Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 10(6)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205156

RESUMO

Quercetin is a flavonoid with antioxidant, antiviral, antimicrobial, and anti-inflammatory properties. Therefore, it has been postulated as a molecule with great therapeutic potential. The renoprotective capacity of quercetin against various toxins that produce oxidative stress, in both in vivo and in vitro models, has been shown. However, it is not clear whether quercetin itself or any of its metabolites are responsible for the protective effects on the kidney. Although the pharmacokinetics of quercetin have been widely studied and the complexity of its transit throughout the body is well known, the metabolic processes that occur in the kidney are less known. Because of that, the objective of this review was to delve into the molecular and cellular events triggered by quercetin and/or its metabolites in the tubular cells, which could explain some of the protective properties of this flavonoid against oxidative stress produced by toxin administration. Thus, the following are analyzed: (1) the transit of quercetin to the kidney; (2) the uptake mechanisms of quercetin and its metabolites from plasma to the tubular cells; (3) the metabolic processes triggered in those cells, which affect the accumulation of metabolites in the intracellular space; and (4) the efflux mechanisms of these compounds and their subsequent elimination through urine. Finally, it is discussed whether those processes that are mediated in the tubular cells and that give rise to different metabolites are related to the antioxidant and renoprotective properties observed after the administration of quercetin.

2.
Nutrients ; 12(8)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32751996

RESUMO

Quercetin is a flavonoid, its glycosides and aglycone are found in significant amounts in several plants and dietary supplements. Because of the high presystemic biotransformation of quercetin, mainly its conjugates appear in circulation. As has been reported in previous studies, quercetin can interact with several proteins of pharmacokinetic importance. However, the interactions of its metabolites with biotransformation enzymes and drug transporters have barely been examined. In this study, the inhibitory effects of quercetin and its most relevant methyl, sulfate, and glucuronide metabolites were tested on cytochrome P450 (CYP) (2C19, 3A4, and 2D6) enzymes as well as on organic anion-transporting polypeptides (OATPs) (OATP1A2, OATP1B1, OATP1B3, and OATP2B1) and ATP (adenosine triphosphate) Binding Cassette (ABC) (BCRP and MRP2) transporters. Quercetin and its metabolites (quercetin-3'-sulfate, quercetin-3-glucuronide, isorhamnetin, and isorhamnetin-3-glucuronide) showed weak inhibitory effects on CYP2C19 and 3A4, while they did not affect CYP2D6 activity. Some of the flavonoids caused weak inhibition of OATP1A2 and MRP2. However, most of the compounds tested proved to be strong inhibitors of OATP1B1, OATP1B3, OATP2B1, and BCRP. Our data demonstrate that not only quercetin but some of its conjugates, can also interact with CYP enzymes and drug transporters. Therefore, high intake of quercetin may interfere with the pharmacokinetics of drugs.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Quercetina/farmacologia , Linhagem Celular , Humanos , Proteína 2 Associada à Farmacorresistência Múltipla , Quercetina/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa