Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Rep Prog Phys ; 87(8)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38215499

RESUMO

Molecules containing short-lived, radioactive nuclei are uniquely positioned to enable a wide range of scientific discoveries in the areas of fundamental symmetries, astrophysics, nuclear structure, and chemistry. Recent advances in the ability to create, cool, and control complex molecules down to the quantum level, along with recent and upcoming advances in radioactive species production at several facilities around the world, create a compelling opportunity to coordinate and combine these efforts to bring precision measurement and control to molecules containing extreme nuclei. In this manuscript, we review the scientific case for studying radioactive molecules, discuss recent atomic, molecular, nuclear, astrophysical, and chemical advances which provide the foundation for their study, describe the facilities where these species are and will be produced, and provide an outlook for the future of this nascent field.

2.
Chembiochem ; 25(11): e202400152, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38695673

RESUMO

Positron emission tomography imaging of misfolded proteins with high-affinity and selective radioligands has played a vital role in expanding our knowledge of neurodegenerative diseases such as Parkinson's and Alzheimer's disease. The pathogenesis of Huntington's disease, a CAG trinucleotide repeat disorder, is similarly linked to the presence of protein fibrils formed from mutant huntingtin (mHTT) protein. Development of mHTT fibril-specific radioligands has been limited by the lack of structural knowledge around mHTT and a dearth of available hit compounds for medicinal chemistry refinement. Over the past decade, the CHDI Foundation, a non-for-profit scientific management organisation has orchestrated a large-scale screen of small molecules to identify high affinity ligands of mHTT, with lead compounds now reaching clinical maturity. Here we describe the mHTT radioligands developed to date and opportunities for further improvement of this radiotracer class.


Assuntos
Proteína Huntingtina , Tomografia por Emissão de Pósitrons , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Proteína Huntingtina/química , Ligantes , Humanos , Agregados Proteicos/efeitos dos fármacos , Mutação , Doença de Huntington/diagnóstico por imagem , Doença de Huntington/metabolismo , Doença de Huntington/genética , Compostos Radiofarmacêuticos/química
3.
Environ Res ; 252(Pt 2): 118877, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38609067

RESUMO

Uranium is a natural radioelement (also a model for heavier actinides), but may be released through anthropogenic activities. In order to assess its environmental impact in a given ecosystem, such as the marine system, it is essential to understand its distribution and speciation, and also to quantify its bioaccumulation. Our objective was to improve our understanding of the transfer and accumulation of uranium in marine biota with mussels taken here as sentinel species because of their sedentary nature and ability to filter seawater. We report here on the investigation of uranium accumulation, speciation, and localization in Mytilus galloprovincialis using a combination of several analytical (Inductively Coupled Plasma Mass Spectrometry, ICP-MS), spectroscopic (X ray Absorption Spectroscopy, XAS, Time Resolved Laser Induced Fluorescence Spectroscopy, TRLIFS), and imaging (Transmission Electron Microscopy, TEM, µ-XAS, Secondary Ion Mass Spectrometry, SIMS) techniques. Two cohorts of mussels from the Toulon Naval Base and the Villefranche-sur-Mer location were studied. The measurement of uranium Concentration Factor (CF) values show a clear trend in the organs of M. galloprovincialis: hepatopancreas â‰« gill > body ≥ mantle > foot. Although CF values for the entire mussel are comparable for TNB and VFM, hepatopancreas values show a significant increase in those from Toulon versus Villefranche-sur-Mer. Two organs of interest were selected for further spectroscopic investigations: the byssus and the hepatopancreas. In both cases, U(VI) (uranyl) is accumulated in a diffuse pattern, most probably linked to protein complexing functions, with the absence of a condensed phase. While such speciation studies on marine organisms can be challenging, they are an essential step for deciphering the impact of metallic radionuclides on the marine biota in the case of accidental release. Following our assumptions on uranyl speciation in both byssus and hepatopancreas, further steps will include the inventory and identification of the proteins or metabolites involved.


Assuntos
Mytilus , Urânio , Poluentes Radioativos da Água , Mytilus/química , Mytilus/metabolismo , Animais , Urânio/análise , Poluentes Radioativos da Água/análise , Espectrometria de Massas
4.
J Labelled Comp Radiopharm ; 67(9): 324-329, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38845124

RESUMO

A new automated radiosynthesis of [11C]2-(2,6-difluoro-4-((2-(N-methylphenylsulfonamido)ethyl)thio)phenoxy)acetamide ([11C]K2), a radiopharmaceutical for the glutamate α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor, is reported. Although manual syntheses have been described, these are unsuitable for routine production of larger batches of [11C]K2 for (pre)clinical PET imaging applications. To meet demands for the imaging agent from our functional neuroimaging collaborators, herein, we report a current good manufacturing practice (cGMP)-compliant synthesis of [11C]K2 using a commercial synthesis module. The new synthesis is fully automated and has been validated for clinical use. The total synthesis time is 33 min from end of bombardment, and the production method provides 2.66 ± 0.3 GBq (71.9 ± 8.6 mCi) of [11C]K2 in 97.7 ± 0.5% radiochemical purity and 754.1 ± 231.5 TBq/mmol (20,382.7 ± 6256.1 Ci/mmol) molar activity (n = 3). Batches passed all requisite quality control testing confirming suitability for clinical use.


Assuntos
Acetamidas , Radioisótopos de Carbono , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Receptores de AMPA , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Radioisótopos de Carbono/química , Acetamidas/síntese química , Acetamidas/química , Receptores de AMPA/metabolismo , Radioquímica/métodos , Automação , Técnicas de Química Sintética , Sulfonamidas/síntese química , Sulfonamidas/química
5.
J Labelled Comp Radiopharm ; 67(2): 40-58, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38155110

RESUMO

One of the key strategies for radiochemical research facilities is the automation of synthesis processes. Unnecessary manual operations increase the radiation exposure of personnel, while simultaneously threatening the reliability of syntheses. We have previously reported an affordable open-source system comprising 3D-printed continuous flow reactors, a custom syringe pump, and a pressure regulator that can be used to perform radiofluorinations. In this paper, we address additional essential processes that are needed for radiotracer development and synthesis, with the aim of making laboratory work safer and research more efficient. We have designed and evaluated a fully automated system for rapidly and effectively processing and drying aqueous [18 F]fluoride that can be directly connected to the cyclotron. This process relies on triflyl fluoride gas generation and allows nucleophilic [18 F]fluoride to be prepared safely in a hotcell within 10 min and an activity recovery of 91.7 ± 1.6% (n = 5). Owing to the need for convenient radiofluorinated prosthetic ligands, we have adapted our continuous flow system to produce [18 F]fluoroethyl tosylate (FEOTs) and [18 F]fluoroethyl triflate (FEOTf), prosthetic groups that are widely used for late-stage fluoroethylation of PET tracers. The processes as well as the radiolabeling of different groups are compared and comprehensively discussed. Having a method providing [18 F]fluoroethyl tosylate (FEOTs) as well as [18 F]fluoroethyl triflate (FEOTf) quickly and highly efficiently is beneficial for radiochemical research.


Assuntos
Benzenossulfonatos , Fluoretos , Tomografia por Emissão de Pósitrons , Tomografia por Emissão de Pósitrons/métodos , Reprodutibilidade dos Testes , Automação , Compostos Radiofarmacêuticos , Radioisótopos de Flúor
6.
Alzheimers Dement ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967283

RESUMO

INTRODUCTION: Microtubule (MT) stability is crucial for proper neuronal function. Understanding MT dysregulation is critical for connecting amyloid beta (Aß) and tau-based degenerative events and early changes in presymptomatic Alzheimer's disease (AD). Herein we present positron emission tomography (PET) imaging properties of our MT-PET radiotracer, [11C]MPC-6827, in multiple established AD mouse models. METHODS: Longitudinal PET, biodistribution, autoradiography, immunohistochemistry, and behavioral studies were conducted at multiple time points in APPswe/PSEN1dE9 (APP/PS1), P301S-PS19 (P301S), 5xFAD, and age-matched control mice. RESULTS: Longitudinal [11C]MPC-6827 brain imaging showed significant increases in APP/PS1, P301S, and 5xFAD mice compared to controls. Longitudinal MT-PET correlated positively with biodistribution, autoradiography, and immunohistochemistry results and negatively with behavior data. DISCUSSION: Our study demonstrated significant longitudinal [11C]MPC-6827 PET increases in multiple AD mouse models for the first time. Strong correlations between PET and biomarker data underscored the interplay of MT destabilization, amyloid, and tau pathology in AD. These results suggest [11C]MPC-6827 PET as a promising tool for monitoring MT dysregulation early in AD progression. HIGHLIGHTS: Longitudinal positron emission tomography (PET) imaging studies using [11C]MPC-6827 in multiple established Alzheimer's disease (AD) mouse models revealed an early onset of microtubule dysregulation, with significant changes in brain radiotracer uptake evident from 2 to 4 months of age. Intra-group analysis showed a progressive increase in microtubule dysregulation with increasing AD burden, supported by significant correlations between PET imaging data and biodistribution, autoradiography, and molecular pathological markers. [11C]MPC-6827 PET imaging demonstrated its efficacy in detecting early microtubule alterations preceding observable behavioral changes in AD mouse models, suggesting its potential for early AD imaging. The inclusion of the 5xFAD mouse model further elucidated the impact of amyloid beta (Aß) toxicity on inducing tau hyperphosphorylation-mediated microtubule dysregulation, highlighting the versatility of [11C]MPC-6827 in delineating various aspects of AD pathology. Our study provides immediate clarity on high uptake of the microtubule-based radiotracer in AD brains in a longitudinal setting, which directly informs clinical utility in Aß/tau-based studies.

7.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256240

RESUMO

The short-lived positron-emitter carbon-11 (t1/2 = 20.4 min; ß+, 99.8%) is prominent for labeling tracers for use in biomedical research with positron emission tomography (PET). Carbon-11 is produced for this purpose with a cyclotron, nowadays almost exclusively by the 14N(p,α)11C nuclear reaction, either on nitrogen containing a low concentration of oxygen (0.1-0.5%) or hydrogen (~5%) to produce [11C]carbon dioxide or [11C]methane, respectively. These primary radioactive products can be produced in high yields and with high molar activities. However, only [11C]carbon dioxide has some utility for directly labeling PET tracers. Primary products are required to be converted rapidly and efficiently into secondary labeling synthons to provide versatile radiochemistry for labeling diverse tracer chemotypes at molecular positions of choice. This review surveys known gas phase transformations of carbon-11 and summarizes the important roles that many of these transformations now play for producing a broad range of labeling synthons in carbon-11 chemistry.


Assuntos
Pesquisa Biomédica , Dióxido de Carbono , Radioisótopos de Carbono , Hidrogênio
8.
Molecules ; 29(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38999148

RESUMO

Radiolabeled peptides are valuable tools for diagnosis or therapies; they are often radiofluorinated using an indirect approach based on an F-18 prosthetic group. Herein, we are reporting our results on the F-18 radiolabeling of three peptides using two different methods based on click reactions. The first one used the well-known CuAAC reaction, and the second one is based on our recently reported hetero-Diels-Alder (HDA) using a dithioesters (thia-Diels-Alder) reaction. Both methods have been automated, and the 18F-peptides were obtained in similar yields and synthesis time (37-39% decay corrected yields by both methods in 120-140 min). However, to obtain similar yields, the CuAAC needs a large amount of copper along with many additives, while the HDA is a catalyst and metal-free reaction necessitating only an appropriate ratio of water/ethanol. The HDA can therefore be considered as a minimalist method offering easy access to fluorine-18 labeled peptides and making it a valuable additional tool for the indirect and site-specific labeling of peptides or biomolecules.


Assuntos
Química Click , Cobre , Reação de Cicloadição , Radioisótopos de Flúor , Peptídeos , Química Click/métodos , Radioisótopos de Flúor/química , Peptídeos/química , Cobre/química , Marcação por Isótopo/métodos , Automação , Catálise , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/síntese química
9.
Angew Chem Int Ed Engl ; 63(26): e202404945, 2024 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-38624193

RESUMO

Herein, we disclose that pyridinium salts derived from abundant (hetero)anilines represent a novel precursor class for nucleophilic aromatic substitution reactions with [18F]fluoride. The value of this new 18F-fluorodeamination is demonstrated with the synthesis of over 30 structurally diverse and complex heteroaryl 18F-fluorides, several derived from scaffolds that were yet to be labelled with fluorine-18. The protocol tolerates heteroarenes and functionalities commonly found in drug discovery libraries, and is amenable to scale-up and automation on a commercial radiosynthesiser.


Assuntos
Compostos de Anilina , Radioisótopos de Flúor , Compostos de Piridínio , Sais , Compostos de Anilina/química , Compostos de Piridínio/química , Compostos de Piridínio/síntese química , Sais/química , Radioisótopos de Flúor/química , Halogenação , Estrutura Molecular
10.
Angew Chem Int Ed Engl ; 63(26): e202404957, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38640422

RESUMO

The difluoromethyl functionality has proven useful in drug discovery, as it can modulate the properties of bioactive molecules. For PET imaging, this structural motif has been largely underexploited in (pre)clinical radiotracers due to a lack of user-friendly radiosynthetic routes. This Minireview provides an overview of the challenges facing radiochemists and summarises the efforts made to date to access 18F-difluoromethyl-containing radiotracers. Two distinct approaches have prevailed, the first of which relies on 18F-fluorination. A second approach consists of a 18F-difluoromethylation process, which uses 18F-labelled reagents capable of releasing key reactive intermediates such as the [18F]CF2H radical or [18F]difluorocarbene. Finally, we provide an outlook for future directions in the radiosynthesis of [18F]CF2H compounds and their application in tracer radiosynthesis.

11.
Angew Chem Int Ed Engl ; 63(27): e202404278, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38656696

RESUMO

Positron emission tomography (PET) is becoming increasingly important in nuclear medicine and drug discovery. To date, the development of many potential PET tracers is hampered by the lack of suitable synthetic pathways for their preparation. This is particularly true for the highly desired radiolabeling of compounds bearing [18F]CF3-groups. For instance, S(O)nCF3-groups (n=0, 1, 2) serve as structural motif in a range of biologically active compounds, but their radiosynthesis remains largely unprecedented (for n=1, 2). Herein, we describe general methods for the radiosynthesis of 18F-labeled aryl trifluoromethyl sulfones, -sulfoxides, and -sulfides. All three methods are operationally straightforward, start from widely available precursors, i.e., sulfonyl fluorides and thiophenols, and make use of the recently established [18F]Ruppert-Prakash reagent. Further, the syntheses display good functional group tolerance as demonstrated by the 18F-labeling of more than 40 compounds. The applicability of the new method is demonstrated by the radiolabeling of three bioactive molecules, optionally to be used as PET tracers. In a broader context, this work presents a substantial expansion of the chemical space of radiofluorinated structural motifs to be used for the development of new PET tracers.

12.
Angew Chem Int Ed Engl ; 63(14): e202317136, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38135665

RESUMO

This review discusses recent advances in light-driven radiochemistry for three key isotopes: fluorine-18, carbon-11, and zirconium-89, and their applications in positron emission tomography (PET). In the case of fluorine-18, the predominant approach involves the use of cyclotron-produced [18F]fluoride or reagents derived thereof. Light serves to activate either the substrate or the fluorine-18 labeled reagent. Advancements in carbon-11 photo-mediated radiochemistry have been leveraged for the radiolabeling of small molecules, achieving various transformations, including 11C-methylation, 11C-carboxylation, 11C-carbonylation, and 11C-cyanation. Contrastingly, zirconium-89 photo-mediated radiochemistry differs from fluorine-18 and carbon-11 approaches. In these cases, light facilitates a postlabeling click reaction, which has proven valuable for the labeling of large biomolecules such as monoclonal antibodies (mAbs). New technological developments, such as the incorporation of photoreactors in commercial radiosynthesizers, illustrate the commitment the field is making in embracing photochemistry. Taken together, these advances in photo-mediated radiochemistry enable radiochemists to apply new retrosynthetic strategies in accessing novel PET radiotracers.


Assuntos
Radioisótopos de Carbono , Radioisótopos de Flúor , Tomografia por Emissão de Pósitrons , Radioisótopos , Zircônio , Radioquímica/métodos , Radioisótopos de Flúor/química , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/química
13.
Chempluschem ; : e202400254, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877386

RESUMO

A set of 211At-astatoarenes were synthesized from corresponding trimethylgermyl arenes with radiochemical conversions (RCCs) of up to 90%. Both electron rich and electron poor substrates were successfully radiolabeled at room temperature (RT) using relatively low precursor amounts (0.15 µmol/ 0.02 mL solvent (7.5 mM)). Ready access to ortho-, para- and meta- astatinated arenes was achievable. Optimized reaction conditions were successfully applied to label a poly (ADP-ribose) polymerase (PARP) inhibitor with a RCC of approx. 50%. We believe that trimethylgermanyl derivatives are a viable addition to the astatination precursor toolbox and facilitate astatination of arenes. The developed labeling method should easily be applicable for productions under good manufacturing practice (GMP).

14.
Pharmaceutics ; 16(7)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39065579

RESUMO

Immunotherapy has transformed cancer treatment. Nevertheless, given the heterogeneity of clinical efficacy, the multiplicity of treatment options available and the possibility of serious adverse effects, selecting the most effective treatment has become the greatest challenge. Molecular imaging offers an attractive way for this purpose. ImmunoPET provides specific imaging with positron emission tomography (PET) using monoclonal antibodies (mAb) or its fragments as vector. By combining the high targeting specificity of mAb and the sensitivity of PET technique, immunoPET could noninvasively and dynamically reveal tumor antigens expression and provide theranostic tools of several types of malignancies. Because of their slow kinetics, mAbs require radioelements defined by a consistent half-life. Zirconium 89 (89Zr) and Copper 64 (64Cu) are radiometals with half-lives suitable for mAb labeling. Radiolabeling with a radiometal requires the prior use of a bifunctional chelate agent (BFCA) to functionalize mAb for radiometal chelation, in a second step. There are a number of BFCA available and much research is focused on antibody functionalization techniques or on developing the optimum chelating agent depending the selected radiometal. In this manuscript, we present a critical account of radiochemical techniques with radionuclides 89Zr and 64Cu and their applications in preclinical and clinical immuno-PET imaging.

15.
Sci Total Environ ; 935: 173247, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38754516

RESUMO

After the first atomic bomb test in Alamogordo in July 1945, followed by the Hiroshima and Nagasaki bombs in August 1945, radioecology became recognized as a branch of ecology in response to the radioactive fallout associated with the subsequent proliferation of atmospheric nuclear weapons testing which continued throughout the Cold War. In parallel, environmental radiochemistry emerged in the 70s to understand the chemical behavior of possible nuclear contaminants of the environment. In this discussion we stress the need to crosslink radioecology and chemical speciation, where radiochemistry and radioecology should meet to go beyond the present state of the art. Accordingly, we are seeking a methodology that calls for several angles of investigation: speciation (chemistry), toxicology (physiology and biology), accumulation data (environmental studies), distribution (geochemistry).

16.
Nucl Med Biol ; 128-129: 108872, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38262310

RESUMO

INTRODUCTION: Chelators play a crucial role in the development of metal-based radiopharmaceuticals, and with the continued interest in 68Ga and increasing availability of new radiometals such as 43Sc/47Sc and 45Ti, there is a growing demand for tailored chelators that can form stable complexes with these metals. This work reports the synthesis and characterization of a hexadentate tris-1,2-hydroxypyridonone chelator HOPO-O6-C4 and its in vitro and in vivo evaluation with the above mentioned radiometals. METHODS: To investigate the affinity of HOPO-O6-C4, macroscopic studies were performed with Sc3+, and Ga3+ followed by DFT structural optimization of the Sc3+, Ga3+ and Ti4+ complexes. Further tracer studies with 43Sc (and 47Sc), 45Ti, and 68Ga were performed to determine the potential for positron emission tomography (PET) imaging with these complexes. In vitro stability studies followed by in vivo imaging and biodistribution studies were performed to understand the kinetic stability of the resultant radiometal-complexes of HOPO-O6-C4. RESULTS: Promising radiolabeling results with HOPO-O6-C4 were obtained with 43Sc, 47Sc, 45Ti, and 68Ga radionuclides; rapid radiolabeling was observed at 37 °C and pH 7 in under 30-min. Apparent molar activity measurements were performed for radiolabeling of HOPO-O6-C4 with 43Sc (4.9 ± 0.26 GBq/µmol), 47Sc (1.58 ± 0.01 GBq/µmol), 45Ti (11.5 ± 1.6 GBq/µmol) and 68Ga (5.74 ± 0.7 GBq/µmol), respectively. Preclinical in vivo imaging studies resulted in promising results with [68Ga]Ga-HOPO-O6-C4 indicating a rapid clearance through hepatic excretion route and no decomplexation whereas [43Sc]Sc-HOPO-O6-C4, [47Sc]Sc-HOPO-O6-C4 and [45Ti]Ti-HOPO-O6-C4 showed modest and significant evidence of decomplexation, respectively. CONCLUSIONS: The tris-1,2-HOPO chelator HOPO-O6-C4 is a promising scaffold for elaboration into a 68Ga- based radiopharmaceutical.


Assuntos
Radioisótopos de Gálio , Piridonas , Compostos Radiofarmacêuticos , Compostos Radiofarmacêuticos/química , Radioisótopos de Gálio/química , Distribuição Tecidual , Titânio , Tomografia por Emissão de Pósitrons , Quelantes/química
17.
Chempluschem ; : e202400250, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048512

RESUMO

Antimony-119 (119Sb) holds promise for radiopharmaceutical therapy (RPT), emitting short-range Auger and conversion electrons that can deliver cytotoxic radiation on a cellular level. While it has high promise theoretically, experimental validation is necessary for 119Sb in vivo applications. Current 119Sb production and separation methods face robustness and compatibility challenges in radiopharmaceutical synthesis. Limited progress in chelator development hampers targeted experiments with 119Sb. This review compiles literature on the toxicological, biodistribution and redox properties of Sb, along with existing Sb complexes, evaluating their suitability for radiopharmaceuticals. Sb(III) is suggested as the preferred oxidation state for radiopharmaceutical elaboration due to its stability in vivo and lack of skeletal uptake. While Sb complexes with both hard and soft donor atoms can be achieved, Sb thiol complexes offer enhanced stability and compatibility with the desired Sb(III) oxidation state. For 119Sb to find application in RPT, scientists need to make discoveries and advancements in the areas of isotope production, and radiometal chelation. This review aims to guide future research towards harnessing the therapeutic potential of 119Sb in RPT.

18.
Biomed Phys Eng Express ; 10(3)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38181453

RESUMO

Uncertainties in the relative biological effectiveness (RBE) of proton remains a major barrier to the biological optimization of proton therapy. A large amount of experimental data suggest that proton RBE is variable. As an evolving Monte Carlo code toolkit, Geant4-DNA is able to simulate the initial DNA damage caused by particle beams through physical and chemical interactions at the nanometer scale over a short period of time. This contributes to evaluating the radiobiological effects induced by ionizing radiation. Based on the Geant4-DNA toolkit, this study constructed a DNA geometric model containing 6.32Gbp, simulated the relationship between radiochemical yields (G-values) and their corresponding chemical constructors, and calculated a detailed calculation of the sources of damage and the complexity of damage in DNA strand breaks. The damage model constructed in this study can simulate the relative biological effectiveness (RBE) in the proton Bragg peak region. The results indicate that: (1) When the electron energy is below 400 keV, the yield of OH·account for 18.1% to 25.3% of the total water radiolysis yields. (2) Under the influence of histone clearance function, the yield of indirect damage account for over 72.93% of the yield of DNA strand breaks (SBs). When linear energy transfer (LET) increased from 29.79 (keV/µm) to 64.29 (keV/µm), the yield of double strand breaks (DSB) increased from 17.27% to 32.65%. (3) By investigating the effect of proton Bragg peak depth on the yield of direct DSB (DSBdirect) and total DSB (DSBtotal), theRBEDSBtotandRBEDSBdirlevels of cells show that the RBE value of protons reaches 2.2 in the Bragg peak region.


Assuntos
Terapia com Prótons , Prótons , Eficiência Biológica Relativa , Quebras de DNA de Cadeia Dupla , DNA
19.
Appl Radiat Isot ; 206: 111211, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38309117

RESUMO

The influence of several parameters involved in the 68Ga radiolabeling of FAPI-46 was studied at the scale of the automated reaction. Among the buffers tested, HEPES 0.3 M pH 4 allowed both high radiochemical purity (RCP) and radiochemical yield (RCY), without prepurification of 68Ga but after final purification of [68Ga]Ga-FAPI-46 on a C18 cartridge. A longer reaction time did not show significant benefit on the RCP, while higher loads of FAPI-46 and gentisic acid as anti-radiolysis compound allowed better RCY.

20.
EJNMMI Radiopharm Chem ; 9(1): 42, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753262

RESUMO

BACKGROUND: The Editorial Board of EJNMMI Radiopharmacy and Chemistry releases a biannual highlight commentary to update the readership on trends in the field of radiopharmaceutical development. MAIN BODY: This selection of highlights provides commentary on 24 different topics selected by each coauthoring Editorial Board member addressing a variety of aspects ranging from novel radiochemistry to first-in-human application of novel radiopharmaceuticals. CONCLUSION: Trends in radiochemistry and radiopharmacy are highlighted. Hot topics cover the entire scope of EJNMMI Radiopharmacy and Chemistry, demonstrating the progress in the research field in many aspects.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa