RESUMO
Endotoxin contamination in magnetic resonance imaging (MRI) contrast agents can pose a risk to patient safety causing immune reactions. Strict endotoxin limits are enforced for implants and catheters inserted into the body, but there are not clear rules for MRI contrast agents. Here, we investigated the efficacy of chromogenic LAL assay test for screening endotoxin activity in MRI contrast media manufactured in Malaysia. The powdered agent was dissolved in water for injection and endotoxin levels were measured. The coefficient of efficiency value for the standard curve, exhibiting r 2 ≥ 0.98, along with the absence of interfering substances and endotoxin activity below the regulatory threshold of 0.5 EU/mL, support the conclusion that the agent is unlikely to be pyrogenic or induce pyrogenic effect.
RESUMO
The rabbit pyrogen test (RPT) was the benchmark for pyrogenicity testing, but scientific advancements have provided innovative and humane methods, such as the in vitro monocyte-activation test (MAT). However, transitioning from the RPT to the MAT has been challenging. The European Directorate for the Quality of Medicines & HealthCare, the Council of Europe, and the European Partnership for Alternative Approaches to Animal Testing jointly hosted an international conference entitled "The future of pyrogenicity testing: phasing out the rabbit pyrogen test". The conference aimed to show how the European Pharmacopoeia intends to remove the RPT from its texts by 2026, facilitate the use of MAT, and identify gaps in the suppression of RPT. The events contributed to a better understanding of the barriers to RPT replacement and acceptance of in vitro alternatives. Participants comprised stakeholders from Asia, Europe, and North America, including vaccine developers, contract laboratories, and regulators. Participants shared their replacement strategies and experiences with MAT implementation. They emphasised the need for continued cooperation between stakeholders and stressed the importance of international harmonisation of regulatory requirements to help accelerate MAT acceptance outside Europe. Despite the challenges, the willingness to eliminate the unnecessary use of RPT was common across all participants.
Assuntos
Vacinas Meningocócicas , Pirogênios , Animais , Coelhos , Humanos , Monócitos , Laboratórios , Europa (Continente) , Alternativas aos Testes com AnimaisRESUMO
The Bacterial Endotoxins Test (BET) is a critical safety test that is used to detect bacterial endotoxins, which are the major contributor to fever-inducing contamination risks known as pyrogens. All parenteral therapies, including every lot of injected drugs, vaccines, medical devices, must be tested for pyrogens to ensure patient safety. Bacterial endotoxins test methods were developed as a highly sensitive detection method for bacterial endotoxins, after the discovery of a clotting cascade in horseshoe crab blood. However, horseshoe crab species are limited to some inshore coastal habitats along the Atlantic coast of the USA and others throughout Asia. Fully functional horseshoe crab clotting factors can be manufactured via recombinant protein production, and several BET methods featuring recombinant horseshoe crab proteins have now been developed for commercial use. Recombinant Bacterial Endotoxins Test (rBET) methods based on the use of recombinant Factor C (rFC) were established in the European Pharmacopoeia - however, these methods have not yet been granted compendial status in the United States Pharmacopoeia (USP). In order to facilitate dialogue between stakeholders, the Physicians Committee for Responsible Medicine hosted two virtual roundtable discussions on the perceived barriers to the use of rBET methods for US FDA requirements. Stakeholders agreed that multiple rFC-based methods have been demonstrated to have suitable analytical performance, as described in ICH Q2 on the Validation of Analytical Procedures and USP <1225> on the Validation of Compendial Procedures. United States Pharmacopoeia compendial inclusion of the rFC-based and other rBET methods was favoured, in order to reduce the additional burdens created by a lack of global harmonisation on BET testing requirements.
Assuntos
Pirogênios , Vacinas , Animais , Humanos , Segurança de Equipamentos , Endotoxinas/metabolismo , Caranguejos Ferradura/metabolismo , Vacinas/metabolismo , Teste do Limulus/métodosRESUMO
To develop and validate a novel reporter gene assay (RGA) to detect pyrogen, HL60 cells were transfected with an NF-κB-RE plasmid containing the luciferase gene to generate stably transfected cells. Through stimulation with pyrogens, a signal was obtained that was dose-dependent with the concentration of pyrogen. Using the cells, we selected and optimized the parameters and found that the optimal conditions may be with 5 × 105/ml cells that were seeded and incubated with pyrogen for 3-6 h in IMDM medium with 2% FBS. Based on the optimized parameters, a novel RGA was developed. Then, the RGA was validated and the results showed that the linearity was greater than 0.95 between the signals and the concentrations of pyrogen, the recoveries of pyrogen were all between 50% and 200%, and the precision was less than 35%. There was no difference in the sensitivity, specificity or reproducibility between RGA and BET, and the results from RGA and MAT and RPT were consistent. Furthermore, the RGA can be applied to the pyrogen detection of monoclonal antibodies. Due to its advantages including a fast detection speed, high sensitivity, convenient mode of operation and wide-pyrogen spectrum detection, RGA is promising as a supplementary method to detect pyrogen.
Assuntos
Bioensaio , Pirogênios , Bioensaio/métodos , Genes Reporter , Luciferases/genética , Reprodutibilidade dos TestesRESUMO
The rabbit pyrogen test (RPT) is a safety test conducted as a part of mandatory requirements of regulatory agencies. RPT is currently performed for routine quality control (QC) by manufacturers and for national lot release of biological products, such as plasma-derived products. However, RPT involves the use of many rabbits, counter to the international efforts to minimize the use of animals in research. Furthermore, pyrogen amount cannot be discerned from the test results and the results may be considerably affected by various factors. Therefore, a need exists for substituting RPT with in vitro assays. As a viable alternative to RPT, we here established a rabbit monocyte activation test (RMAT) based on the human MAT in the European Pharmacopoeia. RMAT uses rabbit peripheral blood mononuclear cells as the source of monocytes instead of live animals. The test detected endotoxin, lipoteichoic acid, peptidoglycan, and zymosan with high sensitivity, showing high correlation with the in vivo RPT results. The results of RMAT and RPT testing of non-pyrogenic plasma-derived products were also consistent. Furthermore, RMAT showed satisfactory recovery rates in an interference test with product samples and spiked-in pyrogens. We conclude that RMAT could replace the existing RPT for routine QC.
Assuntos
Alternativas aos Testes com Animais , Bioensaio , Monócitos , Pirogênios , Animais , Endotoxinas , Leucócitos Mononucleares , Lipopolissacarídeos , Peptidoglicano , Pirogênios/análise , Controle de Qualidade , Coelhos , Ácidos Teicoicos , ZimosanRESUMO
Febrile-range hyperthermia worsens and hypothermia mitigates lung injury, and temperature dependence of lung injury is blunted by inhibitors of p38 mitogen-activated protein kinase (MAPK). Of the two predominant p38 isoforms, p38α is proinflammatory and p38ß is cytoprotective. Here, we analyzed the temperature dependence of p38 MAPK activation, substrate interaction, and tertiary structure. Incubating HeLa cells at 39.5 °C stimulated modest p38 activation, but did not alter tumor necrosis factor-α (TNFα)-induced p38 activation. In in vitro kinase assays containing activated p38α and MAPK-activated kinase-2 (MK2), MK2 phosphorylation was 14.5-fold greater at 39.5 °C than at 33 °C. By comparison, we observed only 3.1- and 1.9-fold differences for activating transcription factor-2 (ATF2) and signal transducer and activator of transcription-1α (STAT1α) and a 7.7-fold difference for p38ß phosphorylation of MK2. The temperature dependence of p38α:substrate binding affinity, as measured by surface plasmon resonance, paralleled substrate phosphorylation. Hydrogen-deuterium exchange MS (HDX-MS) of p38α performed at 33, 37, and 39.5 °C indicated temperature-dependent conformational changes in an α helix near the common docking and glutamate:aspartate substrate-binding domains at the known binding site for MK2. In contrast, HDX-MS analysis of p38ß did not detect significant temperature-dependent conformational changes in this region. We observed no conformational changes in the catalytic domain of either isoform and no corresponding temperature dependence in the C-terminal p38α-interacting region of MK2. Because MK2 participates in the pathogenesis of lung injury, the observed changes in the structure and function of proinflammatory p38α may contribute to the temperature dependence of acute lung injury.
Assuntos
Proteína Quinase 14 Ativada por Mitógeno/química , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Temperatura , Células Cultivadas , Humanos , Fosforilação , Ligação Proteica , Conformação Proteica , Especificidade por Substrato , Ressonância de Plasmônio de SuperfícieRESUMO
Pyrogens are components derived from microorganisms that induce complex inflammatory responses. Current approaches to detect pyrogens are complex and difficult to replicate, thus there is a need for new methods to detect pyrogens. We successfully constructed a pyrogen-sensitive cell model by overexpressing Toll-like receptor (TLR)2, TLR4, MD2, and CD14 in HEK293 cells. Since the cytokine IL-6 is specifically released upon stimulation of the TLR2 and TLR4 signaling pathways in response to pyrogen stimulation, we used it as a read out for our assay. Our results show that IL-6 is released in response to trace amounts of pyrogens in our cell model. Pyrogen incubation times and concentrations were explored to determine the sensitivity of our cell model, and was found to be sensitive to 0.05 EU/ml of LPS and 0.05 ug/ml of LTA after stimulation for 5 hr. Our TLR overexpressing cell model, with IL-6 as readout, could be a new method for in vitro testing of pyrogens and applicable for evaluating the safety of drugs.
Assuntos
Modelos Biológicos , Pirogênios , Receptores Toll-Like , Bioensaio , Endotoxinas/análise , Endotoxinas/farmacologia , Células HEK293 , Humanos , Interleucina-6/análise , Interleucina-6/metabolismo , Lipopolissacarídeos/análise , Lipopolissacarídeos/farmacologia , Pirogênios/análise , Pirogênios/farmacologia , Sensibilidade e Especificidade , Transdução de Sinais/efeitos dos fármacos , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismoRESUMO
A pyrogen test is crucial for evaluating the safety of drugs and medical equipment, especially those involved in injections. As existing pyrogen tests, including the rabbit pyrogen test, the limulus amoebocyte lysate (LAL) test and the monocyte activation test have limitations, development of new models for pyrogen testing is necessary. Here we develop a sensitive cell model for pyrogen test based on the lipopolysaccharides (LPS) signal pathway. TLR4, MD2, and CD14 play key roles in the LPS-mediated pyrogen reaction. We established a new TLR4/MD2/CD14-specific overexpressing knock-in cell model using the CRISPR/CAS9 technology and homologous recombination to detect LPS. Stimulation of our TLR4/CD14/MD2 knock-in cell line model with LPS leads to the release of the cytokines IL-6 and TNF-alpha, with a detection limit of 0.005 EU/ml, which is greatly lower than the lower limit of 0.015 EU/ml detected by the Tachypleus amebocyte lysate (TAL) assay.
Assuntos
Técnicas Biossensoriais , Técnicas de Introdução de Genes , Lipopolissacarídeos/análise , Modelos Biológicos , Sistemas CRISPR-Cas , Células HEK293 , Humanos , Receptores de Lipopolissacarídeos/biossíntese , Receptores de Lipopolissacarídeos/genética , Antígeno 96 de Linfócito/biossíntese , Antígeno 96 de Linfócito/genética , Receptor 4 Toll-Like/biossíntese , Receptor 4 Toll-Like/genéticaRESUMO
A sudden, unprecedented failure of USP rabbit pyrogen tests for multiple 10% IGIV-C lots prompted a thorough investigation of the root cause for this phenomenon. All microbe-related testing, including Limulus amebocyte lysate test for endotoxin, proved negative, and no deficiencies were discovered in manufacturing. Plasma pool composition analysis revealed that a single plasma donor ("Donor Xâ³) was common to all pyrogenic IGIV-C lots and that as little as one unit of "Donor Xâ³ plasma (in a pool of â¼4500 units) was sufficient to cause IGIV-C lot failure in the USP rabbit pyrogen test. Whole plasma and Protein A-purified IgG from "Donor Xâ³ caused a temperature increase in rabbits; however, all IgG samples tested pyrogen-negative in two in vitro cell-based pyrogen tests. Flow cytometry showed that "Donor Xâ³ IgG bound strongly to rabbit white blood cells (WBC) but minimally to human WBC. Exclusion of "Donor Xâ³ plasma from manufacturing marked the end of IGIV-C lots registering positive in the USP rabbit pyrogen test. This failure of multiple 10% IGIV-C lots to pass the USP rabbit pyrogen test was demonstrated to be due to the highly unusual anti-rabbit-leukocyte specificity of IgG from a single donor.
Assuntos
Doadores de Sangue , Imunoglobulina G/imunologia , Imunoglobulinas Intravenosas/imunologia , Leucócitos/imunologia , Pirogênios/imunologia , Animais , Contaminação de Medicamentos/prevenção & controle , Endotoxinas/análise , Endotoxinas/imunologia , Humanos , Teste do Limulus/métodos , CoelhosRESUMO
Pyrogens are a class of heterogeneous compounds that cause fever and induce inflammatory responses in the host. Lipopolysaccharides (LPS, also known as endotoxin) is the major pyrogen in the category of drug quality control. Accurate and fast quantification of pyrogens is crucial for drug safety. In the present study, we aimed to develop a sensitive and reliable method for rapid detection of pyrogens using luciferase reporter assay. Stable human A549 luciferase reporter cells were constructed under the control of a NF-κB-responsive element or IFN-ß promoter. Our results showed that several monoclonal stable cell clones responded to 0.1 EU/ml endotoxin, which was less than human fever threshold at 0.3 EU/ml of endotoxin. Further, compared with original A549â¯cells, TLR4 expression on the reporter cells were significantly increased after low amount LPS stimulation. In addition, reporter cells also responded to zymosan stimulation. Therefore, these results indicated that the stable luciferase reporter cells respond to endotoxin and non-endotoxin pyrogens and have the potential to further develop into a sensitive and fast pyrogen evaluation method.
Assuntos
Bioensaio , Células Clonais/metabolismo , Genes Reporter/genética , Pirogênios/análise , Humanos , Luciferases/genética , Luciferases/metabolismo , Células Tumorais CultivadasRESUMO
Lipoteichoic acid (LTA) is a non-endotoxin pyrogen of a great importance in the pathogenesis of sepsis. The Rabbit Pyrogen Test (RPT) is able to detect all types of pyrogens but involves the use of animals. The Bacterial Endotoxin Test (BET) cannot fully replace the RPT because it only detects endotoxins. The Monocyte Activation Test (MAT) is sensitive to all types of pyrogens and it is based on the same biological mechanism that is responsible for the fever reaction in humans. Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM) has recommended its use for other pyrogens than endotoxin because its equivalence to RPT can be demonstrated. The aim of this study was to evaluate the pyrogenic responses of the RPT and MAT that was induced by LTA. Different LTA concentrations were assayed by the MAT in parallel to the RPT. The results showed that the MAT was more sensitive than the RPT, demonstrating that the MAT detected LTA. This result may contribute to the acceptance of this test by the Brazilian regulatory agencies as a replacement for the animals used in the RPT.
Assuntos
Lipopolissacarídeos/efeitos adversos , Monócitos/efeitos dos fármacos , Pirogênios/efeitos adversos , Ácidos Teicoicos/efeitos adversos , Animais , Bioensaio/métodos , Endotoxinas/efeitos adversos , CoelhosRESUMO
OBJECTIVE: The purpose of this study was to evaluate the quality of compounded 17-hydroxyprogesterone caproate (17-OHPC). STUDY DESIGN: Compounded 17-OHPC that was obtained from 15 compounding pharmacies throughout the United States was analyzed for potency, impurities, sterility, and pyrogen status. RESULTS: Eighteen samples were supplied by 15 compounding pharmacies. The concentration of 17-OHPC in all samples was within the specification limits, and all tested samples passed sterility and pyrogen testing. Only 1 of 18 samples was out of specification limits for impurities. CONCLUSION: Compounded 17-OHPC that was obtained from 15 pharmacies throughout the United States did not raise safety concerns when assessed for potency, sterility, pyrogen status, or impurities.
Assuntos
Composição de Medicamentos/normas , Hidroxiprogesteronas/normas , Caproato de 17 alfa-Hidroxiprogesterona , Humanos , Hidroxiprogesteronas/análise , Pirogênios , Garantia da Qualidade dos Cuidados de Saúde , Controle de Qualidade , Estados UnidosRESUMO
As injectable therapeutics, snake antivenoms must meet specifications for endotoxin content. The Limulus amebocyte lysate (LAL) test was used to evaluate the endotoxin content in several commercially available antivenoms released for clinical use. It was found that some products have endotoxin concentrations higher than the accepted limit for these contaminants. These results emphasize the need to include endotoxin determination as part of the routine evaluation of antivenoms by manufacturers and regulatory agencies.
RESUMO
The use of pyrogen tests to assess the risk of endotoxin in biological products has increased recently due to concerns of some regulatory authorities about products exhibiting low endotoxin recovery (LER). Manufacturers increasingly seek to reduce the use of animals unless essential to assure patient safety. The current study compares the ability of the monocyte activation test (MAT) and the bacterial endotoxin test (BET) to the rabbit pyrogen test (RPT) to detect endotoxin spikes in samples of products shown to exhibit LER. Product samples or water were spiked with endotoxin and held for three days or tested immediately in the BET, the RPT, and two variations of the MAT at the same time. Results show high sensitivity to endotoxin of both the BET and MAT, and much lower sensitivity of the RPT, indicating that much higher levels of reference standard endotoxin are required to induce pyrogenicity in the RPT than the 5 endotoxin units (EU) per kg common threshold. The results of the BET and MAT correlated well for the detection of endotoxin spike in water. We also show that LER (masking of endotoxin) found in the BET is also seen in the MAT and RPT, suggesting that the products themselves elicit a biological inactivation of spiked endotoxin over time, thereby rendering it less or non-pyrogenic. We conclude that the non-animal MAT option is a suitable replacement for the RPT to measure spiked endotoxin in biopharmaceuticals.
Assuntos
Endotoxinas , Pirogênios , Animais , Coelhos , Endotoxinas/toxicidade , Pirogênios/toxicidade , Alternativas aos Testes com Animais , Monócitos , Bioensaio/métodosRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Bupleuri Radix, the dried roots of Bupleurum chinense DC. (BC) or Bupleurum scorzonerifolium Willd., is one of the most frequently used traditional Chinese medicines. As the species in Xiao-Chai-Hu decoction, BC has been used as an antipyretic medicine with a long history. However, its antipyretic characteristics and underlying mechanism(s) remain unclear. AIM OF THE STUDY: To elucidate the antipyretic characteristics and mechanism(s) of BC used in its traditional way. METHODS: The water extract of BC (BCE) was prepared according to the traditional decocting mode. Murine fever and endotoxemia models were induced by intravenous injection of lipopolysaccharide (LPS). In vitro complement activation assay and the levels of TNF-α, IL-6, IL-1ß, and C5a were determined by ELISA. RESULTS: BCE exerted a confirmed but mild antipyretic effect on LPS-induced fever of rat. In vitro, it significantly lowered LPS-elevated TNF-α in the supernatant of rat complete blood cells and THP-1 cells, but failed to decrease IL-6 and IL-1ß. In murine endotoxemia models, BCE markedly decreased serum TNF-α, but had no impact on IL-6 and IL-1ß. BCE also restricted complement activation in vitro and in vivo. Nevertheless, the mixture of saikosaponin A and D could not suppress supernatant TNF-α of monocytes and serum TNF-α of endotoxemia mice. CONCLUSIONS: The present study dissects the peripheral mechanism for the antipyretic effect of BC used in the traditional way. Our findings indicate that BCE directly suppresses monocyte-produced TNF-α, thus decreasing circulating TNF-α, which may be responsible for its mild but confirmed antipyretic action.
Assuntos
Antipiréticos , Bupleurum , Endotoxemia , Ratos , Camundongos , Animais , Antipiréticos/farmacologia , Antipiréticos/uso terapêutico , Lipopolissacarídeos/toxicidade , Fator de Necrose Tumoral alfa , Interleucina-6 , Febre/induzido quimicamente , Febre/tratamento farmacológicoRESUMO
Background: Haenyeo is a woman who has the job of collecting seafood in the Jeju Sea at an average temperature of 13°C-14°C. The purpose of this study was to examine the cold acclimatization and occupational characteristics of Haenyeo through biomarkers such as orexin and irisin related to heat generation in the body. Methods: Twenty-one Haenyeo and 25 people with similar age, body type, and body mass index were selected as the control group (Control G). In the cold exposure experiment, a climate chamber was set to 5°C and both feet were immersed in a 15°C water tank for 30 minutes. Tympanic temperature (Tty) and skin temperature (Tsk) were measured, and the mean body temperature (mTb) was calculated. Blood samples were collected before and immediately after the examination. Orexin and irisin levels were analyzed. Results: Orexin levels were elevated after cold stimulation from 12.17 ± 4.44 to 12.95 ± 4.53 ng/mL (Haenyeo group [Haenyeo G], p < 0.01) and 10.37 ± 3.84 to 11.25 ± 4.02 ng/mL (Control G, p < 0.001). Irisin levels were elevated after cold stimulation from 4.83 ± 2.28 to 5.36 ± 2.23 ng/mL (Haenyeo G, p < 0.001) and 3.73 ± 1.59 to 4.18 ± 2.04 ng/mL (Control G, p < 0.001). The difference between Haenyeo G and Control G values in orexin and irisin appears not only in pre-exposure but also in post-exposure (p < 0.05). Conclusions: Our experimental results suggest that Haenyeo G were relatively superior in cold tolerance to Control G under cold exposure conditions. Haenyeo's cold acclimatization is due to the basic differences in pyrogens regarding body temperature control such as orexin and irisin. This means that Haenyeo are advantageous for cold survival.
RESUMO
The monocyte activation test (MAT) is used to detect pyrogens in pharmaceutical products and serves as replacement of the rabbit pyrogen test. The peripheral blood mononuclear cell-based MAT assay requires the addition of serum to the medium and is performed with either fetal bovine serum (FBS) or human serum (HS). Since the capacity to detect non-endotoxin pyrogens (NEPs) in a sensitive manner is an important strength of MAT compared to the bacterial endotoxin test, the performance of the MAT using FBS and HS was compared using endotoxin and several NEPs. The MAT was more sensitive for endotoxin when FBS was used, however for most NEPs the MAT was more sensitive when performed in HS. Furthermore, heat-inactivation of FBS affected the performance of the MAT for endotoxin to some extent but not for the NEPs. Interestingly, heat-inactivation of HS led to an almost complete loss of reactivity towards endotoxin, reduced the response towards heat-killed Staphylococcus aureus and peptidoglycan, but had minor or no effects on the responses towards R848, flagellin, and Pam3CSK4. Product testing of a human blood-derived product in MAT using HS was beneficial since endotoxin spike recoveries were improved. This product is therefore currently batch released with the HS-based MAT assay. Overall, to guarantee optimal performance of MAT, heat-inactivated serum should be avoided. The HS-based MAT appears to be the first choice to replace the rabbit pyrogen test, while in some cases the FBS-based MAT may be favored.
Assuntos
Monócitos , Soroalbumina Bovina , Animais , Endotoxinas , Humanos , Leucócitos Mononucleares , Pirogênios , Coelhos , Soro , Soroalbumina Bovina/farmacologiaRESUMO
Testing of parenteral pharmaceuticals and medical devices for pyrogens (fever-inducing substances) is critical to patient safety. The original rabbit pyrogen test has largely been replaced by different bacterial endotoxin tests based on Limulus amebocyte lysate (LAL), sourced from the blood equivalent of horseshoe crabs after comparative studies to the rabbit pyrogen test. Since 2004 a bacterial endotoxin test based on recombinant factor C (rFC), the endotoxin sensor protein inside of LAL, has been used as an animal-free alternative to LAL. Likewise, numerous studies compared LAL and rFC. Here we describe the history of pyrogen and bacterial endotoxin testing and summarize the evidence presented by those studies. We demonstrate that rFC and LAL are equivalent and comparable.
Assuntos
Endotoxinas , Pirogênios , Alternativas aos Testes com Animais , Animais , Endotoxinas/análise , Caranguejos Ferradura , Pirogênios/análise , CoelhosRESUMO
Monocyte activation tests (MAT) are widely available but rarely used in place of animal-based pyrogen tests for safety assessment of medical devices. To address this issue, the National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods and the PETA International Science Consortium Ltd. convened a workshop at the National Institutes of Health on September 18-19, 2018. Participants included representatives from MAT testing laboratories, medical device manufacturers, the U.S. Food and Drug Administration's Center for Devices and Radiologic Health (CDRH), the U.S. Pharmacopeia, the International Organization for Standardization, and experts in the development of MAT protocols. Discussions covered industry experiences with the MAT, remaining challenges, and how CDRH's Medical Device Development Tools (MDDT) Program, which qualifies tools for use in evaluating medical devices to streamline device development and regulatory evaluation, could be a pathway to qualify the use of MAT in place of the rabbit pyrogen test and the limulus amebocyte lysate test for medical device testing. Workshop outcomes and follow-up activities are discussed.
Assuntos
Equipamentos e Provisões/efeitos adversos , Monócitos/fisiologia , Testes de Toxicidade/métodos , Alternativas aos Testes com Animais , Animais , Endotoxinas , Pirogênios , CoelhosRESUMO
The Bacterial Endotoxin Test (BET) is a method for exclusion of endotoxin-related pyrogen contamination in pharmaceutical products, as an alternative to the Rabbit Pyrogen Test (RPT). However, BET does not detect a broad range of biologically relevant pyrogens, and interferences can limit its practical use for different medical products. This work aimed to scope the evidence in the scientific literature for case-by-case validity assessments of BET in different uses for medical products. A search strategy was conducted in PubMed, Scopus, and Web of Science in April 2020, according to the PRISMA-ScR statement. Twenty-two references were included, evaluating medical products for endotoxin contamination through both BET and RPT according to standardized protocols. A critical appraisal was performed through ToxRTool, followed by data extraction and qualitative synthesis of outcomes and methodological issues. Four classes of products assessed by BET were identified, including nanoparticles, drugs, blood and biological products. A considerable variation was observed on the BET methods used. Collectively, the evidence indicates different factors influencing the outcome of BET, including the chemical nature of samples that may cause interference depending on the selected method. While some applications to medical products appear adequate, others, such as nanoparticles, may require the use of different in vitro pyrogen testing methods, reinforcing the need for case-by-case validation for each BET method and type of medical product.