Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Biochem Biophys Res Commun ; 506(4): 912-917, 2018 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-30392912

RESUMO

Liposarcoma is the most common type of soft tissue sarcoma. Among the subtypes of liposarcoma, dedifferentiated liposarcoma (DDLPS) is recalcitrant and has the lowest survival rate. The aim of the present study is to determine the efficacy of metabolic targeting with recombinant methioninase (rMETase) combined with palbociclib (PAL) against a doxorubicin (DOX)-resistant DDLPS in a patient-derived orthotopic xenograft (PDOX) model. A resected tumor from a patient with recurrent high-grade DDLPS in the right retroperitoneum was grown orthotopically in the right retroperitoneum of nude mice to establish a PDOX model. The PDOX models were randomized into the following groups when tumor volume reached 100 mm3: G1, control without treatment; G2, DOX; G3, PAL; G4, recombinant methioninase (rMETase); G5, PAL combined with rMETase. Tumor length and width were measured both pre- and post-treatment. On day 14 after initiation, all treatments significantly inhibited tumor growth compared to the untreated control except DOX. PAL combined with rMETase was significantly more effective than both DOX, rMETase alone, and PAL alone. Combining PAL and rMETase significantly regressed tumor volume on day 14 after initiation of treatment and was the only treatment to do so. The relative body weight on day 14 compared with day 0 did not significantly differ between each treatment group. The results of the present study indicate the powerful combination of rMETase and PAL should be tested clinically against DDLPS in the near future.


Assuntos
Liases de Carbono-Enxofre/uso terapêutico , Doxorrubicina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Lipossarcoma/tratamento farmacológico , Piperazinas/uso terapêutico , Piridinas/uso terapêutico , Proteínas Recombinantes/uso terapêutico , Idoso , Animais , Peso Corporal/efeitos dos fármacos , Liases de Carbono-Enxofre/farmacologia , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/farmacologia , Humanos , Lipossarcoma/patologia , Masculino , Camundongos Nus , Piperazinas/farmacologia , Piridinas/farmacologia , Proteínas Recombinantes/farmacologia
2.
Cancer Genomics Proteomics ; 21(4): 395-398, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38944421

RESUMO

BACKGROUND/AIM: It has been recently demonstrated that a methionine-restricted diet increases the response to immune checkpoint inhibitors (ICIs) via an increase in PD-L1 in a syngeneic mouse colorectal-cancer model. Our laboratory has developed recombinant methioninase (rMETase) to restrict methionine. The aim of the present study was to determine if rMETase can increase PD-L1 expression in a human colorectal cancer cell line in vitro. MATERIALS AND METHODS: We evaluated the half-maximal inhibitory concentration (IC50) value of rMETase on HCT-116 human colorectal cancer cells. HCT-116 cells were treated with rMETase at the IC50 Western immunoblotting was used to compare PD-L1 expression in HCT-116 cells treated with and without rMETase. RESULTS: The IC50 value of rMETase on HCT-116 was 0.79 U/ml. Methionine restriction using rMETase increased PD-L1 expression compared to the untreated control (p<0.05). CONCLUSION: Methionine restriction with rMETase up-regulates PD-L1 expression in human colorectal cancer cells and the combination of rMETase and ICIs may have the potential to improve immunotherapy in human colorectal cancer.


Assuntos
Antígeno B7-H1 , Liases de Carbono-Enxofre , Neoplasias Colorretais , Metionina , Proteínas Recombinantes , Humanos , Liases de Carbono-Enxofre/metabolismo , Metionina/farmacologia , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Proteínas Recombinantes/farmacologia , Células HCT116
3.
Anticancer Res ; 44(3): 929-933, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38423628

RESUMO

BACKGROUND/AIM: Rapamycin and recombinant methioninase (rMETase) have both shown efficacy to target cancer cells. Rapamycin prevents cancer-cell growth by inhibition of the mTOR protein kinase. rMETase, by degrading methionine, targets the methionine addiction of cancer and has been shown to improve the efficacy of chemotherapy drugs. In the present study, we aimed to determine if a synergy exists between rapamycin and rMETase when used in combination against a colorectal-carcinoma cell line, compared to normal fibroblasts, in vitro. MATERIALS AND METHODS: The half-maximal inhibitory concentrations (IC50) of rapamycin alone and rMETase alone against the HCT-116 human colorectal-cancer cell line and Hs-27 human fibroblasts were determined using the CCK-8 Cell Viability Assay. After calculating the IC50 of each drug, we determined the efficacy of rapamycin and rMETase combined on both HCT-116 and Hs-27. RESULTS: Hs-27 normal fibroblasts were more sensitive to rapamycin than HCT-116 colon-cancer cells (IC50=0.37 nM and IC50=1.38 nM, respectively). HCT-116 cells were more sensitive to rMETase than Hs-27 cells (IC50 0.39 U/ml and IC50 0.96 U/ml, respectively). The treatment of Hs-27 cells with the combination of rapamycin (IC50=0.37 nM) and rMETase (IC50=0.96 U/ml) showed no significant difference in their effect on Hs-27 cell viability compared to the two drugs being used separately. However, the treatment of HCT-116 cells with the combination of rapamycin (IC50=1.38 nM) and rMETase (IC50=0.39 U/ml) was able to decrease cancer-cell viability significantly more than either single-drug treatment. CONCLUSION: Rapamycin and rMETase, when used in combination against colorectal-cancer cells, but not normal fibroblasts, in vitro, have a cancer-specific synergistic effect, suggesting that the combination of these drugs can be used as an effective, targeted cancer therapy.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Humanos , Sirolimo/farmacologia , Liases de Carbono-Enxofre , Neoplasias do Colo/tratamento farmacológico , Metionina , Células HCT116 , Proteínas Recombinantes
4.
Cancer Diagn Progn ; 4(4): 402-407, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962551

RESUMO

Background/Aim: Androgen-independent prostate cancer (AIPC) is resistant to androgen-depletion therapy and is a recalcitrant disease. Docetaxel is the first-line treatment for AIPC, but has limited efficacy and severe side-effects. All cancers are methionine-addicted, which is termed the Hoffman effect. Recombinant methioninase (rMETase) targets methionine addiction. The purpose of the present study was to determine if the combination of docetaxel and rMETase is effective for AIPC. Materials and Methods: The half-maximal inhibitory concentrations (IC50) of docetaxel and rMETase alone were determined for the human AIPC cell line PC-3 and Hs27 normal human fibroblasts in vitro. The synergistic efficacy for PC-3 and Hs27 using the combination of docetaxel and rMETase at their IC50s for PC-3 was determined. Results: The IC50 of docetaxel for PC-3 and for Hs27 was 0.72 nM and 0.94 nM, respectively. The IC50 of rMETase for PC-3 and for Hs27 was 0.67 U/ml and 0.76 U/ml, respectively. The combination of docetaxel and rMETase was synergistic for PC-3 but not Hs27 cells. Conclusion: The combination of a relatively low concentration of docetaxel and rMETase was synergistic and effective for AIPC. The present results also suggest that the effective concentration of docetaxel can be reduced by using rMETase, which may reduce toxicity. The present results also suggest the future clinical potential of the combination of docetaxel and rMETase for AIPC.

5.
Cancer Diagn Progn ; 4(4): 396-401, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962555

RESUMO

Background/Aim: Rapamycin inhibits the mTOR protein kinase. Methioninase (rMETase), by degrading methionine, targets the methionine addiction of cancer cells and has been shown to improve the efficacy of chemotherapy drugs, reducing their effective doses. Our previous study demonstrated that rapamycin and rMETase work synergistically against colorectal-cancer cells, but not on normal cells, when administered simultaneously in vitro. In the present study, we aimed to further our previous findings by exploring whether  synergy exists between rapamycin and rMETase when used sequentially against HCT-116 colorectal-carcinoma cells, compared to simultaneous administration, in vitro. Materials and Methods: The half-maximal inhibitory concentrations (IC50) of rapamycin alone and rMETase alone against the HCT-116 human colorectal-cancer cell line were previously determined using the CCK-8 cell viability assay (11). We then examined the efficacy of rapamycin and rMETase, both at their IC50, administered simultaneously or sequentially on the HCT-116 cell line, with rapamycin administered before rMETase and vice versa. Results: The IC50 for rapamycin and rMETase, determined from previous experiments (11), was 1.38 nM and 0.39 U/ml, respectively, of HCT-116 cells. When rMETase was administered four days before rapamycin, both at the IC50, there was a 30.46% inhibition of HCT-116 cells. When rapamycin was administered four days before rMETase, both at the IC50, there was an inhibition of 41.13%. When both rapamycin and rMETase were simultaneously administered, both at the IC50, there was a 71.03% inhibition. Conclusion: Rapamycin and rMETase have synergistic efficacy against colorectal-cancer cells in vitro when administered simultaneously, but not sequentially.

6.
Cancer Diagn Progn ; 3(3): 272-281, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168964

RESUMO

All cancer cell types are methionine-addicted, which is termed the Hoffman effect. Cancer cells, unlike normal cells, cannot survive without large amount of methionine. In general, when methionine is depleted, both normal cells and cancer cells synthesize methionine from homocysteine, but cancer cells consume large amounts of methionine and they cannot survive without exogenous methionine. For this reason, methionine restriction has been shown to be effective against many cancers in vitro and in vivo. Methionine restriction arrests cancer cells in the S/G2-phase of the cell cycle. Cytotoxic agents that act in the S/G2-phase are highly effective when used in combination with methionine restriction due to the cancer cells being trapped in S/G2-phase, unlike normal cells which arrest in G1/G0-phase. Combining methionine restriction and chemotherapeutic drugs for cancer treatment is termed the Hoffman protocol. The efficacy of many cytotoxic agents and molecular-targeted drugs in combination with methionine restriction has been demonstrated. The most effective method of methionine restriction is the administration of recombinant methioninase (rMETase), which degrades methionine. The efficacy of rMETase has been reported in mice and human patients by oral administration. The present review describes studies on anticancer drugs that showed synergistic efficacy in combination with methionine restriction, including rMETase administration. It is proposed that the next disruptive generation of cancer chemotherapy should employ current therapy in combination with methionine restriction for all cancer types.

7.
Aging (Albany NY) ; 15(11): 4642-4648, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37301544

RESUMO

Obesity increases with aging. Methionine restriction affects lipid metabolism and can prevent obesity in mice. In the present study we observed C57BL/6 mice to double their body weight from 4 to 48 weeks of age and become obese. We evaluated the efficacy of oral administration of recombinant-methioninase (rMETase)-producing E. coli (E. coli JM109-rMETase) or a methionine-deficient diet to reverse old-age-induced obesity in C57BL/6 mice. Fifteen C57BL/6 male mice aged 12-18 months with old-age-induced obesity were divided into three groups. Group 1 was given a normal diet supplemented with non-recombinant E. coli JM109 cells orally by gavage twice daily; Group 2 was given a normal diet supplemented with recombinant E. coli JM109-rMETase cells by gavage twice daily; and Group 3 was given a methionine-deficient diet without treatment. The administration of E. coli JM109-rMETase or a methionine-deficient diet reduced the blood methionine level and reversed old-age-induced obesity with significant weight loss by 14 days. There was a negative correlation between methionine levels and negative body weight change. Although the degree of efficacy was higher in the methionine-deficient diet group than in the E. coli JM109-rMETase group, the present findings suggested that oral administration of E. coli JM109-rMETase, as well as a methionine-deficient diet, are effective in reversing old-age-induced obesity. In conclusion, the present study provides evidence that restricting methionine by either a low-methionine diet or E. coli JM109-rMETase has clinical potential to treat old-age-induced obesity.


Assuntos
Escherichia coli , Metionina , Masculino , Animais , Camundongos , Proteínas Recombinantes , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Racemetionina , Peso Corporal , Dieta , Administração Oral
8.
Cancer Diagn Progn ; 3(6): 655-659, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37927805

RESUMO

Background/Aim: Regorafenib is a multi-kinase inhibitor, targeting vascular endothelial growth factor receptor 2, fibroblast growth factor receptor 1 and other oncogenic kinases. Regorafenib has efficacy in metastatic colon cancer, but has severe dose-limiting toxicities which cause patients to stop taking the drug. The aim of the present study was to determine if recombinant methioninase (rMETase) could lower the effective concentration of regorafenib in vitro against a colorectal-cancer cell line. Materials and Methods: Firstly, we examined the half-maximal inhibitory concentration (IC50) of regorafenib alone and rMETase alone for the HCT-116 human colorectal-cancer cell line. After that, using the IC50 concentration of each drug, we investigated the efficacy of the combination of regorafenib and rMETase. Results: While both methioninase alone (IC50=0.61 U/ml) and regorafenib alone (IC50=2.26 U/ml) inhibited the viability of HCT-116 cells, the combination of the two agents was more than twice as effective as either alone. Addition of rMETase at 0.61 U/ml lowered the IC50 of regorafenib from 2.26 µM to 1.46 µM. Conclusion: rMETase and regorafenib are synergistic, giving rise to the possibility of lowering the effective dose of regorafenib in patients, thereby reducing its severe toxicity, allowing more cancer patients to be treated with regorafenib.

9.
In Vivo ; 35(5): 2531-2534, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34410939

RESUMO

BACKGROUND/AIM: The aim of the present study was to identify effective drugs for a highly-aggressive liver-metastasis of triple-negative breast cancer (TNBC) in a patient-derived orthotopic xenograft (PDOX) mouse model. Drugs tested were oral recombinant methioninase (o-rMETase), low-dose eribulin and their combination. MATERIALS AND METHODS: Patient-derived TNBC was implanted in the liver of nude mice by surgical hepatic implantation. Two weeks after transplantation, 32 mice were randomized (n=8 per group) into a phosphate-buffered saline vehicle-control group; o-rMETase-treatment group (100 units, o-rMETase, oral, daily for 2 weeks); eribulin-treatment group (0.05 mg/kg intraperitoneally once per week for 2 weeks); or combination-treatment group (100 units r-METase, oral, daily for 2 weeks + 0.05 mg/kg eribulin intraperitoneally once per week for 2 weeks). RESULTS: After 2 weeks, the three treatment groups exhibited significantly-inhibited TNBC growth in the liver compared to the vehicle-control group (p≤0.05). CONCLUSION: o-rMETase and low-dose eribulin monotherapy and their combination were efficacious against the highly-aggressive TNBC PDOX growing in the liver. The TNBC PDOX model can be used to identify highly-effective drugs for therapy of TNBC with liver metastasis.


Assuntos
Neoplasias Hepáticas , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Camundongos , Liases de Carbono-Enxofre , Furanos , Cetonas , Neoplasias Hepáticas/tratamento farmacológico , Camundongos Nus , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Anticancer Res ; 39(9): 4653-4657, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31519563

RESUMO

BACKGROUND/AIM: Osteosarcoma is a recalcitrant neoplasm which occurs predominantly in adolescents and young adults. Recently, using a patient-derived orthotopic xenograft (PDOX) model of malignant soft-tissue sarcoma (STS), we showed that oral recombinant methioninase (o-rMETase), in combination with caffeine, was more efficacious than o-rMETase alone in inhibiting STS tumor growth. In the present report, we determined the efficacy of o-rMETase combined with oral caffeine on a cisplatinum (CDDP)-resistant osteosarcoma PDOX model. MATERIALS AND METHODS: Osteosarcoma PDOX models were randomly divided into seven treatment groups (6 mice in each group): untreated control; CDDP alone; o-rMETase alone; o-rMETase with caffeine; CDDP plus o-rMETase; CDDP plus caffeine; and CDDP plus o-rMETase with caffeine. Tumor size and body weight were measured throughout the treatment. RESULTS: Tumors regressed after treatment with CDDP plus o-rMETase with caffeine. Tumors treated with CDDP plus o-rMETase with caffeine also had the most necrosis. CONCLUSION: The combination of o-rMETase and caffeine together with first-line chemotherapy was efficacious for drug-resistant osteosarcoma and has clinical potential in the treatment of this highly-resistant neoplasm.


Assuntos
Antimetabólitos Antineoplásicos/administração & dosagem , Cafeína/administração & dosagem , Liases de Carbono-Enxofre/administração & dosagem , Cisplatino/administração & dosagem , Resistencia a Medicamentos Antineoplásicos , Administração Oral , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Osteossarcoma/diagnóstico por imagem , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Methods Mol Biol ; 1866: 149-161, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30725414

RESUMO

Methionine (MET) is a general target in cancer due to the excess requirement of MET by cancer cells. MET has been effectively restricted by recombinant methioninase (rMETase) in mouse models of cell-line tumors. This chapter reviews the efficacy of rMETase on patient-derived orthotopic xenograft (PDOX) mouse models of human cancer. Ewing's sarcoma is a recalcitrant disease even though development of multimodal therapy has improved patients' outcome. A Ewing's sarcoma was implanted in the right chest wall of nude mice to establish a PDOX model. rMETase effectively reduced tumor growth compared to the untreated control. The MET level both of plasma and supernatants derived from sonicated tumors was lower in the rMETase treatment group. Body weight did not significantly differ at any time points between the two groups. A PDOX nude mouse model of a BRAF V600E-mutant melanoma was established in the chest wall of nude mice and also tested with rMETase in combination with a first-line melanoma drug, temozolomide (TEM). Combination therapy of TEM and rMETase was significantly more efficacious than either monotherapy. The results reviewed in this chapter demonstrate the clinical potential of rMETase.


Assuntos
Liases de Carbono-Enxofre/uso terapêutico , Neoplasias/tratamento farmacológico , Proteínas Recombinantes/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Peso Corporal , Liases de Carbono-Enxofre/sangue , Liases de Carbono-Enxofre/farmacologia , Proliferação de Células/efeitos dos fármacos , Humanos , Camundongos Nus , Mutação/genética , Neoplasias/sangue , Neoplasias/patologia , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Recombinantes/biossíntese , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Fatores de Tempo
12.
Methods Mol Biol ; 1866: 211-229, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30725418

RESUMO

Methionine (MET) is a general metabolic therapeutic target in cancer, whereby cancer cells have an elevated requirement for MET, termed MET dependence. We have developed recombinant L-methionine α-deamino-γ-mercaptomethane lyase (recombinant methioninase [rMETase, EC 4.4.1.11]) as targeted therapy of all cancer types. Pharmacokinetics, MET depletion, antigenicity, and toxicity of rMETase were examined in macaque monkeys. Pharmacokinetic analysis showed that rMETase was eliminated with a T1/2 of 2.49 h. A 2-week i.v. administration of 4000 units/kg every 8 h/day for 2 weeks resulted in a steady-state depletion of plasma MET to less than 2 µM. The only manifest toxicity was decreased food intake and slight weight loss. Serum albumin and red-cell values declined transiently during treatment. Rechallenge on day 28 resulted in anaphylactic shock and death in one animal. Pretreatment with hydrocortisone prevented the anaphylactic reaction. Anti-rMETase antibodies (at 10-3) were found after the first challenge, increased to 10-6 after the fourth challenge, and decreased to 10-2 by 2 months post-therapy. Therefore, the therapeutic potential of rMETase is limited by its short plasma half-life and immunologic effects, including high antibody production in mice and anaphylactic reactions in monkeys. To overcome these limits, rMETase has been coupled to methoxypolyethylene glycol succinimidyl glutarate polyethylene glycol (MEGC-PEG-5000). The pharmacokinetics, antigenicity, and toxicity of MEGC-PEG-rMETase in macaque monkeys were evaluated using an escalating-dose strategy. In pharmacokinetic studies, a single 4000 units/kg dose showed that MEGC-PEG-rMETase holoenzyme activity was eliminated with a biological half-life of 1.3 h, and the MEGC-PEG-rMETase apoenzyme was eliminated with a biological half-life of 90 h, a 36-fold increase compared with non-PEGylated rMETase. The disparity in the T½ of the apoenzyme and the holoenzyme reflects the loss of co-factor pyridoxal-L-phosphate of the circulating MEGC-PEG-rMETase. A 7-day i.v. administration of 4000 units/kg every 12 h resulted in a steady-state depletion of plasma MET to <5 µmol/L. The only manifest toxicity was decreased food intake and slight weight loss. Red cell values and hemoglobin declined transiently. Subsequent challenges did not result in any immunologic reactions. Anti-MEGC-PEG-rMETase antibodies were 100- to 1000-fold less than antibodies elicited by naked rMETase, thereby suggesting clinical potential of MEGC-PEG-rMETase as a broad anticancer agent.


Assuntos
Liases de Carbono-Enxofre/efeitos adversos , Polietilenoglicóis/efeitos adversos , Proteínas Recombinantes/efeitos adversos , Animais , Anticorpos/sangue , Liases de Carbono-Enxofre/imunologia , Metionina/sangue , Camundongos , Primatas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Methods Mol Biol ; 1866: 133-148, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30725413

RESUMO

Cancer cells are methionine (MET) dependent compared to normal cells as they have an elevated requirement for MET in order to proliferate. MET restriction selectively traps cancer cells in the S/G2 phase of the cell cycle. The cell cycle phase can be visualized by color coding with the fluorescence ubiquitination-based cell cycle indicator (FUCCI). Recombinant methioninase (rMETase) is an enzyme that effectively degrades MET. rMETase induces S/G2-phase blockage of cancer cells which is identified by the cancer cells' green fluorescence with FUCCI imaging. Cancer cells in G1/G0 are the majority of the cells in solid tumors and are resistant to the chemotherapy. Treatment of cancer cells with standard chemotherapy drugs only led to the majority of the cancer cell population being arrested in G0/G1 phase, identified by the cancer cells' red fluorescence in the FUCCI system. The G0/G1-phase cancer cells are chemo-resistant. Tumor targeting Salmonella typhimurium A1-R (S. typhimurium A1-R) was used to decoy quiescent G0/G1 stomach cancer cells growing in nude mice to cycle, with subsequent rMETase treatment to selectively trap the decoyed cancer cells in S/G2 phase, which made them highly sensitive to chemotherapy. Subsequent cisplatinum (CDDP) or paclitaxel (PTX) chemotherapy was then administered to kill the decoyed and trapped cancer cells, which completely prevented or regressed tumor growth. In a subsequent experiment, a patient-derived orthotopic xenograft (PDOX) model of recurrent CDDP-resistant metastatic osteosarcoma was eradicated by the combination of Salmonella typhimurium A1-R decoy, rMETase S/G2-phase cell cycle trap, and CDDP cell kill. Salmonella typhimurium A1-R and rMETase pre-treatment thereby overcame CDDP resistance. These results demonstrate the effectiveness of the new chemotherapy paradigm of "decoy, trap, and kill" chemotherapy.


Assuntos
Liases de Carbono-Enxofre/uso terapêutico , Ciclo Celular/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Liases de Carbono-Enxofre/biossíntese , Liases de Carbono-Enxofre/farmacologia , Fluorescência , Humanos , Camundongos Nus , Neoplasias/patologia , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Proteínas Recombinantes/biossíntese , Salmonella typhimurium/metabolismo , Ubiquitinação , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Methods Mol Biol ; 1866: 107-131, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30725412

RESUMO

The elevated requirement for methionine (MET) of cancer cells is termed MET dependence. To selectively target the MET dependence of tumors for treatment on a large-scale preclinical and clinical basis, the L-methionine α-deamino-γ-mercaptomethane-lyase (EC 4.4.1.11) (methioninase, [METase]) gene from Pseudomonas putida has been cloned in Escherichia coli using the polymerase chain reaction (PCR). Purification using two DEAE Sepharose FF ion-exchange column and one ActiClean Etox endotoxin-affinity chromatography column has been established. Plasmid pMGLTrc03, which has a trc promoter and a spacing of 12 nucleotides between the Shine-Dalgarno sequence and the ATG translation initiation codon, was selected as the most suitable plasmid. The recombinant bacteria produced rMETase at 43% of the total proteins in soluble fraction by simple batch fermentation using a 500 L fermentor. Crystals were directly obtained from crude enzyme with 87% yield by a crystallization in the presence of 9.0% polyethylene glycol 6000, 3.6% ammonium sulfate, and 0.18 M sodium chloride using a 100 L crystallizer. After recrystallization, the enzyme was purified by anion-exchange column chromatography to remove endotoxins and by gel filtration for polishing. Purified rMETase is stable to lyophilization. In order to prevent immunological reactions which might be produced by multiple dosing of rMETase and to prolong the serum half-life of rMETase, the N-hydroxysuccinimidyl ester of methoxypolyethylene glycol propionic acid (M-SPA-PEG 5000) has been coupled to rMETase. The PEGylated molecules (PEG-rMETase) were purified from unreacted PEG with Amicon 30 K centriprep concentrators or by Sephacryl S-300 HR gel-filtration chromatography. Unreacted rMETase was removed by DEAE Sepharose FF anion-exchange chromatography. The resulting PEG-rMETase subunit, produced from a PEG/rMETase ratio of 30/1 in the synthetic reaction, had a molecular mass of approximately 53 kda determined by matrix-assisted laser desorption/ionization mass spectrometry, indicating the conjugation of two PEG molecules per subunit of rMETase and eight per tetramer. PEG-rMETase molecules obtained from reacting ratios of PEG/rMETase of 30/1 had an enzyme activity of 70% of unmodified rMETase. PEGylation of rMETase increased the serum half-life of the enzyme in rats to approximately 160 min compared to 80 min for unmodified rMETase. PEG-rMETase could deplete serum MET levels to less than 0.1 µM for approximately 8 h compared to 2 h for rMETase in rats. A significant prolongation of in vivo activity and effective MET depletion by the PEG-rMETase were achieved by the simultaneous administration of pyridoxal 5'-phosphate. rMETase was also conjugated with methoxypolyethylene glycol succinimidyl glutarate 5000 (MEGC-PEG). Miniosmotic pumps containing various concentrations of PLP were implanted in BALB-C mice. PLP-infused mice were then injected with a single dose of 4000 or 8000 units/kg PEG-rMETase. Mice infused with 5, 50, 100, 200, and 500 mg/mL PLP-containing miniosmotic pumps increased plasma PLP to 7, 24, 34, 60, and 95 µM, respectively, from the PLP baseline of 0.3 µM. PLP increased the half-life of MEGC-PEG-rMETase holoenzyme in a dose-dependent manner. The extended time of MET depletion by MEGC-PEG-rMETase was due to the maintenance of active MEGC-PEG-rMETase holoenzyme by infused PLP.


Assuntos
Liases de Carbono-Enxofre/uso terapêutico , Neoplasias/tratamento farmacológico , Proteínas Recombinantes/uso terapêutico , Animais , Apoenzimas/metabolismo , Liases de Carbono-Enxofre/sangue , Liases de Carbono-Enxofre/química , Liases de Carbono-Enxofre/isolamento & purificação , Cristalização , Escherichia coli/metabolismo , Fermentação , Camundongos Endogâmicos BALB C , Polietilenoglicóis/química , Pseudomonas putida/enzimologia , Pseudomonas putida/genética , Fosfato de Piridoxal/administração & dosagem , Fosfato de Piridoxal/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
15.
Anticancer Res ; 38(10): 5639-5644, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30275182

RESUMO

BACKGROUND/AIM: Synovial sarcoma (SS) is a recalcitrant neoplasm with low chemosensitivity. We recently reported that recombinant methioninase (rMETase) inhibited SS growth in a patient-derived orthotopic xenograft (PDOX) mouse model and was more effective when administered in combination with the first-line drug doxorubicin (DOX). Caffeine enhances the efficacy of anticancer drugs by overcoming drug-induced cell-cycle arrest and increasing subsequent apoptosis. Here, we determined the efficacy of oral recombinant methioninase (o-rMETase) in combined with caffeine on an SS-PDOX model. MATERIALS AND METHODS: Mice bearing SS-PDOX tumors were randomized into four treatment groups of six: Untreated control; o-rMETase alone; o-rMETase with caffeine; DOX plus o-rMETase with caffeine. Tumor size and body weight were measured during the treatment and plasma L-methionine (MET) levels were measured at the end of treatment. RESULTS: All treatments significantly inhibited SS-PDOX tumor growth. Combining caffeine with o-rMETase was more effective than o-rMETase alone. DOX combined with o-rMETase and caffeine led to regression of SS-PDOX. Plasma MET levels were reduced with o-rMETase treatment. CONCLUSION: These results suggest that combining o-rMETase and caffeine along with first-line chemotherapy can be highly effective for SS and has clinical potential for this recalcitrant disease.


Assuntos
Cafeína/farmacologia , Liases de Carbono-Enxofre/administração & dosagem , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Proteínas Recombinantes/administração & dosagem , Sarcoma Sinovial/prevenção & controle , Administração Oral , Animais , Antibióticos Antineoplásicos/farmacologia , Liases de Carbono-Enxofre/genética , Estimulantes do Sistema Nervoso Central/farmacologia , Terapia Combinada , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Sarcoma Sinovial/metabolismo , Sarcoma Sinovial/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Oncotarget ; 9(13): 11119-11125, 2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29541401

RESUMO

An excessive requirement for methionine (MET) for growth, termed MET dependence, appears to be a general metabolic defect in cancer. We have previously shown that cancer-cell growth can be selectively arrested by MET restriction such as with recombinant methioninase (rMETase). In the present study, we utilized patient-derived orthotopic xenograft (PDOX) nude mouse models with pancreatic cancer or melanoma to determine the relationship between intra-tumor MET level and tumor size. After the tumors grew to 100 mm3, the PDOX nude mice were divided into two groups: untreated control and treated with rMETase (100 units, i.p., 14 consecutive days). On day 14 from initiation of treatment, intra-tumor MET levels were measured and found to highly correlate with tumor volume, both in the pancreatic cancer PDOX (p<0.0001, R2=0.89016) and melanoma PDOX (p<0.0001, R2=0.88114). Tumors with low concentration of MET were smaller. The present results demonstrates that patient tumors are highly dependent on MET for growth and that rMETase effectively lowers tumor MET.

17.
Anticancer Res ; 37(9): 4807-4812, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28870899

RESUMO

BACKGROUND: Methionine dependence may be the only known general metabolic defect in cancer. In order to exploit methionine dependence for therapy, our laboratory previously cloned L-methionine α-deamino-γ-mercaptomethane lyase [EC 4.4.1.11]) (recombinant methioninase [rMETase]), which was subsequently tested in mouse models of various types of human tumors. The present study aimed to investigate the efficacy of rMETase on human osteosarcoma cells in vitro and in vivo. MATERIALS AND METHODS: Human osteosarcoma cell lines 143B, HOS and SOSN2 were tested in vitro for survival during a 72-h exposure to rMETase using the WST-8 assay. Half-maximal inhibitory concentrations were calculated for in vitro efficacy experiments. 143B cells were orthotopically transplanted into the tibia of nude mice. Mouse models were randomized into the following groups 1 week after transplantation: Group 1, untreated control; Group 2, cisplatinum (CDDP) [intraperitoneal (i.p.) injection at 6 mg/kg weekly, for 3 weeks], positive control; Group 3, rMETase, 100 units/mouse i.p. daily, for 21 days. Tumor sizes and body weight were measured with calipers and a digital balance once per week, respectively. RESULTS: rMETase significantly inhibited osteosarcoma cell growth, in a dose-dependent manner, in vitro. Both CDDP and rMETase treatment significantly inhibited tumor volume compared to untreated control mice at 5 weeks after initiation. Tumor volumes were as follows: Group 1, untreated, control: 1808.2 ± 344 mm3; Group 2, CDDP: 1102.2 ± 316 mm3, p=0.0008 compared to untreated control; Group 3, rMETase: 884.8 ± 361 mm3, p=0.0001 compared to untreated control. There were no animal deaths in any group. The body weight of mice was not significantly different between any group. CONCLUSION: rMETase showed promising efficacy against osteosarcoma, a recalcitrant tumor type. Future studies will investigate the efficacy of rMETase on patient-derived orthotopic xenograft (PDOX) models of osteosarcoma as a bridge to testing rMETase in the clinic.


Assuntos
Liases de Carbono-Enxofre/uso terapêutico , Terapia de Alvo Molecular , Osteossarcoma/tratamento farmacológico , Osteossarcoma/metabolismo , Proteínas Recombinantes/uso terapêutico , Animais , Peso Corporal/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Modelos Animais de Doenças , Humanos , Camundongos Nus , Resultado do Tratamento
18.
Food Agric Immunol ; 28(6): 1374-1392, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29563666

RESUMO

The accessibility of selenium from naturally enriched sources such as cereals crops can potentially be used as selenium supplements to support nutritional requirements. Dietary selenium supplementation, as Se-rich wheat extracts, on RAW264.7 macrophage cells enhanced the antioxidant capacity via augmentation of cellular selenoprotein glutathione peroxidase 1 (GPx-1) expression in the absence or presence of lipopolysaccharide (LPS) treatment. Cells were supplemented with Se in the form of sodium selenite (SS), seleniferous wheat extract (SeW) and seleniferous wheat extract with rMETase treatment (SeW+rMET) at three different concentrations. Cells supplemented with SS and SeW+rMET showed increase in GPx-1 expression as compared to SeW treated cells. SeW+rMET, further, down-regulated the LPS-induced expression of cyclooxygenase-2, microsomal PGE synthase-1 and inducible nitric oxide synthase w.r.t. Se-deficient cells, while the expression of hematopoietic PGD synthase was upregulated. This demonstrates SeSup effectively modulates the expression inflammatory responses, indicating the potential benefits of dietary selenium supplementation.

19.
Expert Opin Biol Ther ; 15(1): 21-31, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25439528

RESUMO

INTRODUCTION: All tested cancer cell types are methionine dependent in that the cells arrest and eventually die when deprived of methionine, a condition that is generally nontoxic to normal cells. Methionine dependence is the only known general metabolic defect in cancer. Methionine-deprived cancer cells arrest at the S/G2 phase, an unusual position for cell cycle arrest. In order to exploit the cancer-specific metabolic defect of methionine dependence, methioninases were developed. AREAS COVERED: The present Expert Opinion describes the phenomena of methionine dependence and a methioninase cloned from Pseudomonas putida (chemical name: l-methionine α-deamino-γ-mercaptomethane lyase [EC 4.4.1.11]). The cloned methioninase, termed recombinant methioninase, or rMETase, has been tested in mouse models of human cancer as well as in macaque monkeys and a pilot Phase I trial of human cancer patients. Efficacy of rMETase has been demonstrated against various cancer types in mouse models. EXPERT OPINION: The most promising application of rMETase therapy is in sequential combination therapy, whereby the cancer cells within a tumor are trapped in S/G2 by methioninase treatment and then treated with chemotherapeutic agents active against cells in S/G2.


Assuntos
Liases de Carbono-Enxofre/uso terapêutico , Metionina/metabolismo , Neoplasias/tratamento farmacológico , Proteínas Recombinantes/uso terapêutico , Animais , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Ensaios Clínicos Fase I como Assunto , Clonagem Molecular , Terapia Combinada , Humanos , Macaca , Camundongos , Terapia de Alvo Molecular , Neoplasias/metabolismo , Pseudomonas putida/enzimologia , Pseudomonas putida/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa