Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Int J Mol Sci ; 25(18)2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39337452

RESUMO

The enantioselective mechanism of the esterase QeH against the two enantiomers of quizalofop-ethyl (QE) has been primitively studied using computational and experimental approaches. However, it is still unclear how the esterase QeH adjusts its conformation to adapt to substrate binding and promote enzyme-substrate interactions in the catalytic kinetics. The equilibrium processes of enzyme-substrate interactions and catalytic dynamics were reproduced by performing independent molecular dynamics (MD) runs on the QeH-(R)/(S)-QE complexes with a newly developed residue-specific force field (RSFF2C). Our results indicated that the benzene ring of the (R)-QE structure can simultaneously form anion-π and cation-π interactions with the side-chain group of Glu328 and Arg384 in the binding cavity of the QeH-(R)-QE complex, resulting in (R)-QE being closer to its catalytic triplet system (Ser78-Lys81-Tyr189) with the distances measured for the hydroxyl oxygen atom of the catalytic Ser78 of QeH and the carbonyl carbon atom of (R)-QE of 7.39 Å, compared to the 8.87 Å for (S)-QE, whereas the (S)-QE structure can only form an anion-π interaction with the side chain of Glu328 in the QeH-(S)-QE complex, being less close to its catalytic site. The computational alanine scanning mutation (CAS) calculations further demonstrated that the π-π stacking interaction between the indole ring of Trp351 and the benzene ring of (R)/(S)-QE contributed a lot to the binding stability of the enzyme-substrate (QeH-(R)/(S)-QE). These results facilitate the understanding of their catalytic processes and provide new theoretical guidance for the directional design of other key enzymes for the initial degradation of aryloxyphenoxypropionate (AOPP) herbicides with higher catalytic efficiencies.


Assuntos
Esterases , Simulação de Dinâmica Molecular , Esterases/química , Esterases/metabolismo , Estereoisomerismo , Especificidade por Substrato , Domínio Catalítico , Cinética
2.
Environ Monit Assess ; 195(9): 1067, 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598129

RESUMO

Monitoring pesticide residue levels becomes crucial to maintain quality and guarantee food safety as the consumption of onion green leaves and immature and mature bulbs (either raw or processed) rises. A field experiment was conducted for two consecutive seasons with quizalofop-p-ethyl (5% EC) at 50 and 100 g a.i. ha-1 to evaluate weed control efficiency and to determine terminal residues. Post-emergence application of fop herbicide at 100 g a.i. ha-1 kept the weed density and dry weight reasonably at a lower level and enhanced the productivity of onion with higher economic returns. A rapid, sensitive, and analytical method was developed using high-performance liquid chromatography (HPLC) with excellent linearity (r2 > 0.99). The limit of quantification for quizalofop-p-ethyl was established at 0.04 mg kg-1 with signal to noise (S/N) ratio ≥ 10. The method was successfully applied and initial quantified residues were in the range of 2.5-4.4 mg kg-1 irrespective of seasons and doses. Finally, the presence of targeted herbicide residues in harvested samples was confirmed by liquid chromatography tandem mass spectrometry (LC-MS/MS) under optimized operating conditions. Dietary risk assessment assured harvested onions were safe for consumption at the recommended dose. It also can be concluded that quizalofop ethyl did not adversely influence soil micro-organisms at standard rates of application.


Assuntos
Herbicidas , Controle de Plantas Daninhas , Cebolas , Cromatografia Líquida , Espectrometria de Massas em Tandem , Monitoramento Ambiental , Inocuidade dos Alimentos
3.
Ecotoxicol Environ Saf ; 238: 113596, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35526453

RESUMO

Quizalofop-P-ethyl (QpE), a highly efficient selective herbicide, has good control effect on annual and perennial weeds. However, its excessive use will pose a threat to the ecological environment. QpE has been proven harmful to aquatic organisms, but there is little evidence on the adverse effects of QpE in the early life of aquatic organisms. In this work, zebrafish (Danio rerio) embryos were treated with 0.10, 0.20, 0.30, 0.40, and 0.50 mg/L of QpE for 120 h. The findings revealed that the LC50 value of QpE to zebrafish embryos was 0.23 mg/L at 96 hpf. QpE exposure significantly increased the mortality rate, decreased the hatching rate and caused morphological defects during zebrafish embryonic development, with a concentration dependent manner. QpE also caused severe morphological changes in the cardiovascular system, as well as resulted in a dysfunction in cardiovascular performance. Meanwhile, both histopathological examination and neutrophil observations showed inflammatory response occurred in the heart. Furthermore, several genes associated with heart development and inflammation were significantly altered following QpE exposure. A protein-protein interaction (PPI) network analysis proved that there was a connection between the changed heart development-relevant and inflammation-related genes. Taken together, our findings suggest that QpE causes cardiotoxicity in zebrafish embryos by altering the expression of genes in the regulatory network of cardiac development, which might be aggravated by inflammatory reactions, thereby affecting embryo development. These findings generated here are useful for in-depth assessment of the effects of QpE on early development of aquatic organisms and providing theoretical foundation for risk management measures.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Organismos Aquáticos , Cardiotoxicidade/metabolismo , Embrião não Mamífero , Inflamação/metabolismo , Propionatos , Quinoxalinas , Poluentes Químicos da Água/metabolismo
4.
Pestic Biochem Physiol ; 184: 105089, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35715035

RESUMO

Managing emerged weeds that have evolved resistance to acetyl CoA carboxylase (ACCase)-inhibiting herbicides is a challenging task. A dose-response experiment was conducted on barnyardgrass biotypes resistant (R) and susceptible (S) to three aryloxyphenoxypropionate herbicides cyhalofop-butyl (CyB), fenoxaprop-ethyl (FeE), and quizalofop-ethyl (QuE) along with investigations into the potential resistance mechanism of these biotypes. The tested R barnyardgrass biotypes had strong resistance to CyB and FeE (resistant/susceptible ratio: 7.9-14.4) but weak resistance to QuE (resistant/susceptible ratio: 2.4-3.1). Absorption, translocation, and total metabolism of CyB and QuE were not associated with differences among S and R barnyardgrass biotypes. However, differences between S and R barnyardgrass were observed in production of active acid forms of each herbicide (cyhalofop-acid and quizalofop-acid). Production of cyhalofop-acid was >1.6-fold less in R barnyardgrass (3-8%) for 24 h after herbicide application than in the S barnyardgrass (8-16%). Meanwhile, production of quizalofop-acid was less in R barnyardgrass (< 14%) throughout the study period than in the S barnyardgrass (< 22%). Sequencing results of ACCase gene showed no difference between S and R barnyardgrass. Overall results show that a non-target-site resistance mechanism altering metabolism of CyB and QuE likely contributes to resistance of the barnyardgrass biotypes to these herbicides.


Assuntos
Echinochloa , Herbicidas , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Echinochloa/metabolismo , Resistência a Herbicidas/genética , Herbicidas/metabolismo , Herbicidas/toxicidade , Plantas Daninhas/metabolismo
5.
Int J Mol Sci ; 24(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36613971

RESUMO

Asia minor bluegrass (Polypogon fugax) is a common and problematic weed throughout China. P. fugax that is often controlled by acetyl-CoA carboxylase (ACCase) inhibitors in canola fields. Herein, we confirmed a P. fugax population (R) showing resistance to all ACCase inhibitors tested with resistance indexes ranging from 5.4-18.4. We further investigated the resistance mechanisms of this R population. Molecular analyses revealed that an amino acid mutation (Asp-2078-Gly) was present in the R population by comparing ACCase gene sequences of the sensitive population (S). In addition, differences in susceptibility between the R and S population were unlikely to be related to herbicide metabolism. Furthermore, a new derived cleaved amplified polymorphic sequence (dCAPS) method was developed for detecting the Asp-2078-Gly mutation in P. fugax efficiently. We found that 93.75% of plants in the R population carried the Asp-2078-Gly mutation, and all the herbicide-resistant phenotype of this R population is inseparable from this mutation. This is the first report of cross resistance to ACCase inhibitors conferred by the Asp-2078-Gly target-site mutation in P. fugax. The research suggested the urgent need to improve the diversity of weed management practices to prevent the widespread evolution of herbicide resistance in P. fugax in China.


Assuntos
Herbicidas , Poa , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poaceae/genética , Poaceae/metabolismo , Mutação , Poa/metabolismo , China , Herbicidas/farmacologia , Resistência a Herbicidas/genética
6.
Bull Environ Contam Toxicol ; 107(5): 961-966, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34515822

RESUMO

The research portrays the fate of a new herbicide mixture of fomesafen and quizalofop-ethyl. The soil samples viz. red lateritic soil (A), coastal saline soil (B) and black soil (C) were fortified separately for fomesafen and quizalofop-ethyl at 0.5 (T1) and 1.0 mg kg-1 (T2) doses and incubated at 20, 30 and 40°C. A satisfactory mean recovery, precision and linearity proved that the methods were accurate. Both the herbicides followed first + first order kinetics. Higher persistence of fomesafen was observed in Soil C than Soil B and Soil A with 22.38-53.75 days half-life, whereas quizalofop-ethyl showed higher stability in Soil A than Soils B and C with half-life of 0.93-12.07 days. Both compounds showed faster rates of dissipation at increased temperature, irrespective of soil type. The current study will help to predict the effect of temperature on the dissipation of herbicides in different soil under real field scenario.


Assuntos
Herbicidas , Poluentes do Solo , Benzamidas , Herbicidas/análise , Cinética , Propionatos , Quinoxalinas , Solo , Poluentes do Solo/análise , Temperatura
7.
Int J Mol Sci ; 21(12)2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580446

RESUMO

Methylobacterium populi YC-XJ1 isolated from desert soil exhibited a diverse degrading ability towards aromatic oxyphenoxypropionic acid esters (AOPPs) herbicide, phthalate esters (PAEs), organophosphorus flame retardants (OPFRs), chlorpyrifos and phoxim. The genome of YC-XJ1 was sequenced and analyzed systematically. YC-XJ1 contained a large number of exogenous compounds degradation pathways and hydrolase resources. The quizalofop-p-ethyl (QPE) degrading gene qpeh2 and diethyl phthalate (DEP) degrading gene deph1 were cloned and expressed. The characteristics of corresponding hydrolases were investigated. The specific activity of recombinant QPEH2 was 0.1 ± 0.02 U mg-1 for QPE with kcat/Km values of 1.8 ± 0.016 (mM-1·s-1). The specific activity of recombinant DEPH1 was 0.1 ± 0.02 U mg-1 for DEP with kcat/Km values of 0.8 ± 0.02 (mM-1·s-1). This work systematically illuminated the metabolic versatility of strain YC-XJ1 via the combination of genomics analysis and laboratory experiments. These results suggested that strain YC-XJ1 with diverse xenobiotics biodegrading capacity was a promising candidate for the bioremediation of polluted sites.


Assuntos
DNA Bacteriano/genética , Genoma Bacteriano , Hidrolases/metabolismo , Methylobacteriaceae/genética , Microbiologia do Solo , Xenobióticos/metabolismo , Sequência de Aminoácidos , Biodegradação Ambiental , DNA Bacteriano/análise , Methylobacteriaceae/classificação , Methylobacteriaceae/isolamento & purificação , Filogenia , Homologia de Sequência
8.
Bull Environ Contam Toxicol ; 105(4): 602-606, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32978647

RESUMO

A method for simultaneous quantitation of rimsulfuron, quizalofop-P-ethyl and quizalofop-P in potato plant, soil and potato tuber samples was established. The mean recoveries of rimsulfuron, quizalofop-P-ethyl and quizalofop-P in different matrices spiked with them were 81.4%-101.1%, 76.1%-99.0% and 77.4%-106.4% with relative standard deviations (RSDs) of 2.7%-13.3%, 0.9%-5.5%, 1.7%-11.3%, respectively. The open-field trials in China were conducted in potato cultivation system of Changchun and Jinan. The results indicated that the half-lives of rimsulfuron and quizalofop-P-ethyl were 0.04-13.1 days. The residues of quizalofop-P during the harvest time in Jinan soil were < 0.01-0.044 mg kg-1, while there was no residue of target herbicides detected in all other samples. The risk assessment results demonstrated that the risk quotients (RQs) of rimsulfuron and quizalofop-P-ethyl were 7.857 × 10-5 and 8.730 × 10-3, respectively, which exhibited an acceptable dietary risk to Chinese consumers.


Assuntos
Resíduos de Praguicidas/análise , Propionatos/análise , Piridinas/análise , Quinoxalinas/análise , Poluentes do Solo/análise , Sulfonamidas/análise , China , Herbicidas/análise , Medição de Risco , Solo/química , Solanum tuberosum
9.
Bull Environ Contam Toxicol ; 104(4): 471-476, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32088734

RESUMO

A hydrolytic transformation study was conducted in water of pH 4.0, 7.0 and 9.2 to evaluate the effect of pH on persistence of a new readymix formulation of fomesafen and quizalofop-ethyl. The water samples were fortified at 0.5 and 1 µg mL-1 levels and analysed at 0 (2 h), 1, 3, 7, 15, 30, 60, 90, 120, 150 days interval. Both the analytical methods were validated following SANTE guideline and found accurate based on average recovery of 80-100%, Relative standard deviation (RSD) < 20% and Coefficient of Determination (R2) 0.99. The dissipation of both the molecules was pH dependent and followed first order kinetics. Higher persistence of fomesafen was observed in alkaline pH as compared to neutral and acidic pH with half-life of 41.56-63.24 days, whereas higher stability of quizalofop-ethyl was observed in the water of acidic pH followed by neutral and alkaline pH with half-life of 1.26-8.09 days.


Assuntos
Benzamidas/análise , Água Doce/química , Herbicidas/análise , Propionatos/análise , Quinoxalinas/análise , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Modelos Teóricos
10.
Chirality ; 31(9): 700-710, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31298441

RESUMO

This study investigated the resilience of bacterial diversity in soils restored after autoclaving, in terms of richness, evenness and community structure, and its feedback on the enantioselective transformation of racemic quizalofop-ethyl (rac-QE). Microbial biomass carbon (MBC) and bacterial richness (indexed by operational taxonomic units [OTUs]) in restored soil recovered to approximately 50% and 29%, respectively, of the native soil within 43 days. Bacterial evenness was much lower in restored soil than in native soil. The relative proportions of dominant bacterial genera differed significantly (P < .05) between restored and native soils. Importantly, two major bacterial genera that recolonized restored soil were not detected in native soil. Highly enantioselective transformation of rac-QE was observed in restored soils, whereas QE enantiomers exhibited comparable transformation rates in native soils. The second-round enantioselective transformation of rac-QE was altered by the first-round transformation of enantiopure quizalofop-P-ethyl (R-P-QE) in restored and native soils through selective effects of R-P-QE on the bacterial community. The transformation rate of rac-QE was predominantly determined by bacterial abundance and richness, while the enantioselectivity was correlated more with bacterial structure.


Assuntos
Bactérias/metabolismo , Biodiversidade , Propionatos/química , Propionatos/metabolismo , Quinoxalinas/química , Quinoxalinas/metabolismo , Microbiologia do Solo , Biotransformação , Cinética , Estereoisomerismo
11.
Ecotoxicol Environ Saf ; 157: 285-291, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29627412

RESUMO

A degradation study of quizalofop-p and its commercial products (quizalofop-p-ethyl, quizalofop-p-tefuryl and propaquizafop) in water samples has been performed using ultra high-performance liquid chromatography coupled to Orbitrap mass spectrometry (UHPLC-Orbitrap-MS). CHHQ (dihydroxychloroquinoxalin), CHQ (6-chloroquinoxalin-2-ol) and PPA ((R)-2-(4-hydroxyphenoxy)propionicacid) were the main metabolites of this active substance (quizalofop-p) in water. The degradation of the parent compound has been monitored in distilled water. Several commercial products (Panarex®, Master-D® and Dixon®) were used to evaluate the degradation of the target compounds into their metabolites. The concentration of the main active substances (quizalofop-p-tefuryl, quizalofop-p-ethyl and propaquizafop) decreased during the degradation studies, whereas the concentration of quizalofop-p increased. DT50 of the main active substances ranged from 10 days to 70 days for most of the analytes, so it can be concluded that compounds are medium-high persistent in this matrix. Metabolites, such as PPA, CHHQ and CHQ, were detected in water samples after 7 days of the application of the commercial products at concentrations higher than their limits of quantification (> 0.1 µg/L). CHQ was detected at 1400 µg/L after 75 days of the application of quizalofop-p-ethyl commercial product. CHHQ and CHQ were found at the highest concentrations at 7-45 days after the application of quizalofop-p-tefuryl, whereas PPA was detected at higher concentrations (up to 5.37 µg/L) in propaquizafop samples.


Assuntos
Monitoramento Ambiental/métodos , Herbicidas/análise , Propionatos/análise , Quinoxalinas/análise , Poluentes Químicos da Água/análise , Cromatografia Líquida de Alta Pressão , Monitoramento Ambiental/instrumentação , Recuperação e Remediação Ambiental , Herbicidas/química , Espectrometria de Massas , Modelos Teóricos , Estrutura Molecular , Propionatos/química , Quinoxalinas/química , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/química
12.
Bioprocess Biosyst Eng ; 41(5): 613-619, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29350295

RESUMO

The objective of this study was to enhance biomass and lipid productivity in Chlorella sp. isolate 6-4 by inducing mutagenesis with two growth inhibitors: the herbicide quizalofop-P-ethyl, a known inhibitor of acetyl-CoA carboxylase (ACCase) activity, and chemical mutagen, ethyl methanesulfonate (EMS), at different concentrations and length of times. The induced-mutagenized microalgae were screened on selective medium containing 10-100 µM quizalofop. The biomass yield, biomass productivity, lipid content, and lipid productivity of mutagenized microalgae were determined. The result showed that 100-200 mM EMS concentrations and 30 min incubation time were the most effective. Biomass yield and biomass productivity of the mutagenized microalgae E50-30-40, E100-60-40, and E100-30-60 were statistically significant higher than those of the wild type. The mutagenized microalgae E100-30-60 showed that the highest biomass yield and biomass productivity were 111 and 110% higher than the wild type, respectively (p < 0.01). Lipid content and lipid productivity of the mutagenized microalgae E200-30-40 were 59 and 53% significantly higher than the wild type, respectively. It should be noted that biomass productivity of the mutagenized microalgae E200-30-40 was not significantly different from E100-30-60, meaning that this microalga strain exhibited highest both biomass and lipid productivity. These results indicated that inducing mutagenesis by EMS subsequently screening by herbicide could lead to enhance biomass and lipid accumulation. Therefore, this methodology could be used for improvement microalgae for biofuel production.


Assuntos
Acetil-CoA Carboxilase , Chlorella , Metanossulfonato de Etila/farmacologia , Lipídeos/biossíntese , Mutagênese , Proteínas de Plantas , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Chlorella/genética , Chlorella/metabolismo , Lipídeos/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
Microb Cell Fact ; 16(1): 80, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28490371

RESUMO

Quizalofop-p-ethyl (QPE) is a post-emergence herbicide that effectively controls grass weeds and is often detected in the environment. However, the biochemical and molecular mechanisms of QPE degradation in the environment remains unclear. In this study, a highly effective QPE-degrading bacterial strain J-2 was isolated from acclimated activated sludge and identified as a Pseudomonas sp., containing the QPE breakdown metabolite quizalofop acid (QA) identified by Liquid Chromatography-Ion Trap-Mass Spectrometry (LC-IT-MSn) analysis. A novel QPE hydrolase esterase-encoding gene qpeH was cloned from strain J-2 and functionally expressed in Escherichia coli BL21 (DE3). The specific activity of recombinant QpeH was 198.9 ± 2.7 U mg-1 for QPE with K m and K cat values of 41.3 ± 3.6 µM and 127.3 ± 4.5 s-1. The optimal pH and temperature for the recombinant QpeH were 8.0 and 30 °C, respectively and the enzyme was activated by Ca2+, Cd2+, Li+, Fe3+ and Co2+ and inhibited by Ni2+, Fe2+, Ag+, DEPC, SDS, Tween 80, Triton X, ß-mercaptoethanol, PMSF, and pCMB. In addition, the catalytic efficiency of QpeH toward different AOPP herbicides in descending order was as follows: fenoxaprop-P-ethyl > quizalofop-P-tefuryl > QPE > haloxyfop-P-methyl > cyhalofopbutyl > clodinafop-propargyl. On the basis of the phylogenetic analysis and multiple sequence alignment, the identified enzyme QpeH, was clustered with esterase family V, suggesting a new member of this family because of its low similarity of amino acid sequence with esterases reported previously.


Assuntos
Esterases/isolamento & purificação , Esterases/metabolismo , Hidrolases/metabolismo , Propionatos/metabolismo , Pseudomonas/enzimologia , Quinoxalinas/metabolismo , Biodegradação Ambiental , Clonagem Molecular , Escherichia coli/genética , Esterases/genética , Herbicidas/metabolismo , Hidrolases/genética , Hidrolases/isolamento & purificação , Hidrolases/farmacologia , Hidrólise , Cinética , Redes e Vias Metabólicas , Pseudomonas/genética , Pseudomonas/isolamento & purificação , Pseudomonas/metabolismo , Proteínas Recombinantes/metabolismo , Esgotos/microbiologia
14.
EFSA J ; 22(2): e8560, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38410145

RESUMO

The applicant Arysta Life Science Great Britain Limited submitted a request to the competent national authority in Croatia to evaluate the confirmatory data that were identified for quizalofop-P-tefuryl in the framework of the maximum residue level (MRL) review under Article 12 of Regulation (EC) No 396/2005 as not available. Since Article 12 data gaps were also set for the two other quizalofop-P variants sharing the same residue definitions for risk assessment and monitoring, EFSA included in the present assessment all quizalofop-P variants: quizalofop-P-ethyl, quizalofop-P-tefuryl and propaquizafop. Moreover, in the application submitted to Croatia, the applicant also included a request to modify the existing MRLs for quizalofop-P-tefuryl in grapes, sunflower seeds and soyabeans in accordance with Article 6 of Regulation (EC) No 396/2005. To address the data gaps, new data on hydrolysis efficiency of quizalofop-P-tefuryl, quizalofop acid, quizalofop-pentanoic acid and quizalofop-P-glycerate in different matrices of animal origin in accordance with the guidance document SANTE/2020/12830 Rev.1 were submitted, along with a validated analytical method for animal commodities. EFSA concluded that the data gap on validation of the efficiency of the extraction and hydrolysis included in the enforcement method of residues in livestock animal commodities was only fully addressed for muscle, poultry liver and eggs. Regarding plant commodities, the remaining data gaps were not addressed. EFSA also considered data gaps for quizalofop-p-ethyl in caraway as sufficiently addressed in the context of a previous MRL application. In general, the new information provided required a revision of the existing MRLs for several commodities of plant and animal origin. Further risk management considerations are required. Based on the risk assessment results, EFSA concluded that the short-term and long-term intake of residues resulting from the use of quizalofop-P-tefuryl according to the reported agricultural practices is unlikely to present a risk to consumer health.

15.
Talanta ; 276: 126269, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38776773

RESUMO

Quizalofop-p-ethyl is a widely used herbicide that also poses a risk to human health and environmental safety. However, there is still a lack of simple and in-situ detecting method for quizalofop-p-ethyl so far. In this work, the fluorescent sensor was firstly developed on detection of quizalofop-p-ethyl based on cyanostilbene-pyridine macrocycle (CPM). CPM was prepared by the "1 + 1" condensation of pyridine-substituted cyanostilbene derivative with 4,4'-Bis(chloromethyl)biphenyl in 68 % yield. The weak fluorescence of CPM in aqueous media transferred to strong orange fluorescence after sensing quizalofop-p-ethyl. This sensing behavior exhibited high selectivity among 28 kinds of herbicides and ions. The limitation of detection (LOD) was 2.98 × 10-8 M and the limitation of quantification (LOQ) was 9.94 × 10-8 M (λex = 390 nm, λem = the maximum emission between 512 nm and 535 nm) with a dynamic range of 0.01-0.9 eq. The binding constant (Ka) of quizalofop-p-ethyl to the sensor CPM was 3.2 × 106 M-1. The 1:1 sensing mechanism was confirmed as that quizalofop-p-ethyl was located in the cavity of CPM, which enhanced aggregating effect and reduced the intramolecular rotation of aromatic groups for better AIE effect. The sensing ability of CPM for quizalofop-p-ethyl had been efficiently applied in test paper experiments, agricultural product tests and real water samples, revealing that CPM has good application prospect for simple and in-situ detection of quizalofop-p-ethyl in real environment.

16.
Sci Total Environ ; 886: 163931, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37156379

RESUMO

The effects of non-insecticidal agrochemicals on pest natural predators remain largely unexplored except bees and silkworm. The herbicide quizalofop-p-ethyl (QpE), fungicide thiophanate-methyl (TM), and plant growth regulator mepiquat chloride (MC) have been extensively applied as non-insecticidal agrochemicals. Here, we systematically evaluated multiple effects of these 3 non-insecticidal agrochemicals on three generations of Propylea japonica, an important agroforestry predatory beetle, including the effects on its development, reproduction, enterobacteria, and transcriptomic response. The results showed that QpE exhibited a hormetic effect on P. japonica, thus significantly increasing the survival rate of generation 2 (F2) females, generation 3 (F3) females, and F3 males and body weight of F3 males. However, three successive generations exposed to TM and MC had no significant effect on longevity, body weight, survival rate, pre-oviposition period, and fecundity of P. japonica. Additionally, we investigated the effects of MC, TM, and QpE exposure on gene expression and gut bacterial community of F3 P. japonica. Under MC, TM, and QpE exposure, the overwhelming genes of P. japonica (99.90 %, 99.45 %, and 99.7 %) remained unaffected, respectively. Under TM and MC exposure, differentially expressed genes (DEGs) were not significantly enriched in any KEGG pathway, indicating TM and MC did not significantly affect functions of P. japonica, but under QpE exposure, the expression levels of drug metabolism-related genes were down-regulated. Although QpE treatment did not affect gut dominant bacterial community composition, it significantly increased relative abundances of detoxification metabolism-related bacteria such as Wolbachia, Pseudomonas and Burkholderia in P. japonica. However, TM and MC had no significant effect on the gut bacterial community composition and relative abundance in P. japonica. This study revealed for the first time the mechanism by which P. japonica might compensate for gene downregulation-induced detoxification metabolism decline through altering symbiotic bacteria under QpE exposure. Our findings provide reference for the rational application of non-insecticidal agrochemicals.


Assuntos
Besouros , Feminino , Masculino , Animais , Abelhas , Besouros/fisiologia , Bactérias , Medição de Risco
17.
J Chromatogr A ; 1707: 464289, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37573727

RESUMO

In this study, the attention was focused on quizalofop-ethyl, a chiral herbicide whose formulation has recently been marketed as quizalofop-P-ethyl, i.e. the (+)-enantiomer exhibiting herbicidal activity. To verify the real enantiomeric purity of this product as well as to study its environmental fate, the enantioselective separation of the P- and M- enantiomers of quizalofop-ethyl was achieved on Lux Cellulose-2 column (3­chloro,4-methylphenilcarbamate cellulose) under isocratic conditions in polar organic mode. Once established that the commercial formulation contains ˜ 0.6% (enantiomeric fraction) of M as an impurity, an HPLC-MS/MS method was developed, validated and applied to the analysis of soil, carrots and turnips treated with the herbicide. A simple solid-liquid extraction allowed recoveries greater than 70%; limits of detections of P and M enantiomers were below 5 ng g-1. The analyses of the real samples showed a modification of the enantiomeric fraction of quizalofop-M-ethyl between the commercial formulation (EFM = 0.63 ± 0.03%) and the analysed matrices (EFM = 7.6 ± 0.1% for carrots; EFM = 0% for the other matrices). This outcome highlighted the occurrence of an enantioselective biotic dissipation, responsible for a greater persistency of the distomer in carrots. On the other hand, since screening analyses revealed the occurrence of residues of the metabolite quizalofop-acid with the same EFs as the ester precursor, it was concluded that the hydrolytic conversion was an abiotic process.


Assuntos
Herbicidas , Solo , Cromatografia Líquida de Alta Pressão/métodos , Solo/química , Espectrometria de Massas em Tandem/métodos , Estereoisomerismo , Herbicidas/análise
18.
Sci Total Environ ; 857(Pt 1): 159427, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36244486

RESUMO

Quizalofop-p-ethyl is a widely used herbicide that poses a threat to human health and environmental safety. In this study, anti-quizalofop-p-ethyl monoclonal antibodies (mAbs) were prepared and used to develop a gold nanoparticle-based lateral flow immunoassay (AuNP-LFIA) for the detection of quizalofop-p-ethyl in agriproducts and environmental samples. Four hybridoma cell lines were obtained, among which 5B6D10E11 secreted mAb with the highest sensitivity, with a 50 % inhibition concentration of 4.57 ng/mL in the indirect competitive enzyme-linked immunosorbent assay. After optimization, the AuNP-LFIA strip based on the mAb (5B6D10E11) showed a visual detection limit of 10 ng/mL, and the results could be directly determined by the naked eye within 8 min. The cross-reactivity of the AuNP-LFIA for analogs of quizalofop-p-ethyl was negligible except for quizalofop-p-acid. The established AuNP-LFIA was proven to be accurate and precise based on the recovery test. Furthermore, the detection results of AuNP-LFIA were consistent with those of ultra-high-performance liquid chromatography tandem mass spectrometry.


Assuntos
Ouro , Nanopartículas Metálicas , Humanos , Ouro/química , Nanopartículas Metálicas/química , Imunoensaio/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Limite de Detecção
19.
Foods ; 11(7)2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35406986

RESUMO

An analytical method was developed to simultaneously determine pyridate, quizalofop-ethyl, and cyhalofop-butyl in brown rice, soybean, potato, pepper, and mandarin using LC-MS/MS. Purification was optimized using various sorbents: primary−secondary amine, octadecyl (C18) silica gel, graphitized carbon black, zirconium dioxide-modified silica particles, zirconium dioxide-modified silica particles (Z-SEP), and multi-walled carbon nanotubes (MWCNTs). Three versions of QuECHERS methods were then tested using the optimal purification agent. Finally, samples were extracted using acetonitrile and QuEChERS EN salts and purified using the Z-SEP sorbent. A six-point matrix-matched external calibration curve was constructed for the analytes. Good linearity was achieved with a determination coefficient ≥0.999. The limits of detection and quantification were 0.0075 mg/kg and 0.01 mg/kg, respectively. The method was validated after fortifying the target standards to the blank matrices at three concentration levels with five replicates for each concentration. The average recovery was within an acceptable range (70−120%), with a relative standard deviation <20%. The applicability of the developed method was evaluated with real-world market samples, all of which tested negative for these three herbicide residues. Therefore, this method can be used for the routine analysis of pyridate, quizalofop-ethyl, and cyhalofop-butyl in agricultural products.

20.
Environ Technol ; 43(26): 4147-4155, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34182888

RESUMO

An efficient gamma radiolytic decomposition of one of the extensively used herbicides in the world quizalofo-p-ethyl (QPE) was explored under different experimental conditions. Aqueous solutions of QPE were irradiated by gamma rays emitted by a Cobalt 60 source. QPE aqueous solutions were irradiated at doses of 0.5-3 kGy with 26.31 Gy min-1 dose rate. Obtained results indicated that removal efficiency of 98.5% and 73% of QPE were obtained, respectively, in absence and in presence of dissolved oxygen. Change of absorption spectra, pH effect and Total Organic Carbon (TOC) were carried out and studied. It was found that all absorption bands decreased with increasing irradiation dose and disappear totally after 3 kGy applied dose. Three pH conditions (pH = 10, pH = 6.2 and pH = 3) were applied in radiolytic degradation of QPE showing that the best removal efficiency has been found for neutral pH. Interestingly, the % TOC removal reaches 98% at 3 kGy indicated practically total mineralization. Furthermore, spectrophotometric analyses argued in favour of a pseudo-first-order kinetic of QPE degradation. The resulting apparent rate constant value is approximately kapp = (0.012 ± 0.001) min-1. Finally, several by-products such as 6-chloroquinoxalin -2-ol, 2-(4-hydroxy-phenyoxy) propionate, 1,4-hydroquinone, quinone, 4-chlorobenzene-1,2diol and 1,2,4-benzenetriol were identified by gas chromatography-mass spectrometry (GC/MS) evidencing that radiation process starting with the fragmentation of the molecule involving the hydroxyl radical, which is generated by the radiolysis of water. Based on the identification intermediates, a degradation mechanistic schema of QPE has been proposed.


Assuntos
Herbicidas , Poluentes Químicos da Água , Propionatos , Herbicidas/química , Cinética , Quinoxalinas , Raios gama , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa