Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
NMR Biomed ; 34(11): e4584, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34245482

RESUMO

It was recently demonstrated that nonpersistent radicals can be generated in frozen solutions of metabolites such as pyruvate by irradiation with UV light, enabling radical-free dissolution dynamic nuclear polarization. Although pyruvate is endogenous, the presence of pyruvate may interfere with metabolic processes or the detection of pyruvate as a metabolic product, making it potentially unsuitable as a polarizing agent. Therefore, the aim of the current study was to characterize solutions containing endogenously occurring alternatives to pyruvate as UV-induced nonpersistent radical precursors for in vivo hyperpolarized MRI. The metabolites alpha-ketovalerate (αkV) and alpha-ketobutyrate (αkB) are analogues of pyruvate and were chosen as potential radical precursors. Sample formulations containing αkV and αkB were studied with UV-visible spectroscopy, irradiated with UV light, and their nonpersistent radical yields were quantified with electron spin resonance and compared with pyruvate. The addition of 13 C-labeled substrates to the sample matrix altered the radical yield of the precursors. Using αkB increased the 13 C-labeled glucose liquid-state polarization to 16.3% ± 1.3% compared with 13.3% ± 1.5% obtained with pyruvate, and 8.9% ± 2.1% with αkV. For [1-13 C]butyric acid, polarization levels of 12.1% ± 1.1% for αkV, 12.9% ± 1.7% for αkB, 1.5% ± 0.2% for OX063 and 18.7% ± 0.7% for Finland trityl, were achieved. Hyperpolarized [1-13 C]butyrate metabolism in the heart revealed label incorporation into [1-13 C]acetylcarnitine, [1-13 C]acetoacetate, [1-13 C]butyrylcarnitine, [5-13 C]glutamate and [5-13 C]citrate. This study demonstrates the potential of αkV and αkB as endogenous polarizing agents for in vivo radical-free hyperpolarized MRI. UV-induced, nonpersistent radicals generated in endogenous metabolites enable high polarization without requiring radical filtration, thus simplifying the quality-control tests in clinical applications.


Assuntos
Imageamento por Ressonância Magnética , Ácido Pirúvico/análogos & derivados , Raios Ultravioleta , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Radicais Livres , Metaboloma , Espectrofotometria Ultravioleta , Fatores de Tempo
2.
Small ; 15(20): e1900692, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30993907

RESUMO

Complex 3D artificial tissue constructs are extensively investigated for tissue regeneration. Frequently, materials and cells are delivered separately without benefitting from the synergistic effect of combined administration. Cell delivery inside a material construct provides the cells with a supportive environment by presenting biochemical, mechanical, and structural signals to direct cell behavior. Conversely, the cell/material interaction is poorly understood at the micron scale and new systems are required to investigate the effect of micron-scale features on cell functionality. Consequently, cells are encapsulated in microgels to avoid diffusion limitations of nutrients and waste and facilitate analysis techniques of single or collective cells. However, up to now, the production of soft cell-loaded microgels by microfluidics is limited to spherical microgels. Here, a novel method is presented to produce monodisperse, anisometric poly(ethylene) glycol microgels to study cells inside an anisometric architecture. These microgels can potentially direct cell growth and can be injected as rod-shaped mini-tissues that further assemble into organized macroscopic and macroporous structures post-injection. Their aspect ratios are adjusted with flow parameters, while mechanical and biochemical properties are altered by modifying the precursors. Encapsulated primary fibroblasts are viable and spread and migrate across the 3D microgel structure.


Assuntos
Encapsulamento de Células , Fibroblastos/citologia , Microfluídica , Microgéis/química , Polietilenoglicóis/química , Células Cultivadas , Módulo de Elasticidade , Humanos , Concentração de Íons de Hidrogênio
3.
Macromol Rapid Commun ; 37(13): 1074-8, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27184565

RESUMO

Dissolution dynamic nuclear polarization (DNP) provides a way to tremendously improve the sensitivity of nuclear magnetic resonance experiments. Once the spins are hyperpolarized by dissolution DNP, the radicals used as polarizing agents become undesirable since their presence is an additional source of nuclear spin relaxation and their toxicity might be an issue. This study demonstrates the feasibility of preparing a hyperpolarized [1-(13) C]2-methylpropan-2-ol (tert-butanol) solution free of persistent radicals by using spin-labeled thermoresponsive hydrophilic polymer networks as polarizing agents. The hyperpolarized (13) C signal can be detected for up to 5 min before the spins fully relax to their thermal equilibrium. This approach extends the applicability of spin-labeled thermoresponsive hydrogel to the dissolution DNP field and highlights its potential as polarizing agent for preparing neat slowly relaxing contrast agents. The hydrogels are especially suited to hyperpolarize deuterated alcohols which can be used for in vivo perfusion imaging.


Assuntos
Hidrogel de Polietilenoglicol-Dimetacrilato/química , Temperatura , terc-Butil Álcool/química , Isótopos de Carbono , Radicais Livres , Espectroscopia de Ressonância Magnética , Perfusão
4.
Huan Jing Ke Xue ; 41(6): 2746-2753, 2020 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-32608790

RESUMO

Fenton reaction is a traditional method for the treatment of dye-containing wastewater. However, this process should be performed in a narrow pH range and requires large amounts of ferrous salt input, limiting its application. In this work, a robust iron complex bearing a cross-bridge cyclam ligand (Fe-cyclam) was successfully prepared. This complex could effectively activate H2O2 to degrade rhodamine B at a pH range of 2-7. The Fe-cyclam/H2O2 system was more effective in the degradation of rhodamine B than the Fenton reaction, when the input [Fe] was lower than 50 µmol·L-1. Moreover, in addition to rhodamine B, the Fe-cyclam/H2O2 system was also capable of degrading dyes such as acid red 88, acid orange II, reactive red 24, and neutral red. This system was more efficient in the degradation of azo dyes than that of triphenylmethane dyes. The removal of rhodamine B remained higher than 90% in three cycle experiments, indicating the excellent stability of Fe-cyclam. The quenching experiments proved that the degradation of rhodamine B by Fe-cyclam/H2O2 was a free-radical-control process. Meanwhile, the electron paramagnetic resonance captured the signals of high valent FeV-oxo species, indicating that FeV-oxo possibly mediated the degradation of rhodamine B in the Fe-cyclam/H2O2 system. This work proves the potential application of Fe-cyclam/H2O2 in the degradation of dyes in a practical environment.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa