Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35806035

RESUMO

One of the main goals of recent bioinorganic chemistry studies has been to design and synthesize novel substances to treat human diseases. The promising compounds are metal-based and metal ion binding components such as vanadium-based compounds. The potential anticancer action of vanadium-based compounds is one of area of investigation in this field. In this study, we present five oxovanadium(IV) and dioxovanadium(V) complexes as potential PTP1B inhibitors with anticancer activity against the MCF-7 breast cancer cell line, the triple negative MDA-MB-231 breast cancer cell line, and the human keratinocyte HaCaT cell line. We observed that all tested compounds were effective inhibitors of PTP1B, which correlates with anticancer activity. [VO(dipic)(dmbipy)]·2 H2O (Compound 4) and [VOO(dipic)](2-phepyH)·H2O (Compound 5) possessed the greatest inhibitory effect, with IC50 185.4 ± 9.8 and 167.2 ± 8.0 nM, respectively. To obtain a better understanding of the relationship between the structure of the examined compounds and their activity, we performed a computer simulation of their binding inside the active site of PTP1B. We observed a stronger binding of complexes containing dipicolinic acid with PTP1B. Based on our simulations, we suggested that the studied complexes exert their activity by stabilizing the WPD-loop in an open position and limiting access to the P-loop.


Assuntos
Neoplasias da Mama , Compostos Organometálicos , Simulação por Computador , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Compostos Organometálicos/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Vanádio/química , Vanádio/farmacologia
2.
Biol Pharm Bull ; 44(3): 298-304, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33361652

RESUMO

The white-flowered leaves of Eclipta prostrata L. together with leaves of Scoparia dulcis and Cynodon dactylon are mixedly boiled in water and given to diabetic patients resulting in the significant improvement in the management of diabetes. However, the active constituents from this plant for antidiabetic and anti-obesity properties are remaining unclear. Thus, this study was to discover anti-diabetes and anti-obesity activities through protein tyrosine phosphatases (PTP)1B inhibitory effects. We found that the fatty acids (23, 24) showed potent PTP1B inhibition with IC50 values of 2.14 and 3.21 µM, respectively. Triterpenoid-glycosides (12-15) also exhibited strong to moderate PTP1B inhibitory effects, with IC50 values ranging from 10.88 to 53.35 µM. Additionally, active compounds were investigated for their PTP1B inhibitory mechanism and docking analysis. On the other hand, the anti-inflammatory activity from our study revealed that compounds (1-4, 7, 8, 10) displayed the significant inhibition nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Especially, compound 9 showed the potent inhibitory effects in LPS-induced NO production on RAW264.7 cell. Therefore, further Western blot analysis was performed to identify the inhibitory expression including heme oxygenase-1 (HO-1) and inhibitor of kappaB (IκB) phosphorylation.


Assuntos
Anti-Inflamatórios/farmacologia , Fármacos Antiobesidade/farmacologia , Eclipta , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Animais , Anti-Inflamatórios/química , Fármacos Antiobesidade/química , Sobrevivência Celular/efeitos dos fármacos , Heme Oxigenase-1/antagonistas & inibidores , Heme Oxigenase-1/metabolismo , Hipoglicemiantes/química , Proteínas I-kappa B/antagonistas & inibidores , Proteínas I-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Folhas de Planta , Células RAW 264.7
3.
Nutrients ; 11(11)2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31652764

RESUMO

BACKGROUND: Docosahexaenoic acid (DHA) is an essential polyunsaturated fatty acid compound present in deep water fishes and dietary supplements, with a wide spectrum of potential health benefits, ranging from neurological to anti-inflammatory. METHODS: Due to the fact that DHA is considered a breast cancer risk reducer, we examined the impact of DHA on MCF-7 breast cancer cells' viability and its inhibitory properties on protein tyrosine phosphatase 1B (PTP1B), a pro-oncogenic phosphatase. RESULTS: We found that DHA is able to lower both the enzymatic activity of PTP1B phosphatase and the viability of MCF-7 breast cancer cells. We showed that unsaturated DHA possesses a significantly higher inhibitory activity toward PTP1B in comparison to similar fatty acids. We also performed a computational analysis of DHA binding to PTP1B and discovered that it is able to bind to an allosteric binding site. CONCLUSIONS: Utilizing both a recombinant enzyme and cellular models, we demonstrated that DHA can be considered a potential pharmacological agent for the prevention of breast cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Feminino , Humanos , Células MCF-7 , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética
4.
Mini Rev Med Chem ; 19(7): 591-598, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30968766

RESUMO

2,4-thiazolidinedione (TZD) scaffold is a synthetic versatile scaffold explored by medicinal chemists for the discovery of novel molecules for the target-specific approach to treat or manage number of deadly ailments. PTP 1B is the negative regulator of insulin signaling cascade, and its diminished activity results in abolishment of insulin resistance associated with T2DM. The present review focused on the seven years journey (2012-2018) of TZDs as PTP 1B inhibitors with the insight into the amendments in the structural framework of TZD scaffold in order to optimize/design potential PTP 1B inhibitors. We have investigated the synthesized molecules based on TZD scaffold with potential activity profile against PTP 1B. Based on the SAR studies, the combined essential pharmacophoric features of selective and potent TZDs have been mapped and presented herewith for further design and synthesis of novel inhibitors of PTP 1B. Compound 46 bearing TZD scaffold with N-methyl benzoic acid and 5-(3-methoxy-4-phenethoxy) benzylidene exhibited the most potent activity (IC50 1.1 µM). Imidazolidine-2,4-dione, isosteric analogue of TZD, substituted with 1-(2,4-dichlorobenzyl)-5-(3-(2,4- dichlorobenzyloxy)benzylidene) (Compound 15) also endowed with very good PTP inhibitory activity profile (IC50 0.57 µM). It is noteworthy that Z-configuration is essential in structural framework around the double bond of arylidene for the designing of bi-dentate ligands with optimum activity.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Insulina/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Tiazolidinedionas/química , Tiazolidinedionas/farmacologia , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Descoberta de Drogas , Humanos , Resistência à Insulina , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
Drug Des Devel Ther ; 12: 4139-4147, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30584278

RESUMO

BACKGROUND: The protein tyrosine phosphatases PTP1B and SHP2 are promising drug targets in treatment design for breast cancer. Searching for specific inhibitors of their activity has recently become the challenge of many studies. Previous work has indicated that the promising PTP inhibitors may be small compounds that are able to bind and interact with amino residues from the binding site. PURPOSE: The main goal of our study was to synthesize and analyze the effect of selected small peptide inhibitors on oncogenic PTP1B and SHP2 enzymatic activity and viability of MCF7 breast cancer cells. We also performed computational analysis of peptides binding with allosteric sites of PTP1B and SHP2 phosphatases. METHODS: We measured the inhibitory activity of compounds utilizing recombinant enzymes and MCF7 cell line. Computational analysis involved docking studies of binding conformation and interactions of inhibitors with allosteric sites of phosphatases. RESULTS: The results showed that the tested compounds decrease the enzymatic activity of phosphatases PTP1B and SHP2 with IC50 values in micromolar ranges. We observed higher inhibitory activity of dipeptides than tripeptides. Phe-Asp was the most effective against SHP2 enzymatic activity, with IC50=5.2±0.4 µM. Micromolar concentrations of tested dipeptides also decreased the viability of MCF7 breast cancer cells, with higher inhibitory activity observed for the Phe-Asp peptide. Moreover, the peptides tested were able to bind and interact with allosteric sites of PTP1B and SHP2 phosphatases. CONCLUSION: Our research showed that small peptide compounds can be considered for the design of specific inhibitors of oncogenic protein tyrosine phosphatases.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular , Peptídeos/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Regulação Alostérica , Antineoplásicos/síntese química , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Feminino , Humanos , Concentração Inibidora 50 , Células MCF-7 , Terapia de Alvo Molecular , Peptídeos/síntese química , Conformação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/química , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
6.
Curr Comput Aided Drug Des ; 14(4): 349-362, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29701158

RESUMO

BACKGROUND: 1,6-Dihydropyrimidine exerts notable pharmacological efficiency and emerged as integral backbones for treatment of type-II diabetes mellitus. To optimize the in vitro and In-silico study we carried out on substituted 1,6-Dihydropyrimidine. The objective of the present study is to evaluate the binding interaction of 1,6-Dihydropyrimidine compounds with Protein Tyrosine Phosphatase (PTP1B) enzyme and also check ADME/T properties of best scored compounds. METHODS: The In-silico study (docking) was carried out through target Protein Tyrosine Phosphatase (PTP1B) retrieved from protein data bank having PDB ID: 2QBS and the anti diabetic activity of the test compounds was tested against protein tyrosine phosphatase (PTP1B) enzyme by using Calbiochem ® PTP1B colorimetric assay kit. RESULTS AND CONCLUSION: The results of molecular Docking revealed that, with respect to their free binding energy 6A, 3K, 1B and 2K compounds have the lowest binding energy compared to positive control. In-silico ADME/T predictions revealed that all best scored compounds had good absorption as well as solubility characteristics through substrate binding sites. After conducting the in vitro studies it was observed that compounds having -3NO2, 3,4-OCH3, 4-NO2 and 4-Cl substitution on phenyl ring in the basic moiety shows good anti diabetic activity The present computational approach provided valuable information on the binding process of 1,6-Dihydropyrimidine compounds to the binding site of PTP-1B. These compounds may serve as potential lead compound for developing new 1,6- Dihyropyrimidine as a promising anti diabetic agent.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Pirimidinas/química , Pirimidinas/farmacologia , Desenho Assistido por Computador , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/enzimologia , Desenho de Fármacos , Humanos , Ligantes , Simulação de Acoplamento Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo
7.
Food Sci Biotechnol ; 26(2): 495-499, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30263570

RESUMO

The aim of this study was to determine whether Caulerpa lentillifea extract (CLE) can protect pancreatic beta cells and enhance insulin signaling in adipocytes. We measured the protein tyrosine phosphatase (PTP)-1B inhibitory effect of CLE using an in-vitro enzyme assay. Proteins involved in the pancreatic beta-cell death and insulin signaling were measured by western blotting. Oil-red O staining was used to measure the insulin mimetic effect of CLE. CLE strongly inhibited the PTP1B enzyme. In rat insulinoma (RIN)-m5F cells, CLE decreased the activation of extracellular regulated kinase (ERK)-1/2, P38 mitogen activated protein kinase (P38), c-Jun NH2-terminal kinase (JNK), and nuclear factor kappa-light-chain-enhancer of the activated B cells (NF-κB). Furthermore, CLE showed insulin-mimetic effect and enhanced the activation of insulin-signaling molecules including IRS, AKT, PI3K, and GSK-3ß in 3T3-L1 adipocytes. Our results suggested that CLE-inhibited PTP1B, protected the pancreatic beta cells, and enhanced insulin sensitization in the adipocytes.

8.
Trends Neurosci ; 38(8): 462-5, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26166619

RESUMO

Chronic stress can lead to the development of anxiety and mood disorders. Thus, novel therapies for preventing adverse effects of stress are vitally important. Recently, the protein tyrosine phosphatase PTP1B was identified as a novel regulator of stress-induced anxiety. This opens up exciting opportunities to exploit PTP1B inhibitors as anxiolytics.


Assuntos
Tonsila do Cerebelo/metabolismo , Ansiedade/metabolismo , Endocanabinoides/metabolismo , Transdução de Sinais , Estresse Psicológico/metabolismo , Animais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa