Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 843
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 728, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39069616

RESUMO

BACKGROUND: As an emerging food crop with high nutritional value, quinoa has been favored by consumers in recent years; however, flooding, as an abiotic stress, seriously affects its growth and development. Currently, reports on the molecular mechanisms related to quinoa waterlogging stress responses are lacking; accordingly, the core genes related to these processes were explored via Weighted Gene Co-expression Network Analysis (WGCNA). RESULTS: Based on the transcriptome data, WGCNA was used to construct a co-expression network of weighted genes associated with flooding resistance-associated physiological traits and metabolites. Here, 16 closely related co-expression modules were obtained, and 10 core genes with the highest association with the target traits were mined from the two modules. Functional annotations revealed the biological processes and metabolic pathways involved in waterlogging stress, and four candidates related to flooding resistance, specifically AP2/ERF, MYB, bHLH, and WRKY-family TFs, were also identified. CONCLUSIONS: These results provide clues to the identification of core genes for quinoa underlying quinoa waterlogging stress responses. This could ultimately provide a theoretical foundation for breeding new quinoa varieties with flooding tolerance.


Assuntos
Chenopodium quinoa , Inundações , Redes Reguladoras de Genes , Chenopodium quinoa/genética , Plântula/genética , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Perfilação da Expressão Gênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma , Mineração de Dados
2.
BMC Genomics ; 25(1): 370, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627628

RESUMO

BACKGROUND: Quinoa (Chenopodium quinoa Willd.) is valued for its nutritional richness. However, pre-harvest sprouting poses a significant threat to yield and grain quality. This study aims to enhance our understanding of pre-harvest sprouting mitigation strategies, specifically through delayed sowing and avoiding rainy seasons during quinoa maturation. The overarching goal is to identify cold-resistant varieties and unravel the molecular mechanisms behind the low-temperature response of quinoa. We employed bioinformatics and genomics tools for a comprehensive genome-wide analysis of polyamines (PAs) and ethylene synthesis gene families in quinoa under low-temperature stress. RESULTS: This involved the identification of 37 PA biosynthesis and 30 PA catabolism genes, alongside 227 ethylene synthesis. Structural and phylogenetic analyses showcased conserved patterns, and subcellular localization predictions indicated diverse cellular distributions. The results indicate that the PA metabolism of quinoa is closely linked to ethylene synthesis, with multiple genes showing an upregulation in response to cold stress. However, differential expression within gene families suggests a nuanced regulatory network. CONCLUSIONS: Overall, this study contributes valuable insights for the functional characterization of the PA metabolism and ethylene synthesis of quinoa, which emphasize their roles in plant low-temperature tolerance and providing a foundation for future research in this domain.


Assuntos
Chenopodium quinoa , Chenopodium quinoa/genética , Chenopodium quinoa/metabolismo , Filogenia , Temperatura , Poliaminas/metabolismo , Etilenos/metabolismo
3.
Plant Mol Biol ; 114(1): 10, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319430

RESUMO

Quinoa seeds are gluten- and cholesterol-free, contain all amino acids required by the human body, have a high protein content, provide endocrine regulation, protein supplementation, and cardiovascular protection effects. However, metabolite accumulation and transcriptional regulatory networks in quinoa seed development are not well understood. Four key stages of seed development in Dianli-3260 and Dianli-557 were thus analyzed and 849 metabolites were identified, among which sugars, amino acids, and lipids were key for developmental processes, and their accumulation showed a gradual decrease. Transcriptome analysis identified 40,345 genes, of which 20,917 were differential between the M and F phases, including 8279 and 12,638 up- and down-regulated genes, respectively. Grain development processes were mainly enriched in galactose metabolism, pentose and glucuronate interconversions, the biosynthesis of amino acids, and carbon metabolism pathways, in which raffinose, phosphoenolpyruvate, series and other metabolites are significantly enriched, gene-LOC110689372, Gene-LOC110710556 and gene-LOC110714584 are significantly expressed, and these metabolites and genes play an important role in carbohydrate metabolism, lipid and Amino acid synthesis of quinoa. This study provides a theoretical basis to expand our understanding of the molecular and metabolic development of quinoa grains.


Assuntos
Chenopodium quinoa , Transcriptoma , Humanos , Chenopodium quinoa/genética , Metaboloma/genética , Sementes/genética , Aminoácidos
4.
J Mol Evol ; 92(2): 169-180, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38502221

RESUMO

The bacterial strain SECRCQ15T was isolated from seeds of Chenopodium quinoa in Spain. Phylogenetic, chemotaxonomic, and phenotypic analyses, as well as genome similarity indices, support the classification of the strain into a novel species of the genus Ferdinandcohnia, for which we propose the name Ferdinandcohnia quinoae sp. nov. To dig deep into the speciation features of the strain SECRCQ15T, we performed a comparative genomic analysis of the genome of this strain and those of the type strains of species from the genus Ferdinandcohnia. We found several genes related with plant growth-promoting mechanisms within the SECRCQ15T genome. We also found that singletons of F. quinoae SECRCQ15T are mainly related to the use of carbohydrates, which is a common trait of plant-associated bacteria. To further reveal speciation events in this strain, we revealed genes undergoing diversifying selection (e.g., genes encoding ribosomal proteins) and functions likely lost due to pseudogenization. Also, we found that this novel species contains 138 plant-associated gene-cluster functions that are unique within the genus Ferdinandcohnia. These features may explain both the ecological and taxonomical differentiation of this new taxon.


Assuntos
Ácidos Graxos , Plantas , Filogenia , Plantas/genética , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Análise de Sequência de DNA
5.
BMC Plant Biol ; 24(1): 594, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38910245

RESUMO

BACKGROUND: Downy mildew is the most relevant disease of quinoa and the most widespread. Though, little is known about the genetics of resistance to this disease. The objective of this study was to identify the genomic regions controlling downy mildew resistance in quinoa and candidate genes for this trait. With this aim we carried out a GWAS analysis in a collection formed by 211 quinoa accessions from different origins. This approach was combined with inheritance studies and Bulk Segregant Analysis (BSA) in a segregating population. RESULTS: GWAS analysis identified 26 genomic regions associated with the trait. Inheritance studies in a F2 population segregating for resistance revealed the existence of a major single dominant gene controlling downy mildew complete resistance in quinoa accession PI614911. Through BSA, this gene was found to be located in chromosome 4, in a region also identified by GWAS. Furthermore, several plant receptors and resistance genes were found to be located into the genomic regions identified by GWAS and are postulated as candidate genes for resistance. CONCLUSIONS: Until now, little was known about the genetic control of downy mildew resistance in quinoa. A previous inheritance study suggested that resistance to this disease was a quantitative polygenic trait and previous GWAS analyses were unable to identify accurate markers for this disease. In our study we demonstrate the existence of, at least, one major gene conferring resistance to this disease, identify the genomic regions involved in the trait and provide plausible candidate genes involved in defense. Therefore, this study significantly increases our knowledge about the genetics of downy mildew resistance and provides relevant information for breeding for this important trait.


Assuntos
Chenopodium quinoa , Resistência à Doença , Genes de Plantas , Estudo de Associação Genômica Ampla , Doenças das Plantas , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Resistência à Doença/genética , Chenopodium quinoa/genética
6.
Plant Biotechnol J ; 22(8): 2216-2234, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38572508

RESUMO

Climate change may result in a drier climate and increased salinization, threatening agricultural productivity worldwide. Quinoa (Chenopodium quinoa) produces highly nutritious seeds and tolerates abiotic stresses such as drought and high salinity, making it a promising future food source. However, the presence of antinutritional saponins in their seeds is an undesirable trait. We mapped genes controlling seed saponin content to a genomic region that includes TSARL1. We isolated desired genetic variation in this gene by producing a large mutant library of a commercial quinoa cultivar and screening the library for specific nucleotide substitutions using droplet digital PCR. We were able to rapidly isolate two independent tsarl1 mutants, which retained saponins in the leaves and roots for defence, but saponins were undetectable in the seed coat. We further could show that TSARL1 specifically controls seed saponin biosynthesis in the committed step after 2,3-oxidosqualene. Our work provides new important knowledge on the function of TSARL1 and represents a breakthrough for quinoa breeding.


Assuntos
Chenopodium quinoa , Genótipo , Saponinas , Sementes , Chenopodium quinoa/genética , Chenopodium quinoa/metabolismo , Saponinas/biossíntese , Saponinas/metabolismo , Sementes/genética , Sementes/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Plant Biotechnol J ; 22(5): 1312-1324, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38213076

RESUMO

Quinoa is an agriculturally important crop species originally domesticated in the Andes of central South America. One of its most important phenotypic traits is seed colour. Seed colour variation is determined by contrasting abundance of betalains, a class of strong antioxidant and free radicals scavenging colour pigments only found in plants of the order Caryophyllales. However, the genetic basis for these pigments in seeds remains to be identified. Here we demonstrate the application of machine learning (extreme gradient boosting) to identify genetic variants predictive of seed colour. We show that extreme gradient boosting outperforms the classical genome-wide association approach. We provide re-sequencing and phenotypic data for 156 South American quinoa accessions and identify candidate genes potentially controlling betalain content in quinoa seeds. Genes identified include novel cytochrome P450 genes and known members of the betalain synthesis pathway, as well as genes annotated as being involved in seed development. Our work showcases the power of modern machine learning methods to extract biologically meaningful information from large sequencing data sets.


Assuntos
Chenopodium quinoa , Chenopodium quinoa/genética , Chenopodium quinoa/metabolismo , Cor , Estudo de Associação Genômica Ampla , Betalaínas/metabolismo , Genômica , Sementes/genética
8.
Appl Environ Microbiol ; 90(4): e0222323, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38497645

RESUMO

An uncharacterized gene encoding a glycoside hydrolase family 43-like enzyme from Clostridium boliviensis strain E-1 was identified from genomic sequence data, and the encoded enzyme, CbE1Xyn43-l, was produced in Escherichia coli. CbE1Xyn43-l (52.9 kDa) is a two-domain endo-ß-xylanase consisting of a C-terminal CBM6 and a GH43-like catalytic domain. The positions of the catalytic dyad conserved in GH43, the catalytic base (Asp74), and proton donor (Glu240) were identified in alignments including GH43-enzymes of known 3D-structure from different subfamilies. CbE1Xyn43-l is active at pH 7.0-9.0, with optimum temperature at 65°C, and a more than 7 days' half-life in irreversible deactivation studies at this temperature. The enzyme hydrolyzed birchwood xylan, quinoa stalks glucuronoarabinoxylan, and wheat arabinoxylan with xylotriose and xylotetraose as major hydrolysis products. CbE1Xyn43-l also released xylobiose from pNPX2 with low turnover (kcat of 0.044 s-1) but was inactive on pNPX, showing that a degree of polymerization of three (DP3) was the smallest hydrolyzable substrate. Divalent ions affected the specific activity on xylan substrates, which dependent on the ion could be increased or decreased. In conclusion, CbE1Xyn43-l from C. boliviensis strain E-1 is the first characterized member of a large group of homologous hypothetical proteins annotated as GH43-like and is a thermostable endo-xylanase, producing xylooligosaccharides of high DP (xylotriose and xylotetraose) producer. IMPORTANCE: The genome of Clostridium boliviensis strain E-1 encodes a number of hypothetical enzymes, annotated as glycoside hydrolase-like but not classified in the Carbohydrate Active Enzyme Database (CAZy). A novel thermostable GH43-like enzyme is here characterized as an endo-ß-xylanase of interest in the production of prebiotic xylooligosaccharides (XOs) from different xylan sources. CbE1Xyn43-l is a two-domain enzyme composed of a catalytic GH43-l domain and a CBM6 domain, producing xylotriose as main XO product. The enzyme has homologs in many related Clostridium strains which may indicate a similar function and be a previously unknown type of endo-xylanase in this evolutionary lineage of microorganisms.


Assuntos
Glucuronatos , Glicosídeo Hidrolases , Oligossacarídeos , Xilanos , Xilanos/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Especificidade por Substrato , Clostridium/genética , Clostridium/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Hidrólise , Estabilidade Enzimática , Concentração de Íons de Hidrogênio
9.
New Phytol ; 241(2): 764-778, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37904576

RESUMO

Bioactive triterpenes feature complex fused-ring structures, primarily shaped by the first-committed enzyme, 2,3-oxidosqualene cyclases (OSCs) in plant triterpene biosynthesis. Triterpenes with B,C-ring-opened skeletons are extremely rare with unknown formation mechanisms, harbouring unchartered chemistry and biology. Here, through mining the genome of Chenopodium quinoa followed by functional characterization, we identified a stress-responsive and neofunctionalized OSC capable of generating B,C-ring-opened triterpenes, including camelliol A and B and the novel (-)-quinoxide A as wax components of the specialized epidermal bladder cells, namely the quinoxide synthase (CqQS). Protein structure analysis followed by site-directed mutagenesis identified key variable amino acid sites underlying functional interconversion between pentacyclic ß-amyrin synthase (CqbAS1) and B,C-ring-opened triterpene synthase CqQS. Mutation of one key residue (N612K) in even evolutionarily distant Arabidopsis ß-amyrin synthase could generate quinoxides, indicating a conserved mechanism for B,C-ring-opened triterpene formation in plants. Quantum computation combined with docking experiments further suggests that conformations of conserved W613 and F413 of CqQS might be key to selectively stabilizing intermediate carbocations towards B,C-ring-opened triterpene formation. Our findings shed light on quinoa triterpene skeletal diversity and mechanisms underlying B,C-ring-opened triterpene biosynthesis, opening avenues towards accessing their chemistry and biology and paving the way for quinoa trait engineering and quality improvement.


Assuntos
Chenopodium quinoa , Transferases Intramoleculares , Triterpenos , Chenopodium quinoa/metabolismo , Triterpenos/metabolismo , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo
10.
Crit Rev Food Sci Nutr ; : 1-21, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38993144

RESUMO

Quinoa (Chenopodium quinoa Willd) is widely regarded as a versatile pseudo-cereal native to the Andes Mountains in South America. It has gained global recognition as a superfood due to its rich nutritional profile. While quinoa grains are well-known, there is an undiscovered potential in quinoa greens, such as sprouts, leaves, and microgreens. These verdant parts of quinoa are rich in a diverse array of essential nutrients and bioactive compounds, including proteins, amino acids, bioactive proteins, peptides, polyphenols, and flavonoids. They have powerful antioxidant properties, combat cancer, and help prevent diabetes. Quinoa greens offer comparable or even superior benefits when compared to other sprouts and leafy greens, yet they have not gained widespread recognition. Limited research exists on the nutritional composition and biological activities of quinoa greens, underscoring the necessity for thorough systematic reviews in this field. This review paper aims to highlight the nutritional value, bioactivity, and health potential of quinoa greens, as well as explore their possibilities within the food sector. The goal is to generate interest within the research community and promote further exploration and wider utilization of quinoa greens in diets. This focus may lead to new opportunities for enhancing health and well-being through innovative dietary approaches.

11.
Mycorrhiza ; 34(3): 191-201, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38758247

RESUMO

Arbuscular mycorrhizal fungi (AMF) colonize biochar in soils, yet the processes governing their colonization and growth in biochar are not well characterized. Biochar amendment improves soil health by increasing soil carbon, decreasing bulk density, and improving soil water retention, all of which can increase yield and alleviate environmental stress on crops. Biochar is often applied with nutrient addition, impacting mycorrhizal communities. To understand how mycorrhizas explore soils containing biochar, we buried packets of non-activated biochar in root exclusion mesh bags in contrasting agricultural soils. In this greenhouse experiment, with quinoa (Chenopodium quinoa) as the host plant, we tested impacts of mineral nutrient (as manure and fertilizer) and biochar addition on mycorrhizal colonization of biochar. Paraglomus appeared to dominate the biochar packets, and the community of AMF found in the biochar was a subset (12 of 18) of the virtual taxa detected in soil communities. We saw differences in AMF community composition between soils with different edaphic properties, and while nutrient addition shifted those communities, the shifts were inconsistent between soil types and did not significantly influence the observation that Paraglomus appeared to selectively colonize biochar. This observation may reflect differences in AMF traits, with Paraglomus previously identified only in soils (not in roots) pointing to predominately soil exploratory traits. Conversely, the absence of some AMF from the biochar implies either a reduced tendency to explore soils or an ability to avoid recalcitrant nutrient sources. Our results point to a selective colonization of biochar in agricultural soils.


Assuntos
Carvão Vegetal , Micorrizas , Microbiologia do Solo , Solo , Micorrizas/fisiologia , Solo/química , Agricultura/métodos , Chenopodium quinoa , Raízes de Plantas/microbiologia , Esterco/microbiologia , Esterco/análise
12.
Plant Dis ; 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38764340

RESUMO

Quinoa downy mildew, caused by Peronospora variabilis, is the most devastating disease of quinoa globally. Rapid, sensitive diagnostic methods are needed to detect and quantify this pathogen in seeds and plant tissue. A hydrolysis probe-based quantitative real-time PCR (qPCR) assay including a competitive internal control was developed for P. variabilis detection. This assay could detect as low as 20 ag of DNA or approximately 25 internal transcribed spacer (ITS) copies per reaction with efficiencies ranging from 93.9 to 98.2%. No non-target amplification was observed when tested against DNA from other downy mildew pathogens and related oomycetes. Peronospora variabilis strains from multiple countries were detected using this assay. The assay was successfully applied to quantify the pathogen in quinoa seeds from a field trial conducted in Washington State. Downy mildew disease was recorded on all 14 genotypes with the genotypes 104.88 and 106.49 recording the highest area under the disease progress values (3,236 ± 303 SE and 2,851 ± 198, respectively) while J6 and Dutchess recorded the lowest (441 ± 107 and 409 ± 129, respectively). Seed washes obtained from field samples were subjected to the qPCR assay, and the pathogen was detected in all samples. The highest pathogen ITS copy number recorded with 106.49 (194,934 ± 38,171 SE), while the lowest was observed in Pasto (5,971 ± 1,435) and Riobamba (9,954 ± 4,243). This qPCR assay could lead to improved detection and quantification of P. variabilis as well as increased understanding of quinoa-P. variabilis interactions and epidemiology.

13.
Arch Pharm (Weinheim) ; 357(6): e2300689, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38400693

RESUMO

The phytosteroid ecdysterone is classified as an anabolic agent and has been included on the monitoring list of the World Anti-Doping Agency since 2020. Therefore, the consumption of food rich in ecdysterone, such as quinoa and spinach, is the focus of a lively debate. Thus, the urinary excretion of ecdysterone and its metabolites in humans was investigated following quinoa consumption alone and in combination with spinach. Eight participants (four male and four female) were included, and they ingested 368 ± 61 g cooked quinoa alone and in combination with 809 ± 115 g spinach after a washout. Post-administration urines were analyzed by LC-MS/MS. After intake of both preparations, ecdysterone and two metabolites were excreted in the urine. The maximum concentration of ecdysterone ranged from 0.44 to 5.5 µg/mL after quinoa and from 0.34 to 4.1 µg/mL after quinoa with spinach. The total urinary excreted amount as parent drug plus metabolites was 2.61 ± 1.1% following quinoa intake and 1.7 ± 0.9% in combination with spinach. Significant differences were found in the total urinary excreted amount of ecdysterone, 14-deoxy-ecdysterone, and 14-deoxy-poststerone. Only small portions of ecdysterone from quinoa and the combination with spinach were excreted in the urine, suggesting that both quinoa and spinach are poor sources of ecdysterone in terms of bioavailability.


Assuntos
Chenopodium quinoa , Spinacia oleracea , Chenopodium quinoa/química , Humanos , Masculino , Feminino , Adulto , Adulto Jovem , Espectrometria de Massas em Tandem , Cromatografia Líquida
14.
Phytochem Anal ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802070

RESUMO

INTRODUCTION: With an increasing interest in healthy and affordable cereal intake, efforts are made toward exploiting underutilized cereals with high nutritional values. OBJECTIVES: The current study aims to explore the metabolome diversity in 14 cultivars of chia and quinoa collected from Germany, Austria, and Egypt, compared with wheat and oat as major cereals. MATERIAL AND METHODS: The samples were analyzed using gas chromatography-mass spectrometry (GC-MS). Multivariate data analysis (MVA) was employed for sample classification and markers characterization. RESULTS: A total of 114 metabolites were quantified (sugars, alcohols, organic and amino acids/nitrogenous compounds, fatty acids/esters), but the inorganic and phenolic acids were only identified. Fatty acids were the major class followed by amino acids in quinoa and chia. Chia and oats were richer in sucrose. Quinoa encompassed higher amino acids. Quinoa and chia were rich in essential amino acids. Higher levels of unsaturated fatty acids especially omega 6 and omega 9 were detected in quinoa versus omega 3 in chia compared with oat and wheat, whereas ω6/ω3 fatty acid ratio of chia was the lowest. To the best of our knowledge, this is the first comprehensive metabolite profiling of these pseudo cereals. CONCLUSION: Quinoa and chia, especially red chia, are more nutritionally valuable compared with oat and wheat because of their compositional profile of free amino acids, organic acids, and essential fatty acids, besides their low ω6/ω3 fatty acid ratio. Such results pose them as inexpensive alternative to animal proteins and encourage their inclusion in infant formulas.

15.
Int J Mol Sci ; 25(13)2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38999994

RESUMO

Quinoa is a nutritious crop that is tolerant to extreme environmental conditions; however, low-temperature stress can affect quinoa growth, development, and quality. Considering the lack of molecular research on quinoa seedlings under low-temperature stress, we utilized a Weighted Gene Co-Expression Network Analysis to construct weighted gene co-expression networks associated with physiological indices and metabolites related to low-temperature stress resistance based on transcriptomic data. We screened 11 co-expression modules closely related to low-temperature stress resistance and selected 12 core genes from the two modules that showed the highest associations with the target traits. Following the functional annotation of these genes to determine the key biological processes and metabolic pathways involved in low-temperature stress, we identified four important transcription factors involved in resistance to low-temperature stress: gene-LOC110731664, gene-LOC110736639, gene-LOC110684437, and gene-LOC110720903. These results provide insights into the molecular genetic mechanism of quinoa under low-temperature stress and can be used to breed lines with tolerance to low-temperature stress.


Assuntos
Chenopodium quinoa , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Plântula , Chenopodium quinoa/genética , Plântula/genética , Plântula/crescimento & desenvolvimento , Temperatura Baixa , Resposta ao Choque Frio/genética , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica/métodos , Transcriptoma , Genes de Plantas
16.
Molecules ; 29(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543010

RESUMO

Wheat flour is a common raw material in the food industry; however, Andean grains, such as quinoa and kiwicha, are gaining popularity due to their quality proteins, fiber, and bioactive compounds. A trend has been observed toward the enrichment of products with these Andean flours, with them even being used to develop gluten-free foods. However, evaluating interactions between raw materials during industrial processes can be complicated due to the diversity of inputs. This study focused on evaluating the technofunctional and rheological properties of wheat, quinoa and kiwicha flours using a simple lattice mixture design. Seven treatments were obtained, including pure flours and ternary mixtures. Analyses of particle size distribution, water absorption index, subjective water absorption capacity, soluble material index, swelling power, apparent density and physicochemical properties were performed. Additionally, color analysis, photomicrographs and Raman spectroscopy were carried out. The results indicate significant differences in properties such as particle size, water absorption and rheological properties between the flours and their mixtures. Variations in color and microstructure were observed, while Raman spectroscopy provided information on molecular composition. These findings contribute to the understanding of the behavior of Andean flours in baking and pastry making, facilitating their application in innovative food products.


Assuntos
Chenopodium quinoa , Farinha , Farinha/análise , Chenopodium quinoa/química , Triticum/química , Reologia , Água
17.
Molecules ; 29(2)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38257317

RESUMO

The demand for plant-based proteins has increased remarkably over the last decade. Expanding the availability and variety of plant-based protein options has shown positive potential. This study aimed to investigate the qualitative and quantitative changes in amino acids of yellow and red quinoa seeds (YQ and RQ) during a 9-day germination period. The results showed that the germination process led to an increase in the total amino acids by 7.43% and 14.36% in the YQ and RQ, respectively. Both varieties exhibited significant (p < 0.05) increases in non-essential and essential amino acids, including lysine, phenylalanine, threonine, and tyrosine. The content of non-essential amino acids nearly reached the standard values found in chicken eggs. These results were likely attributed to the impact of the germination process in increasing enzymes activity and decreasing anti-nutrient content (e.g., saponins). A linear relationship between increased seeds' hydration and decreased saponins content was observed, indicating the effect of water absorption in changing the chemical composition of the plant. Both sprouts showed positive germination progression; however, the sprouted RQ showed a higher germination rate than the YQ (57.67% vs. 43.33%, respectively). Overall, this study demonstrates that germination is a promising technique for enhancing the nutritional value of quinoa seeds, delivering sprouted quinoa seeds as a highly recommended source of high-protein grains with notable functional properties.


Assuntos
Antifibrinolíticos , Chenopodium quinoa , Saponinas , Aminoácidos , Proteínas de Plantas , Lisina , Plântula
18.
Molecules ; 29(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38611788

RESUMO

Chenopodium quinoa Willd. is rich in phenolic compounds and exhibits diverse biological activities. Few studies have focused on the effect of colored quinoa's phenolic profile on potential biological activity. This study used a UPLC-MS/MS-based metabolomic approach to examine the quinoa phenolics and their association with in vitro antioxidant and hypoglycemic properties. In total, 430 polyphenols, mainly phenolic acids, flavonoids, and flavonols, were identified. Additionally, 121, 116, and 148 differential polyphenols were found between the white and black, white and red, and black and red comparison groups, respectively; 67 polyphenols were screened as shared key differential metabolites. Phenylalanine, tyrosine, and the biosynthesis of plant secondary metabolites were the main differently regulated pathways. Black quinoa had better total phenolic contents (643.68 mg/100 g DW) and antioxidant capacity, while white quinoa had better total flavonoid contents (90.95 mg/100 g DW) and in vitro α-amylase (IC50 value of 3.97 mg/mL) and α-glucosidase (IC50 value of 1.08 mg/mL) inhibition activities. Thirty-six polyphenols, including epicatechin and linarin, etc., were highly correlated with in vitro antioxidant activity, while six polyphenols, including tiliroside and chrysoeriol, etc., were highly correlated with in vitro hypoglycemic activity. This study may provide important information for colored quinoa resources to develop their healthy food applications.


Assuntos
Antioxidantes , Chenopodium quinoa , Antioxidantes/farmacologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Fenóis , Polifenóis
19.
Molecules ; 29(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38611855

RESUMO

Quinoa, known as the "golden grain" for its high nutritional value, has polysaccharides as one of its sources of important nutrients. However, the biological functions of quinoa polysaccharides remain understudied. In this study, two crude polysaccharide extracts of quinoa (Q-40 and Q-60) were obtained through sequential precipitation with 40% and 60% ethanol, with purities of 58.29% (HPLC) and 62.15% (HPLC) and a protein content of 8.27% and 9.60%, respectively. Monosaccharide analysis revealed that Q-40 contained glucose (Glc), galacturonic acid (GalA), and arabinose (Ara) in a molar ratio of 0.967:0.027:0.006. Q-60 was composed of xylose (xyl), arabinose (Ara), galactose, and galacturonic acid (GalA) with a molar ratio of 0.889:0.036:0.034:0.020. The average molecular weight of Q-40 ranged from 47,484 to 626,488 Da, while Q-60 showed a range of 10,025 to 47,990 Da. Rheological experiments showed that Q-40 exhibited higher viscosity, while Q-60 demonstrated more elastic properties. Remarkably, Q-60 showed potent antioxidant abilities, with scavenging rates of 98.49% for DPPH and 57.5% for ABTS. Antibacterial experiments using the microdilution method revealed that Q-40 inhibited the growth of methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli), while Q-60 specifically inhibited MRSA. At lower concentrations, both polysaccharides inhibited MDA (MD Anderson Cancer Center) cell proliferation, but at higher concentrations, they promoted proliferation. Similar proliferation-promoting effects were observed in HepG2 cells. The research provides important information in the application of quinoa in the food and functional food industries.


Assuntos
Chenopodium quinoa , Ácidos Hexurônicos , Staphylococcus aureus Resistente à Meticilina , Arabinose , Escherichia coli , Grão Comestível
20.
J Sci Food Agric ; 104(5): 2692-2703, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37994153

RESUMO

BACKGROUND: As a complex chronic metabolic disease, obesity not only affects the quality of human life but also increases the risk of various other diseases. Therefore, it is important to investigate the molecular mechanisms and therapeutic effects of dietary interventions that counteract obesity. RESULTS: In this study, we extracted soluble (SDF) and insoluble dietary fiber (IDF) from quinoa bran using an enzymatic method and further investigated their effects on lipid metabolism and blood lipid levels in obese rats. Quinoa bran dietary fiber showed significantly reduced body weight, blood glucose level, total cholesterol, triglyceride, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol levels compared to those in the model group of obese rats. Aspartate aminotransferase and alanine aminotransferase levels were significantly lower in the IDF group, demonstrating that IDF improved liver injury more significantly than SDF, which was consistent with the analysis of liver tissue sections. IDF supplementation significantly improved the oxidation resistance of obese rats by decreasing malondialdehyde and increasing superoxide dismutase and glutathione peroxidase levels compared to the high-fat diet group levels. Transcriptome analysis showed that IDF caused hepatic changes in genes (Ehhadh, PPARα, FADS, CPT1, CPT2, SCD-1, Acadm, and CYP7A1) related to fatty acid degradation, and this result coincided with that of the gene expression validation result. CONCLUSION: Overall, our research offers crucial data for the logical development of dietary fiber from quinoa bran with nutritional purposes. © 2023 Society of Chemical Industry.


Assuntos
Chenopodium quinoa , Ratos , Humanos , Animais , Chenopodium quinoa/metabolismo , Glucose/metabolismo , Metabolismo dos Lipídeos , Transcriptoma , Obesidade/genética , Obesidade/metabolismo , Fígado/metabolismo , Fibras na Dieta/análise , Dieta Hiperlipídica/efeitos adversos , Colesterol/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa