Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Public Health ; 7: 139, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214559

RESUMO

In Austria, all laboratories are legally obligated to forward human and food/environmental L. monocytogenes isolates to the National Reference Laboratory/Center (NRL) for Listeria. Two invasive human isolates of L. monocytogenes serotype 1/2a of the same pulsed-field gel electrophoresis (PFGE) pattern, previously unknown in Austria, were cultured for the first time in January 2016. Five further human isolates, obtained from patients with invasive listeriosis between April 2016 and September 2017, showed this PFGE pattern. In Austria the NRL started to use whole-genome sequencing (WGS) based typing in 2016, using a core genome MLST (cgMLST) scheme developed by Ruppitsch et al. 2015, which contains 1701 target genes. Sequence data are submitted to a publicly available nomenclature server (Ridom GmbH, Münster, Germany) for allocation of the core genome complex type (CT). The seven invasive human isolates differed from each other with zero to two alleles and were allocated to CT1234 (declared as outbreak strain). Among the Austrian strain collection of about 6,000 cgMLST-characterized non-human isolates (i.e., food/environmental isolates) 90 isolates shared CT1234. Out of these, 83 isolates were traced back to one meat processing-company. They differed from the outbreak strain by up to seven alleles; one isolate originated from the company's industrial slicer. The remaining seven CT1234-isolates were obtained from food products of four other companies (five fish-products, one ready-to-eat dumpling and one deer-meat) and differed from the outbreak strain by six to eleven alleles. The outbreak described shows the considerable potential of WGS to identify the source of a listeriosis outbreak. Compared to PFGE analysis, WGS-based typing has higher discriminatory power, yields better data accuracy, and allows higher laboratory through-put at lower cost. Utilization of WGS-based typing results of human and food/ environmental L. monocytogenes isolates by appropriate public health analysts and epidemiologists is indispensable to support a successful outbreak investigation.

2.
Front Public Health ; 5: 347, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29326921

RESUMO

Whole-genome sequencing (WGS) has become an essential tool for public health surveillance and molecular epidemiology of infectious diseases and antimicrobial drug resistance. It provides precise geographical delineation of spread and enables incidence monitoring of pathogens at genotype level. Coupled with epidemiological and environmental investigations, it delivers ultimate resolution for tracing sources of epidemic infections. To ascertain the level of implementation of WGS-based typing for national public health surveillance and investigation of prioritized diseases in the European Union (EU)/European Economic Area (EEA), two surveys were conducted in 2015 and 2016. The surveys were designed to determine the national public health reference laboratories' access to WGS and operational WGS-based typing capacity for national surveillance of selected foodborne pathogens, antimicrobial-resistant pathogens, and vaccine-preventable diseases identified as priorities for European genomic surveillance. Twenty-eight and twenty-nine out of the 30 EU/EEA countries participated in the survey in 2015 and 2016, respectively. National public health reference laboratories in 22 and 25 countries had access to WGS-based typing for public health applications in 2015 and 2016, respectively. Reported reasons for limited or no access were lack of funding, staff, and expertise. Illumina technology was the most frequently used followed by Ion Torrent technology. The access to bioinformatics expertise and competence for routine WGS data analysis was limited. By mid-2016, half of the EU/EEA countries were using WGS analysis either as first- or second-line typing method for surveillance of the pathogens and antibiotic resistance issues identified as EU priorities. The sampling frame as well as bioinformatics analysis varied by pathogen/resistance issue and country. Core genome multilocus allelic profiling, also called cgMLST, was the most frequently used annotation approach for typing bacterial genomes suggesting potential bioinformatics pipeline compatibility. Further capacity development for WGS-based typing is ongoing in many countries and upon consolidation and harmonization of methods should enable pan-EU data exchange for genomic surveillance in the medium-term subject to the development of suitable data management systems and appropriate agreements for data sharing.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa