RESUMO

Interaction between proteins and nucleic acids is crucial to many cellular activities. Accurately detecting nucleic acid-binding residues (NABRs) in proteins can help researchers better understand the interaction mechanism between proteins and nucleic acids. Structure-based methods can generally make more accurate predictions than sequence-based methods. However, the existing structure-based methods are sensitive to protein conformational changes, causing limited generalizability. More effective and robust approaches should be further explored. In this study, we propose iNucRes-ASSH to identify nucleic acid-binding residues with a self-attention-based structure-sequence hybrid neural network. It improves the generalizability and robustness of NABR prediction from two levels: residue representation and prediction model. Experimental results show that iNucRes-ASSH can predict the nucleic acid-binding residues even when the experimentally validated structures are unavailable and outperforms five competing methods on a recent benchmark dataset and a widely used test dataset.


Assuntos
Algoritmos , Ácidos Nucleicos , Proteínas/química , Redes Neurais de Computação
14.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34882195

RESUMO

Experimental protein function annotation does not scale with the fast-growing sequence databases. Only a tiny fraction (<0.1%) of protein sequences has experimentally determined functional annotations. Computational methods may predict protein function very quickly, but their accuracy is not very satisfactory. Based upon recent breakthroughs in protein structure prediction and protein language models, we develop GAT-GO, a graph attention network (GAT) method that may substantially improve protein function prediction by leveraging predicted structure information and protein sequence embedding. Our experimental results show that GAT-GO greatly outperforms the latest sequence- and structure-based deep learning methods. On the PDB-mmseqs testset where the train and test proteins share <15% sequence identity, our GAT-GO yields Fmax (maximum F-score) 0.508, 0.416, 0.501, and area under the precision-recall curve (AUPRC) 0.427, 0.253, 0.411 for the MFO, BPO, CCO ontology domains, respectively, much better than the homology-based method BLAST (Fmax 0.117, 0.121, 0.207 and AUPRC 0.120, 0.120, 0.163) that does not use any structure information. On the PDB-cdhit testset where the training and test proteins are more similar, although using predicted structure information, our GAT-GO obtains Fmax 0.637, 0.501, 0.542 for the MFO, BPO, CCO ontology domains, respectively, and AUPRC 0.662, 0.384, 0.481, significantly exceeding the just-published method DeepFRI that uses experimental structures, which has Fmax 0.542, 0.425, 0.424 and AUPRC only 0.313, 0.159, 0.193.


Assuntos
Biologia Computacional , Proteínas , Sequência de Aminoácidos , Área Sob a Curva , Biologia Computacional/métodos , Bases de Dados de Proteínas , Anotação de Sequência Molecular , Proteínas/química
15.
Brief Bioinform ; 23(4)2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35724625

RESUMO

The rate of biological data generation has increased dramatically in recent years, which has driven the importance of databases as a resource to guide innovation and the generation of biological insights. Given the complexity and scale of these databases, automatic data classification is often required. Biological data sets are often hierarchical in nature, with varying degrees of complexity, imposing different challenges to train, test and validate accurate and generalizable classification models. While some approaches to classify hierarchical data have been proposed, no guidelines regarding their utility, applicability and limitations have been explored or implemented. These include 'Local' approaches considering the hierarchy, building models per level or node, and 'Global' hierarchical classification, using a flat classification approach. To fill this gap, here we have systematically contrasted the performance of 'Local per Level' and 'Local per Node' approaches with a 'Global' approach applied to two different hierarchical datasets: BioLip and CATH. The results show how different components of hierarchical data sets, such as variation coefficient and prediction by depth, can guide the choice of appropriate classification schemes. Finally, we provide guidelines to support this process when embarking on a hierarchical classification task, which will help optimize computational resources and predictive performance.


Assuntos
Aprendizado Profundo , Algoritmos , Bases de Dados Factuais
16.
Brief Bioinform ; 23(3)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35325033

RESUMO

There are a large number of unannotated proteins with unknown functions in rice, which are difficult to be verified by biological experiments. Therefore, computational method is one of the mainstream methods for rice proteins function prediction. Two representative rice proteins, indica protein and japonica protein, are selected as the experimental dataset. In this paper, two feature extraction methods (the residue couple model method and the pseudo amino acid composition method) and the Principal Component Analysis method are combined to design protein descriptive features. Moreover, based on the state-of-the-art MIML algorithm EnMIMLNN, a novel MIML learning framework MK-EnMIMLNN is proposed. And the MK-EnMIMLNN algorithm is designed by learning multiple kernel fusion function neural network. The experimental results show that the hybrid feature extraction method is better than the single feature extraction method. More importantly, the MK-EnMIMLNN algorithm is superior to most classic MIML learning algorithms, which proves the effectiveness of the MK-EnMIMLNN algorithm in rice proteins function prediction.


Assuntos
Oryza , Algoritmos , Redes Neurais de Computação , Oryza/genética , Análise de Componente Principal , Proteínas/química
17.
Proteomics ; 23(23-24): e2300011, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37381841

RESUMO

In recent years, the rapid growth of biological data has increased interest in using bioinformatics to analyze and interpret this data. Proteomics, which studies the structure, function, and interactions of proteins, is a crucial area of bioinformatics. Using natural language processing (NLP) techniques in proteomics is an emerging field that combines machine learning and text mining to analyze biological data. Recently, transformer-based NLP models have gained significant attention for their ability to process variable-length input sequences in parallel, using self-attention mechanisms to capture long-range dependencies. In this review paper, we discuss the recent advancements in transformer-based NLP models in proteome bioinformatics and examine their advantages, limitations, and potential applications to improve the accuracy and efficiency of various tasks. Additionally, we highlight the challenges and future directions of using these models in proteome bioinformatics research. Overall, this review provides valuable insights into the potential of transformer-based NLP models to revolutionize proteome bioinformatics.


Assuntos
Biologia Computacional , Proteoma , Mineração de Dados , Aprendizado de Máquina , Processamento de Linguagem Natural
18.
BMC Bioinformatics ; 24(1): 242, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291492

RESUMO

BACKGROUND: Although the development of sequencing technologies has provided a large number of protein sequences, the analysis of functions that each one plays is still difficult due to the efforts of laboratorial methods, making necessary the usage of computational methods to decrease this gap. As the main source of information available about proteins is their sequences, approaches that can use this information, such as classification based on the patterns of the amino acids and the inference based on sequence similarity using alignment tools, are able to predict a large collection of proteins. The methods available in the literature that use this type of feature can achieve good results, however, they present restrictions of protein length as input to their models. In this work, we present a new method, called TEMPROT, based on the fine-tuning and extraction of embeddings from an available architecture pre-trained on protein sequences. We also describe TEMPROT+, an ensemble between TEMPROT and BLASTp, a local alignment tool that analyzes sequence similarity, which improves the results of our former approach. RESULTS: The evaluation of our proposed classifiers with the literature approaches has been conducted on our dataset, which was derived from CAFA3 challenge database. Both TEMPROT and TEMPROT+ achieved competitive results on [Formula: see text], [Formula: see text], AuPRC and IAuPRC metrics on Biological Process (BP), Cellular Component (CC) and Molecular Function (MF) ontologies compared to state-of-the-art models, with the main results equal to 0.581, 0.692 and 0.662 of [Formula: see text] on BP, CC and MF, respectively. CONCLUSIONS: The comparison with the literature showed that our model presented competitive results compared the state-of-the-art approaches considering the amino acid sequence pattern recognition and homology analysis. Our model also presented improvements related to the input size that the model can use to train compared to the literature methods.


Assuntos
Aminoácidos , Proteínas , Proteínas/química , Anotação de Sequência Molecular , Sequência de Aminoácidos , Aminas
19.
Brief Bioinform ; 22(3)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32613242

RESUMO

Protein S-sulfenylation is one kind of crucial post-translational modifications (PTMs) in which the hydroxyl group covalently binds to the thiol of cysteine. Some recent studies have shown that this modification plays an important role in signaling transduction, transcriptional regulation and apoptosis. To date, the dynamic of sulfenic acids in proteins remains unclear because of its fleeting nature. Identifying S-sulfenylation sites, therefore, could be the key to decipher its mysterious structures and functions, which are important in cell biology and diseases. However, due to the lack of effective methods, scientists in this field tend to be limited in merely a handful of some wet lab techniques that are time-consuming and not cost-effective. Thus, this motivated us to develop an in silico model for detecting S-sulfenylation sites only from protein sequence information. In this study, protein sequences served as natural language sentences comprising biological subwords. The deep neural network was consequentially employed to perform classification. The performance statistics within the independent dataset including sensitivity, specificity, accuracy, Matthews correlation coefficient and area under the curve rates achieved 85.71%, 69.47%, 77.09%, 0.5554 and 0.833, respectively. Our results suggested that the proposed method (fastSulf-DNN) achieved excellent performance in predicting S-sulfenylation sites compared to other well-known tools on a benchmark dataset.


Assuntos
Bases de Dados de Proteínas , Redes Neurais de Computação , Processamento de Proteína Pós-Traducional , Análise de Sequência de Proteína , Ácidos Sulfênicos , Ácidos Sulfênicos/química , Ácidos Sulfênicos/metabolismo
20.
Brief Bioinform ; 22(2): 1515-1530, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33169146

RESUMO

Recent advancements in experimental high-throughput technologies have expanded the availability and quantity of molecular data in biology. Given the importance of interactions in biological processes, such as the interactions between proteins or the bonds within a chemical compound, this data is often represented in the form of a biological network. The rise of this data has created a need for new computational tools to analyze networks. One major trend in the field is to use deep learning for this goal and, more specifically, to use methods that work with networks, the so-called graph neural networks (GNNs). In this article, we describe biological networks and review the principles and underlying algorithms of GNNs. We then discuss domains in bioinformatics in which graph neural networks are frequently being applied at the moment, such as protein function prediction, protein-protein interaction prediction and in silico drug discovery and development. Finally, we highlight application areas such as gene regulatory networks and disease diagnosis where deep learning is emerging as a new tool to answer classic questions like gene interaction prediction and automatic disease prediction from data.


Assuntos
Biologia Computacional/métodos , Aprendizado Profundo , Redes Neurais de Computação , Algoritmos , Descoberta de Drogas , Redes Reguladoras de Genes , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa