Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(12)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37420651

RESUMO

The rapid development of cities in recent years has increased the operational pressure of rail vehicles, and due to the characteristics of rail vehicles, including harsh operating environment, frequent starting and braking, resulting in rails and wheels being prone to rail corrugation, polygons, flat scars and other faults. These faults are coupled in actual operation, leading to the deterioration of the wheel-rail contact relationship and causing harm to driving safety. Hence, the accurate detection of wheel-rail coupled faults will improve the safety of rail vehicles' operation. The dynamic modeling of rail vehicles is carried out to establish the character models of wheel-rail faults including rail corrugation, polygonization and flat scars to explore the coupling relationship and characteristics under variable speed conditions and to obtain the vertical acceleration of the axle box. An APDM time-frequency analysis method is proposed in this paper based on the PDMF adopting Rényi entropy as the evaluation index and employing a WOA to optimize the parameter set. The number of iterations of the WOA adopted in this paper is decreased by 26% and 23%, respectively, compared with PSO and SSA, which means that the WOA performs at faster convergence speed and with a more accurate Rényi entropy value. Additionally, TFR obtained using APDM realizes the localization and extraction of the coupled fault characteristics under rail vehicles' variable speed working conditions with higher energy concentration and stronger noise resistance corresponding to prominent ability of fault diagnosis. Finally, the effectiveness of the proposed method is verified using simulation and experimental results that prove the engineering application value of the proposed method.


Assuntos
Aceleração , Cicatriz , Humanos , Cidades , Simulação por Computador , Engenharia
2.
Sensors (Basel) ; 21(3)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498313

RESUMO

This paper describes the kinematics used for the calculation of track geometric irregularities of a new Track Geometry Measuring System (TGMS) to be installed in railway vehicles. The TGMS includes a computer for data acquisition and process, a set of sensors including an inertial measuring unit (IMU, 3D gyroscope and 3D accelerometer), two video cameras and an encoder. The kinematic description, that is borrowed from the multibody dynamics analysis of railway vehicles used in computer simulation codes, is used to calculate the relative motion between the vehicle and the track, and also for the computer vision system and its calibration. The multibody framework is thus used to find the formulas that are needed to calculate the track irregularities (gauge, cross-level, alignment and vertical profile) as a function of sensor data. The TGMS has been experimentally tested in a 1:10 scaled vehicle and track specifically designed for this investigation. The geometric irregularities of a 90 m-scale track have been measured with an alternative and accurate method and the results are compared with the results of the TGMS. Results show a good agreement between both methods of calculation of the geometric irregularities.

3.
Materials (Basel) ; 17(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38673186

RESUMO

The subject of this research is the development of epoxy composites with a defined service life for the purpose of seat elements in rail vehicles, which will be more environmentally friendly. The produced materials based on epoxy resin filled with PLA or PLA and quercetin were subjected to solar aging tests for 800 h to investigate the impact of the additives used on the aging behavior of the epoxy matrix. Firstly, the TGA analysis showed that the use of the proposed additives allowed for the maintenance of the thermal stability of the epoxy resin. Moreover, based on an optical microscopy test, it was noticed that the introduction of PLA and PLA with quercetin did not contribute to an increase in matrix defects. The one-directional tensile tests carried out before and after solar aging showed that the presence of polylactide in epoxy composites causes a slight growth of the stiffness and strength. Based on contact angle and color change measurements, it was found that quercetin was oxidized, thus ensuring protection for the epoxy matrix. This phenomenon was confirmed by FTIR study, where the carbonyl index (CI) value for the R-PLA-Q composite was lower than for the reference sample. The obtained composite structures may be a good alternative to traditionally used systems as seat elements in rail vehicles, which are not only characterized by high aging resistance but are also more eco-friendly.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa