Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Biodivers ; 19(1): e202100616, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34812587

RESUMO

Serious bacterial infections could be caused by Gram-positive microorganisms, in particular methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis. Aiming to address this challenging issue by developing the potent and selective antimicrobial lead structures against methicillin-resistant Staphylococcus spp., herein, we report in vitro evaluation of quinolinequinones (QQ1-QQ10) against the Gram-negative and Gram-positive strains using the broth microdilution technique. The design principle of the quinolinequinones was based on the variation of the structures attached to the 1,4-quinone moiety and substituent(s) within amino phenyl moiety. A series of ten quinolinequinones displayed activity mainly against the Gram-positive strains with a minimal inhibitory concentration (MIC=1.22-1250 mg/L) within the Clinical and Laboratory Standards Institute (CLSI) levels. Interestingly, QQ3, QQ5, and QQ6 displayed equal antibacterial inhibitory activity against S. aureus (MIC=1.22 mg/L), respectively, to the standard positive control Cefuroxime-Na. QQ2, QQ3, and QQ5 had the best inhibitory activity with the MIC value of 1.22 mg/L (4-fold more potent compared reference standard Cefuroxime) against S. epidermidis. On the other hand, QQ3 was the most effective quinolinequinone against fungi, in particular C. albicans. The identified lead quinolinequinones (QQ3 and QQ5) with a comprehensive analysis of structure-activity relationships and further studies showed high activity against methicillin-resistant Staphylococcus spp. It is worth noting that the isopropyl group has importance for excellent bioactivity. Remarkably, the in vitro antibiofilm and bactericidal activities (each of 32 clinically obtained strains of Gram-positive bacteria) of the selected two quinolinequinones (QQ3 and QQ5) have been evaluated for the mode of action in addition to the time-kill curve study.


Assuntos
Anti-Infecciosos/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Quinolinas/farmacologia , Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Fungos/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Quinolinas/química , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/fisiologia , Relação Estrutura-Atividade
2.
Bioorg Chem ; 114: 105160, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34328861

RESUMO

Literature conclusively shows that one of the quinolinequinone analogs (6-anilino-5,8-quinolinequinone), referred to as LY83583 hereafter, an inhibitor of guanylyl cyclase, was used as the inhibitor of the cell proliferation in cancer cells. In the present work, a series of analogs of the LY83583 containing alkoxy group(s) in aminophenyl ring (AQQ1-15) were designed and synthesized via a two-step route and evaluated for their in vitro cytotoxic activity against four different cancer cell lines (K562, Jurkat, MT-2, and HeLa) and human peripheral blood mononuclear cells (PBMCs) by MTT assay. The analog (AQQ13) was identified to possess the most potent cytotoxic activity against K562 human chronic myelogenous (CML) cell line (IC50 = 0.59 ± 0.07 µM) with significant selectivity (SI = 4.51) compared to imatinib (IC50 = 5.46 ± 0.85 µM; SI = 4.60). Based on its superior cytotoxic activity, the analog AQQ13 was selected for further mechanistic studies including determination of its apoptotic effects on K562 cell line via annexin V/ethidium homodimer III staining potency, ABL1 kinase inhibitory activity, and DNA cleaving capacity. Results ascertained that the analog AQQ13 induced apoptosis in K562 cell line with notable DNA-cleaving activity. However, AQQ13 demonstrated weak ABL1 inhibition indicating the correlation between anti-K562 and anti-ABL1 activities. In continuance, respectively conducted in silico molecular docking and Absorption, Distribution, Metabolism, and Excretion (ADME) studies drew attention to enhanced binding interactions of AQQ13 towards DNA and its high compatibility with the potential limits of specified pharmacokinetic parameters making it as a potential anti-leukemic drug candidate. Our findings may provide a new insight for further development of novel quinolinequinone-based anticancer analogs against CML.


Assuntos
Aminoquinolinas/farmacologia , Antineoplásicos/farmacologia , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Aminoquinolinas/síntese química , Aminoquinolinas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Clivagem do DNA , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-abl/metabolismo , Relação Estrutura-Atividade
3.
Bioorg Med Chem ; 24(21): 5618-5625, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27663546

RESUMO

We have analyzed a set of quinolinequinones with respect to their reactivities, cytotoxicities, and anti-HIV-1 properties. Most of the quinolinequinones were reactive with glutathione, and several acted as sulfhydryl crosslinking agents. Quinolinequinones inhibited binding of the HIV-1 matrix protein to RNA to varying degrees, and several quinolinequinones showed the capacity to crosslink HIV-1 matrix proteins in vitro, and HIV-1 structural proteins in virus particles. Cytotoxicity assays yielded quinolinequinone CC50 values in the low micromolar range, reducing the potential therapeutic value of these compounds. However, one compound, 6,7-dichloro-5,8-quinolinequinone potently inactivated HIV-1, suggesting that quinolinequinones may prove useful in the preparation of inactivated virus vaccines or for other virucidal purposes.


Assuntos
Fármacos Anti-HIV/farmacologia , HIV-1/efeitos dos fármacos , Quinolinas/farmacologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Matriz Nuclear/efeitos dos fármacos , Quinolinas/síntese química , Quinolinas/química , RNA Viral/antagonistas & inibidores , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa