Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 83: 291-315, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24905784

RESUMO

Large macromolecular assemblies, so-called molecular machines, are critical to ensuring proper cellular function. Understanding how proper function is achieved at the atomic level is crucial to advancing multiple avenues of biomedical research. Biophysical studies often include X-ray diffraction and cryo-electron microscopy, providing detailed structural descriptions of these machines. However, their inherent flexibility has complicated an understanding of the relation between structure and function. Solution NMR spectroscopy is well suited to the study of such dynamic complexes, and continued developments have increased size boundaries; insights into function have been obtained for complexes with masses as large as 1 MDa. We highlight methyl-TROSY (transverse relaxation optimized spectroscopy) NMR, which enables the study of such large systems, and include examples of applications to several cellular machines. We show how this emerging technique contributes to an understanding of cellular function and the role of molecular plasticity in regulating an array of biochemical activities.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Sítio Alostérico , Animais , Proteínas de Bactérias/química , Domínio Catalítico , Exossomos , Proteína HMGN2/química , Proteínas de Choque Térmico/química , Humanos , Concentração de Íons de Hidrogênio , Substâncias Macromoleculares/química , Nucleossomos/química , Canais de Potássio/química , Complexo de Endopeptidases do Proteassoma/química , Conformação Proteica , Proteínas/química
2.
Int J Mol Sci ; 25(10)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38791309

RESUMO

The protein scaffold that includes the caspases is ancient and found in all domains of life. However, the stringent specificity that defines the caspase biologic function is relatively recent and found only in multicellular animals. During the radiation of the Chordata, members of the caspase family adopted roles in immunity, events coinciding with the development of substrates that define the modern innate immune response. This review focuses on the switch from the non-inflammatory cellular demise of apoptosis to the highly inflammatory innate response driven by distinct members of the caspase family, and the interplay between these two regulated cell death pathways.


Assuntos
Caspases , Imunidade Inata , Piroptose , Humanos , Caspases/metabolismo , Animais , Evolução Molecular , Apoptose
3.
Int J Mol Sci ; 25(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38203766

RESUMO

Streptomyces rimosus extracellular lipase (SrL) is a multifunctional hydrolase belonging to the SGNH family. Here site-directed mutagenesis (SDM) was used for the first time to investigate the functional significance of the conserved amino acid residues Ser10, Gly54, Asn82, Asn213, and His216 in the active site of SrL. The hydrolytic activity of SrL variants was determined using para-nitrophenyl (pNP) esters with C4, C8, and C16 fatty acid chains. Mutation of Ser10, Asn82, or His216, but not Gly54, to Ala abolished lipase activity for all substrates. In contrast, the Asn213Ala variant showed increased enzymatic activity for C8 and C16 pNP esters. Molecular dynamics (MD) simulations showed that the interactions between the long alkyl chain substrate (C16) and Ser10 and Asn82 were strongest in Asn213Ala SrL. In addition to Asn82, Gly54, and Ser10, several new constituents of the substrate binding site were recognized (Lys28, Ser53, Thr89, and Glu212), as well as strong electrostatic interactions between Lys28 and Glu212. In addition to the H bonds Ser10-His216 and His216-Ser214, Tyr11 interacted strongly with Ser10 and His216 in all complexes with an active enzyme form. A previously unknown strong H bond between the catalytically important Asn82 and Gly54 was uncovered, which stabilizes the substrate in an orientation suitable for the enzyme reaction.


Assuntos
Lipase , Nitrofenóis , Streptomyces rimosus , Lipase/genética , Hidrólise , Ésteres , Mutagênese Sítio-Dirigida , Relação Estrutura-Atividade
4.
Anal Bioanal Chem ; 414(22): 6601-6610, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35821276

RESUMO

Proteases are critical proteins involved in cleaving substrates that may impact biological pathways, cellular processes, or disease progression. In the biopharmaceutical industry, modulating the levels of protease activity is an important strategy for mitigating many types of diseases. While a variety of analytical tools exist for characterizing substrate cleavages, in vitro functional screening for antibody inhibitors of protease activity using physiologically relevant intact protein substrates remains challenging. In addition, detecting such large protein substrates with high heterogeneity using high-throughput mass spectrometry screening has rarely been reported in the literature with concerns for assay robustness and sensitivity. In this study, we established a peptide-based in vitro functional screening assay for antibody inhibitors of mouse bone morphogenic protein 1 (mBMP1) metalloprotease using a heterogeneous recombinant 66-kDa mouse Procollagen I alpha 1 chain (mProcollagen) substrate. We compared several analytical tools including capillary gel electrophoresis Western blot (CE-Western blot), as well as both intact protein and peptide-based mass spectrometry (MS) to quantitate the mBMP1 proteolytic activity and its inhibition by antibodies using this heterogeneous mProcollagen substrate. We concluded that the peptide-based mass spectrometry screening assay was the most suitable approach in terms of throughput, sensitivity, and assay robustness. We then optimized our mBMP1 proteolysis reaction after characterizing the enzyme kinetics using the peptide-based MS assay. This assay resulted in Z' values ranging from 0.6 to 0.8 from the screening campaign. Among over 1200 antibodies screened, IC50 characterization was performed on the top candidate hits, which showed partial or complete inhibitory activities against mBMP1.


Assuntos
Peptídeos , Pró-Colágeno , Animais , Espectrometria de Massas , Camundongos , Peptídeo Hidrolases/metabolismo , Peptídeos/metabolismo , Pró-Colágeno/metabolismo , Proteínas/metabolismo , Proteólise , Especificidade por Substrato
5.
Molecules ; 27(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36500348

RESUMO

It is well known that vital enzymes in the replication process of the coronavirus are the SARS-CoV-2 PLpro and SARS-CoV-2 3CLpro, both of which are important targets in the search for anti-coronavirus agents. These two enzymes are responsible for cleavage at various polyprotein sites in the SARS-CoV-2 lifecycle. Herein, the dynamics of the polyprotein cleavage sequences for the boundary between non-structural proteins Nsp1 and Nsp2 (CS1) and between Nsp2 and Nsp3 (CS2) in complex with both the papain-like protein PLpro and the main protease 3CLpro were explored using computational methods. The post dynamics analysis reveals that CS1 and CS2 both have greater stability when complexed with PLpro. Of these two, greater stability is observed for the CS1-PLpro complex, while destabilization resulting in loss of CS2 from the PLpro active site is observed for CS2-PLpro, suggesting the rate of exchange by the papain-like protease is faster for CS2 compared to CS1. On the other hand, the 3CLpro main protease also reveals stability for CS1 suggesting that the main protease could also play a potential role in the cleavage at point CS1. However, destabilization occurs early in the simulation for the complex CLpro-CS2 suggesting a poor interaction and non-plausible protease cleavage of the polyprotein at CS2 by the main protease. These findings could be used as a guide in the development and design of potent COVID-19 antiviral inhibitors that mimic the CS1 cleavage site.


Assuntos
COVID-19 , Poliproteínas , Humanos , Poliproteínas/metabolismo , Papaína/química , Peptídeo Hidrolases/metabolismo , SARS-CoV-2/metabolismo
6.
Int J Mol Sci ; 20(4)2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30781619

RESUMO

As a polyene antibiotic of great pharmaceutical significance, pimaricin has been extensively studied to enhance its productivity and effectiveness. In our previous studies, pre-reaction state (PRS) has been validated as one of the significant conformational categories before macrocyclization, and is critical to mutual recognition and catalytic preparation in thioesterase (TE)-catalyzed systems. In our study, molecular dynamics (MD) simulations were conducted on pimaricin TE-polyketide complex and PRS, as well as pre-organization state (POS), a molecular conformation possessing a pivotal intra-molecular hydrogen bond, were detected. Conformational transition between POS and PRS was observed in one of the simulations, and POS was calculated to be energetically more stable than PRS by 4.58 kcal/mol. The structural characteristics of PRS and POS-based hydrogen-bonding, and hydrophobic interactions were uncovered, and additional simulations were carried out to rationalize the functions of several key residues (Q29, M210, and R186). Binding energies, obtained from MM/PBSA calculations, were further decomposed to residues, in order to reveal their roles in product release. Our study advanced a comprehensive understanding of pimaricin TE-catalyzed macrocyclization from the perspectives of conformational change, protein-polyketide recognition, and product release, and provided potential residues for rational modification of pimaricin TE.


Assuntos
Natamicina/metabolismo , Tioléster Hidrolases/química , Tioléster Hidrolases/metabolismo , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação/genética , Conformação Proteica , Especificidade por Substrato , Tioléster Hidrolases/genética
7.
Anal Biochem ; 540-541: 52-63, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29122614

RESUMO

In connection with the intensive investigation of proteases, several methods have been developed for analysis of the substrate specificity. Due to the great number of proteases and the expected target molecules to be analyzed, time- and cost-efficient high-throughput screening (HTS) methods are preferred. Here we describe the development and application of a separation-based HTS-compatible fluorescent protease assay, which is based on the use of recombinant fusion proteins as substrates of proteases. The protein substrates used in this assay consists of N-terminal (hexahistidine and maltose binding protein) fusion tags, cleavage sequences of the tobacco etch virus (TEV) and HIV-1 proteases, and a C-terminal fluorescent protein (mApple or mTurquoise2). The assay is based on the fluorimetric detection of the fluorescent proteins, which are released from the magnetic bead-attached substrates by the proteolytic cleavage. The protease assay has been applied for activity measurements of TEV and HIV-1 proteases to test the suitability of the system for enzyme kinetic measurements, inhibition studies, and determination of pH optimum. We also found that denatured fluorescent proteins can be renatured after SDS-PAGE of denaturing conditions, but showed differences in their renaturation abilities. After in-gel renaturation both substrates and cleavage products can be identified by in-gel UV detection.


Assuntos
Cromatografia Líquida de Alta Pressão , Fluorometria , Protease de HIV/metabolismo , Peptídeo Hidrolases/metabolismo , Eletroforese em Gel de Poliacrilamida , Corantes Fluorescentes/química , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Protease de HIV/genética , HIV-1/enzimologia , Histidina/genética , Histidina/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Cinética , Proteínas Ligantes de Maltose/genética , Proteínas Ligantes de Maltose/metabolismo , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Peptídeo Hidrolases/genética , Potyvirus/enzimologia , Proteólise , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato
8.
Anal Biochem ; 513: 47-53, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27565380

RESUMO

To analyze a variety of protein phosphatases, we developed phosphorylated TandeMBP (P-TandeMBP), in which two different mouse myelin basic protein isoforms were fused in tandem, as a protein phosphatase substrate. P-TandeMBP was prepared efficiently in four steps: (1) phosphorylation of TandeMBP by a protein kinase mixture (Ca(2+)/calmodulin-dependent protein kinase Iδ, casein kinase 1δ, and extracellular signal-regulated kinase 2); (2) precipitation of both P-TandeMBP and protein kinases to remove ATP, Pi, and ADP; (3) acid extraction of P-TandeMBP with HCl to remove protein kinases; and (4) neutralization of the solution that contains P-TandeMBP with Tris. In combination with the malachite green assay, P-TandeMBP can be used to detect protein phosphatase activity without using radioactive materials. Moreover, P-TandeMBP served as an efficient substrate for PPM family phosphatases (PPM1A, PPM1B, PPM1D, PPM1F, PPM1G, PPM1H, PPM1K, and PPM1M) and PPP family phosphatase PP5. Various phosphatase activities were also detected with high sensitivity in gel filtration fractions from mouse brain using P-TandeMBP. These results indicate that P-TandeMBP might be a powerful tool for the detection of protein phosphatase activities.


Assuntos
Fosfoproteínas Fosfatases/química , Proteínas Quinases/química , Animais , Humanos , Camundongos , Fosforilação , Especificidade por Substrato
9.
Arch Insect Biochem Physiol ; 85(1): 13-35, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24338735

RESUMO

Gene fragments encoding the large subunit (LS) of Rubisco (RBCL) were cloned from various species of host plants of phytophagous Lepidoptera and expressed as recombinant proteins in Escherichia coli. Recombinant RBCLs were compared among each other along with casein and native Rubisco as proteinaceous substrates for measuring total midgut protease activities of fourth instar larvae of Helicoverpa armigera feeding on casein, Pieris brassicae feeding on cauliflower, and Antheraea assamensis feeding on Litsea monopetala and Persea bombycina. Cognate rRBCL (from the pertinent host plant species) substrates performed similar to noncognate rRBCL reflecting the conserved nature of encoding genes and the versatile use of these recombinant proteins. Casein and recombinant RBCL generally outperformed native Rubisco as substrates, except where inclusion of a reducing agent in the enzyme assay likely unfolded the plant proteins. Levels of total midgut protease activities detected in A. assamensis larvae feeding on two primary host species were similar, suggesting that the suite(s) of digestive enzymes in these insects could hydrolyze a plant protein efficiently. Protease activities detected in the presence of protease inhibitors and the reducing agent dithiothreitol (DTT) suggested that recombinant RBCL was a suitable protein substrate for studying insect proteases using in vitro enzyme assays and substrate zymography.


Assuntos
Mariposas/enzimologia , Peptídeo Hidrolases/metabolismo , Plantas/enzimologia , Ribulose-Bifosfato Carboxilase/metabolismo , Animais , Ditiotreitol/farmacologia , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Escherichia coli/genética , Proteínas de Insetos/metabolismo , Mariposas/metabolismo , Proteínas Recombinantes/metabolismo , Ribulose-Bifosfato Carboxilase/genética
10.
Int J Biol Macromol ; 263(Pt 1): 130348, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395274

RESUMO

Enzymes of the GNAT (GCN5-relate N-acetyltransferases) superfamily are important regulators of cell growth and development. They are functionally diverse and share low amino acid sequence identity, making functional annotation difficult. In this study, we report the function and structure of a new ribosomal enzyme, Nα-acetyl transferase from Bacillus cereus (RimLBC), a protein that was previously wrongly annotated as an aminoglycosyltransferase. Firstly, extensive comparative amino acid sequence analyses suggested RimLBC belongs to a cluster of proteins mediating acetylation of the ribosomal protein L7/L12. To assess if this was the case, several well established substrates of aminoglycosyltransferases were screened. The results of these studies did not support an aminoglycoside acetylating function for RimLBC. To gain further insight into RimLBC biological role, a series of studies that included MALDI-TOF, isothermal titration calorimetry, NMR, X-ray protein crystallography, and site-directed mutagenesis confirmed RimLBC affinity for Acetyl-CoA and that the ribosomal protein L7/L12 is a substrate of RimLBC. Last, we advance a mechanistic model of RimLBC mode of recognition of its protein substrates. Taken together, our studies confirmed RimLBC as a new ribosomal Nα-acetyltransferase and provide structural and functional insights into substrate recognition by Nα-acetyltransferases and protein acetylation in bacteria.


Assuntos
Acetiltransferases , Bacillus cereus , Acetiltransferases/química , Bacillus cereus/metabolismo , Sequência de Aminoácidos , Acetilcoenzima A/metabolismo , Proteínas Ribossômicas/metabolismo , Cristalografia por Raios X
11.
Viruses ; 15(7)2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37515167

RESUMO

The SARS-CoV-2 main protease (Mpro) is essential for the life cycle of the COVID-19 virus. It cleaves the two polyproteins at 11 positions to generate mature proteins for virion formation. The cleavage site on these polyproteins is known to be Leu-Gln↓(Ser/Ala/Gly). A range of hexapeptides that follow the known sequence for recognition and cleavage was constructed using RDKit libraries and complexed with the crystal structure of Mpro (PDB ID 6XHM) through extensive molecular docking calculations. A subset of 131 of these complexes underwent 20 ns molecular dynamics simulations. The analyses of the trajectories from molecular dynamics included principal component analysis (PCA), and a method to compare PCA plots from separate trajectories was developed in terms of encoding PCA progression during the simulations. The hexapeptides formed stable complexes as expected, with reproducible molecular docking of the substrates given the extensiveness of the procedure. Only Lys-Leu-Gln*** (KLQ***) sequence complexes were studied for molecular dynamics. In this subset of complexes, the PCA analysis identified four classifications of protein motions across these sequences. KLQ*** complexes illustrated the effect of changes in substrate on the active site, with implications for understanding the substrate recognition of Mpro and informing the development of small molecule inhibitors.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Simulação de Acoplamento Molecular , Inibidores de Proteases/química , Cisteína Endopeptidases/metabolismo , Simulação de Dinâmica Molecular , Antivirais/farmacologia
12.
Foods ; 11(22)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36429314

RESUMO

Until now, Streptoverticillium mobaraense transglutaminase (TG) is the only commercialized TG, but limited information is known about its selection tendency on crosslinking sites at the protein level, restricting its application in the food industry. Here, four recombinant Bacillus TGs were stable in a broad range of pH (5.0−9.0) and temperatures (<50 °C), exhibiting their maximum activity at 50−60 °C and pH 6.0−7.0. Among them, TG of B. cereus (BCETG) demonstrated the maximal specific activity of 177 U/mg. A structural analysis indicated that the Ala147-Ala156 region in the substrate tunnel of BCETG played a vital role in catalytic activity. Furthermore, bovine serum albumin, as well as nearly all protein ingredients in soy protein isolate and whey protein, could be cross-linked by BCETG, and the internal crosslinking paths of three protein substrates were elucidated. This study demonstrated Bacillus TGs are a candidate for protein crosslinking and provided their crosslinking mechanism at the protein level for applications in food processing.

13.
Cancers (Basel) ; 14(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35954330

RESUMO

PTEN is the second most highly mutated tumor suppressor in cancer, following only p53. The PTEN protein functions as a phosphatase with lipid- and protein-phosphatase activity. PTEN-lipid-phosphatase activity dephosphorylates PIP3 to form PIP2, and it then antagonizes PI3K and blocks the activation of AKT, while its protein-phosphatase activity dephosphorylates different protein substrates and plays various roles in tumorigenesis. Here, we review the PTEN mutations and protein-phosphatase substrates in tumorigenesis and metastasis. Our purpose is to clarify how PTEN protein phosphatase contributes to its tumor-suppressive functions through PI3K-independent activities.

14.
ACS Catal ; 11(24): 14956-14966, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-35223137

RESUMO

Heparan sulfate 3-O-sulfotransferase (3-OST) transfers a sulfo group to the 3-OH position of a glucosamine saccharide unit to form 3-O-sulfated heparan sulfate. 3-O-sulfation is known to be critically important for bestowing anticoagulant activity and other biological functions of heparan sulfate. Here, we report two ternary crystal structures of 3-OST-5 with PAP (3'-phosphoadenosine 5'-phosphate) and two octasaccharide substrates. We also used 3-OST-5 to synthesize six 3-O-sulfated 8-mers. Results from the structural analysis of the six 3-O-sulfated 8-mers revealed the substrate specificity of 3-OST-5. The enzyme prefers to sulfate a 6-O-sulfo glucosamine saccharide that is surrounded by glucuronic acid over a 6-O-sulfo glucosamine saccharide that is surrounded by 2-O-sulfated iduronic acid. 3-OST-5 modified 8-mers display a broad range of anti-factor Xa activity, depending on the structure of the 8-mer. We also discovered that the substrate specificity of 3-OST-5 is not governed solely by the side chains from amino acid residues in the active site. The conformational flexibility of the 2-O-sulfated iduronic acid in the saccharide substrates also contributes to the substrate specificity. These findings advance our understanding for how to control the biosynthesis of 3-O-sulfated heparan sulfate with desired biological activities.

15.
Viruses ; 13(6)2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205716

RESUMO

Proteolytic enzymes have great significance in medicine and the pharmaceutical industry and are applied in multiple fields of life sciences. Therefore, cost-efficient, reliable and sensitive real-time monitoring methods are highly desirable to measure protease activity. In this paper, we describe the development of a new experimental approach for investigation of proteolytic enzymes. The method was designed by the combination of recombinant fusion protein substrates and bio-layer interferometry (BLI). The protease (PR) of human immunodeficiency virus type 1 (HIV-1) was applied as model enzyme to set up and test the method. The principle of the assay is that the recombinant protein substrates immobilized to the surface of biosensor are specifically cleaved by the PR, and the substrate processing can be followed by measuring change in the layer thickness by optical measurement. We successfully used this method to detect the HIV-1 PR activity in real time, and the initial rate of the signal decrease was found to be proportional to the enzyme activity. Substrates representing wild-type and modified cleavage sites were designed to study HIV-1 PR's specificity, and the BLI-based measurements showed differential cleavage efficiency of the substrates, which was proven by enzyme kinetic measurements. We applied this BLI-based assay to experimentally confirm the existence of extended binding sites at the surface of HIV-1 PR. We found the measurements may be performed using lysates of cells expressing the fusion protein, without primary purification of the substrate. The designed BLI-based protease assay is high-throughput-compatible and enables real-time and small-volume measurements, thus providing a new and versatile approach to study proteolytic enzymes.


Assuntos
Ensaios Enzimáticos/métodos , Protease de HIV/metabolismo , HIV-1/enzimologia , Interferometria/métodos , Técnicas Biossensoriais , Clonagem Molecular , Protease de HIV/genética , Protease de HIV/isolamento & purificação , Humanos , Cinética , Proteólise , Proteínas Recombinantes , Análise de Sequência de DNA , Especificidade por Substrato
16.
Data Brief ; 18: 203-208, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29896511

RESUMO

Data provided here are related to the research article entitled as 'A recombinant fusion protein-based, fluorescent protease assay for high throughput-compatible substrate screening'. Here we describe data related to the investigation of the properties of the His6-MBP-VSQNY↓PIVQ-mApple recombinant protein substrate and its interactions with Ni-NTA magnetic beads, including the dependence of substrate attachment on incubation time and concentration. Data on the folding efficiency and conformational stability of the recombinant substrate assessed by tryptic digestion are also presented. We describe here the changes of fluorescent properties and binding abilities upon treatments commonly used for stopping enzymatic reactions: trichloroacetic acid (TCA) or heat treatment.

17.
Microsc Res Tech ; 81(10): 1095-1104, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30295376

RESUMO

The interplay between protein concentration and (observation) time has been investigated for the adsorption and crystal growth of the bacterial SbpA proteins on hydrophobic fluoride-functionalized SiO2 surfaces. For this purpose, atomic force microscopy (AFM) has been performed in real-time for monitoring protein crystal growth at different protein concentrations. Results reveal that (1) crystal formation occurs at concentrations above 0.08 µM and (2) the compliance of the formed crystal decreases by increasing protein concentration. All the crystal domains observed presented similar lattice parameters (being the mean value for the unit cell: a = 14.8 ± 0.5 nm, b = 14.7 ± 0.5 nm, γ = 90 ° ± 2). Protein film formation is shown to take place from initial nucleation points which originate a gradual and fast extension of the crystalline domains. The Avrami equation describes well the experimental results. Overall, the results suggest that protein-substrate interactions prevail over protein-protein interactions. RESEARCH HIGHLIGHTS: AFM enables to monitor protein crystallization in real-time. AFM high-resolution determines lattice parameters and viscoelastic properties. S-layer crystal growth rate increases with protein concentration. Avrami equation models protein crystal growth.


Assuntos
Proteínas de Bactérias/química , Cristalização , Microscopia de Força Atômica/métodos , Proteínas de Transporte de Monossacarídeos/química , Bacillaceae/metabolismo , Módulo de Elasticidade/fisiologia
18.
Biochimie ; 122: 227-34, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26403495

RESUMO

Proteolysis has a critical role in transmitting information within a biological system and therefore an important element of biology is to determine the subset of proteins amenable to proteolysis. Until recently, it has been thought that proteases cleave native protein substrates only within solvent exposed loops, but recent evidence indicates that cleavage sites located within α-helices can also be cleaved by proteases, despite the conformation of this secondary structure being generally incompatible with binding into an active site of a protease. In this study, we address the mechanism by which a serine endopeptidase, thrombin, recognizes and cleaves a target sequence located within an α-helix. Thrombin was able to cleave a model substrate, protein G, within its α-helix when a suitable cleavage sequence for the enzyme was introduced into this region. However, structural data for the complex revealed that thrombin was not perturbing the structure of the α-helix, thus it was not destabilizing the helix in order to allow it to fit within its active site. This indicated that thrombin was only cleaving within the α-helix when it was in an unfolded state. In support of this, the introduction of destabilizing mutations within the protein increased the efficiency of cleavage by the enzyme. Our data suggest that a folded α-helix cannot be proteolytically cleaved by thrombin, but the species targeted are the unfolded conformations of the native state ensemble.


Assuntos
Proteínas de Bactérias/metabolismo , Estrutura Secundária de Proteína , Desdobramento de Proteína , Serina Proteases/metabolismo , Trombina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Eletroforese em Gel de Poliacrilamida , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Proteólise , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
19.
ACS Biomater Sci Eng ; 2(8): 1211-1223, 2016 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-33465848

RESUMO

The desire for flexible electronics is booming, and development of bioelectronics for health monitoring, internal body procedures, and other biomedical applications is heavily responsible for the growing market. Most current fabrication techniques for flexible bioelectronics, however, do not use materials that optimize both biocompatibility and mechanical properties. This Review explores flexible electronic technologies, fabrication methods, and protein materials for biomedical applications. With favorable sustainability and biocompatibility, naturally derived proteins are an exceptional alternative to synthetic materials currently used. Many proteins can take on various forms, such as fibers, films, and scaffolds. The fabrication of resistors and organic solar cells on silk has already been proven, and optoelectronics made of collagen and keratin have also been explored. The flexibility and biocompatibility of these materials along with their proven performance in electronics make them ideal materials in the advancement of biomedical devices.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa