Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(14)2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39066120

RESUMO

The next generation phased array radio telescopes, such as the Square Kilometre Array (SKA) low frequency aperture array, suffer from RF interference (RFI) because of the large field of view of antenna element. The classical station beamformer used in SKA-low is resource efficient but cannot deal with the unknown sidelobe RFI. A real-time adaptive beamforming strategy is proposed for SKA-low station, which trades the capability of adaptive RFI nulling at an acceptably cost, it doesn't require hardware redesign but only modifies the firmware accordingly. The proposed strategy uses a Parallel Least Mean Square (PLMS) algorithm, which has a computational complexity of 4N+2 and can be performed in parallel. Beam pattern and output SINR simulation results show deeply nulling performance to sidelobe RFI, as well as good mainlobe response similar to the classical beamformer. The convergence performance depends on the signal-and-interference environments and step size, wherein too large a step size leads to a non-optimal output SINR and too small a step size leads to slow convergence speed. FPGA implementation demonstrations are implemented and tested on a NI FPGA module, and test results demonstrate good real-time performance and low slice resource consumption.

2.
Sensors (Basel) ; 23(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37687869

RESUMO

Radio telescopes are used by astronomers to observe the naturally occurring radio waves generated by planets, interstellar molecular clouds, galaxies, and other cosmic objects. These telescopes are equipped with radio receivers that cover a portion of the radio frequency (RF) and millimetre-wave spectra. The Sardinia Radio Telescope (SRT) is an Italian instrument designed to operate between 300 MHz and 116 GHz. Currently, the SRT maximum observational frequency is 26.5 GHz. A feasibility study and preliminary tests were performed with the goal of equipping the SRT with a W-band (84-116 GHz) mono-feed radio receiver, whose results are presented in this paper. In particular, we describe the adaptation to the SRT of an 84-116 GHz cryogenic receiver developed by the Institute de Radio Astronomie Millimétrique (IRAM) for the Plateau de Bure Interferometer (PdBI) antennas. The receiver was upgraded by INAF with a new electronic control system for the remote control from the SRT control room, with a new local oscillator (LO), and with a new refrigeration system. Our feasibility study includes the design of new receiver optics. The single side band (SSB) receiver noise temperature measured in the laboratory, Trec ≈ 66 K at 86 GHz, is considered sufficiently low to carry out the characterisation of the SRT active surface and metrology system in the 3 mm band.

3.
Sensors (Basel) ; 23(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38005541

RESUMO

Low-frequency aperture arrays represent sensitive instruments to detect signals from radio astronomic sources situated in the universe. In Italy, the Sardinia Aperture Array Demonstrator (SAAD) consists of an ongoing project of the Italian National Institute for Astrophysics (INAF) aimed to install an aperture array constituted of 128 dual-polarized Vivaldi antennas at the Sardinia Radio Telescope (SRT) site. The originally envisaged 128 elements of SAAD were re-scoped to the 16 elements of its precursor named SADino, with the aim to quickly test the system with a digital beam-former based on the Italian Tile Processing Module (iTPM) digital back-end. A preliminary measurements campaign of radio frequency interference (RFI) was performed to survey the less contaminated spectral region. The results of these measurements permitted the establishment of the technical requirements for receiving a chain for the SADino telescope. In this paper, the design, implementation, and characterization of this signal acquisition chain are proposed. The operative frequency window of SAAD and its precursor, SADino, sweeps from 260 MHz to 420 MHz, which appears very attractive for radio astronomy applications and radar observation in space and surveillance awareness (SSA) activities.

4.
Sensors (Basel) ; 22(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35336479

RESUMO

This paper presents the new cable delay measurement system (CDMS) designed at Yebes Observatory (IGN, Spain), which is required for the VLBI Global Observing System (VGOS) stations. This system measures the phase difference between the 5 MHz reference signal from the hydrogen maser and the 5 MHz signal that reaches the broadband receiver through a coaxial cable, for the generation of calibration tones. As a result, the system detects the changes in the length of that coaxial cable due to temperature variations along the cable run and flexures caused by VGOS radio telescope movements. This CDMS outperforms the previous versions: firstly, it does not require a frequency counter for phase/delay measurements; secondly, it largely reduces the use of digital circuits; hence, reducing digital noise; and thirdly, it has a remotely controlled automatic calibration subsystem. The system was tested in the laboratory and in the radio telescope, and the measurements of both set-ups are shown. These measurements include the total noise, accuracy, hysteresis, and stability. The results in the radio telescope can be correlated with the different factors that affect the cable, such as temperature and flexures. The system allows to achieve an RMS noise of less than 0.5 ps, significantly improving the requirements established in VGOS. The system is currently installed in the Red Atlántica de Estaciones Geodinámicas y Espaciales (RAEGE)Yebes VGOS 13.2 m radio telescope, and will be installed in the Norwegian Mapping Authority (NMA) twin VGOS radio telescopes, in the Finnish Geospatial Research Institute (FGI) VGOS station and in the RAEGE Santa María VGOS radio telescope (Açores, Portugal).

5.
Sensors (Basel) ; 22(11)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35684881

RESUMO

The Sardinia Radio Telescope is a quasi-Gregorian system with a shaped 64 m diameter primary reflector and a 7.9 m diameter secondary reflector. It was designed to operate with high efficiency across the 0.3-116 GHz frequency range. The telescope is equipped with a cryogenic coaxial dual-frequency L-P band receiver, which covers a portion of the P-band (305-410 MHz) and the L-band (1300-1800 MHz). Although this receiver has been used for years in its original design, with satisfactory results, it presents some parts that could be upgraded in order to improve the performances of the system. With the passing of time and with technology advances, the presence of unwanted human-made signals in the area around the telescope, known as radio frequency interferences, has grown exponentially. In addition, the technology of the receiver electronic control system became obsolete and it could be replaced with next-generation electronic boards, which offer better performances both service reliability and low generation of unwanted radio frequency signals. In this paper, a feasibility study for improving the L-P band receiver is discussed, taking into account the mitigation of the main radio frequency interferences. With this study, it is possible to have a sensitive instrument that can be used for scientific research at low frequencies (P- and L-bands), which are usually populated by signals from civil and military mobile communications, TV broadcasting and remote sensing applications.

6.
Proc Natl Acad Sci U S A ; 115(42): E9755-E9764, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30275310

RESUMO

The search for technosignatures from hypothetical galactic civilizations is going through a new phase of intense activity. For the first time, a significant fraction of the vast search space is expected to be sampled in the foreseeable future, potentially bringing informative data about the abundance of detectable extraterrestrial civilizations or the lack thereof. Starting from the current state of ignorance about the galactic population of nonnatural electromagnetic signals, we formulate a Bayesian statistical model to infer the mean number of radio signals crossing Earth, assuming either nondetection or the detection of signals in future surveys of the Galaxy. Under fairly noninformative priors, we find that not detecting signals within about 1 kly from Earth, while suggesting the lack of galactic emitters or at best the scarcity thereof, is nonetheless still consistent with a probability exceeding 10% that typically over [Formula: see text] signals could be crossing Earth, with radiated power analogous to that of the Arecibo radar, but coming from farther in the Milky Way. The existence in the Galaxy of potentially detectable Arecibo-like emitters can be reasonably ruled out only if all-sky surveys detect no such signals up to a radius of about 40 kly, an endeavor requiring detector sensitivities thousands times higher than those of current telescopes. Conversely, finding even one Arecibo-like signal within [Formula: see text] light years, a possibility within reach of current detectors, implies almost certainly that typically more than [Formula: see text] signals of comparable radiated power cross the Earth, yet to be discovered.

7.
Sensors (Basel) ; 21(6)2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33799410

RESUMO

The paper presents a new idea of using a low-frequency radio-telescope belonging to the LOFAR network as a receiver in a passive radar system. The structure of a LOFAR radio-telescope station is described in the context of applying this radio-telescope for detection of aerial (airplanes) and space (satellite) targets. The theoretical considerations and description of the proposed signal processing schema for the passive radar based on a LOFAR radio-telescope are outlined in the paper. The results of initial experiments verifying the concept of a LOFAR station use as a receiver and a commercial digital radio broadcasting (DAB) transmitters as illuminators of opportunity for aerial object detection are presented.

8.
Sensors (Basel) ; 17(8)2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28792449

RESUMO

For accurate astronomic and geodetic observations based on radio telescopes, the elevation-dependent deformation of the radio telescopes' main reflectors should be known. Terrestrial laser scanning has been used for determining the corresponding changes of focal lengths and areal reflector deformations at several occasions before. New in this publication is the situation in which we minimize systematic measurement errors by an improved measurement and data-processing concept: Sampling the main reflector in both faces of the laser scanner and calibrating the laser scanner in situ in a bundle adjustment. This concept is applied to the Onsala Space Observatory 20-m radio telescope: The focal length of the main reflector decreases by 9.6 mm from 85 ∘ to 5 ∘ elevation angle. Further local deformations of the main reflector are not detected.

9.
Micromachines (Basel) ; 14(7)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37512594

RESUMO

One of the key reasons for the deterioration of antenna pointing accuracy for radio telescopes is the deformation and tilt of antenna alidades, which primarily result from track unevenness and thermal gradients. A high-precision inclinometer measurement system is installed to investigate the tilt of the antenna alidade and the pointing errors caused thermally. An environment control box with a leveling base was designed to reduce the interference of the external environment, which proved to be effective in guaranteeing the zero-point stability and repeat accuracy of the inclinometer. The tilt of the alidade caused by the track unevenness was measured by a test of slowly rotating the antenna along the azimuth at windless nighttime. A 5-day antenna stationary test and a 48 h astronomical pointing error measurement were performed, which proved the inclinometer measurement system is capable of measuring the thermally induced inclinations with acceptable accuracy. Through a preliminary compensation experiment, the pointing error is compensated from 37″ to 12″, which shows that the application of the system has a good effect on improving the pointing accuracy of the antenna. The system with high measurement accuracy, good system stability, and low computational complexity, proves an effective tool for the radio telescope to solve the problem of real-time measurement and compensation for antenna pointing errors.

10.
Innovation (Camb) ; 1(3): 100053, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34557718

RESUMO

FAST is the largest single-dish radio telescope in the world. The characteristics of FAST are presented and analyzed in the context of the parameter space to show how FAST science achievements are affected. We summarize the scientific achievements of FAST and discuss its future science based on the new parts of the parameter space that can be explored by FAST.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa