Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biometrics ; 80(2)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38819307

RESUMO

To infer the treatment effect for a single treated unit using panel data, synthetic control (SC) methods construct a linear combination of control units' outcomes that mimics the treated unit's pre-treatment outcome trajectory. This linear combination is subsequently used to impute the counterfactual outcomes of the treated unit had it not been treated in the post-treatment period, and used to estimate the treatment effect. Existing SC methods rely on correctly modeling certain aspects of the counterfactual outcome generating mechanism and may require near-perfect matching of the pre-treatment trajectory. Inspired by proximal causal inference, we obtain two novel nonparametric identifying formulas for the average treatment effect for the treated unit: one is based on weighting, and the other combines models for the counterfactual outcome and the weighting function. We introduce the concept of covariate shift to SCs to obtain these identification results conditional on the treatment assignment. We also develop two treatment effect estimators based on these two formulas and generalized method of moments. One new estimator is doubly robust: it is consistent and asymptotically normal if at least one of the outcome and weighting models is correctly specified. We demonstrate the performance of the methods via simulations and apply them to evaluate the effectiveness of a pneumococcal conjugate vaccine on the risk of all-cause pneumonia in Brazil.


Assuntos
Simulação por Computador , Modelos Estatísticos , Vacinas Pneumocócicas , Humanos , Vacinas Pneumocócicas/uso terapêutico , Vacinas Pneumocócicas/administração & dosagem , Resultado do Tratamento , Biometria/métodos , Interpretação Estatística de Dados
2.
Stat Probab Lett ; 1982023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38405420

RESUMO

We consider identification and inference about a counterfactual outcome mean when there is unmeasured confounding using tools from proximal causal inference. Proximal causal inference requires existence of solutions to at least one of two integral equations. We motivate the existence of solutions to the integral equations from proximal causal inference by demonstrating that, assuming the existence of a solution to one of the integral equations, n-estimability of a mean functional of that solution requires the existence of a solution to the other integral equation. Solutions to the integral equations may not be unique, which complicates estimation and inference. We construct a consistent estimator for the solution set for one of the integral equations and then adapt the theory of extremum estimators to find from the estimated set a consistent estimator for a uniquely defined solution. A debiased estimator is shown to be root-n consistent, regular, and semiparametrically locally efficient under additional regularity conditions.

3.
ArXiv ; 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35350548

RESUMO

The test-negative design (TND) has become a standard approach to evaluate vaccine effectiveness against the risk of acquiring infectious diseases in real-world settings, such as Influenza, Rotavirus, Dengue fever, and more recently COVID-19. In a TND study, individuals who experience symptoms and seek care are recruited and tested for the infectious disease which defines cases and controls. Despite TND's potential to reduce unobserved differences in healthcare seeking behavior (HSB) between vaccinated and unvaccinated subjects, it remains subject to various potential biases. First, residual confounding bias may remain due to unobserved HSB, occupation as healthcare worker, or previous infection history. Second, because selection into the TND sample is a common consequence of infection and HSB, collider stratification bias may exist when conditioning the analysis on testing, which further induces confounding by latent HSB. In this paper, we present a novel approach to identify and estimate vaccine effectiveness in the target population by carefully leveraging a pair of negative control exposure and outcome variables to account for potential hidden bias in TND studies. We illustrate our proposed method with extensive simulation and an application to study COVID-19 vaccine effectiveness using data from the University of Michigan Health System.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa