Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Ecol Lett ; 27(4): e14403, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38577961

RESUMO

Species interactions such as facilitation and competition play a crucial role in driving species range shifts. However, density dependence as a key feature of these processes has received little attention in both empirical and modelling studies. Herein, we used a novel, individual-based treeline model informed by rich in situ observations to quantify the contribution of density-dependent species interactions to alpine treeline dynamics, an iconic biome boundary recognized as an indicator of global warming. We found that competition and facilitation dominate in dense versus sparse vegetation scenarios respectively. The optimal balance between these two effects was identified at an intermediate vegetation thickness where the treeline elevation was the highest. Furthermore, treeline shift rates decreased sharply with vegetation thickness and the associated transition from positive to negative species interactions. We thus postulate that vegetation density must be considered when modelling species range dynamics to avoid inadequate predictions of its responses to climate warming.


Assuntos
Ecossistema , Árvores , Árvores/fisiologia , Aquecimento Global , Mudança Climática , Clima
2.
Proc Biol Sci ; 291(2015): 20231760, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38290543

RESUMO

Understanding how the abundance of species varies across geographical ranges is central to ecology; however, few studies test hypotheses using detailed abundance estimates across the full ranges of species on a continental scale. Here, we use unprecedented, detailed estimates of breeding abundance for North American birds (eBird) to test two hypotheses for how abundance varies across species' ranges. We find widespread support for the rare-edge hypothesis-where the abundance of species declines near the range edge-reflecting both reduced occurrence and lower local abundance near range edges. By contrast, we find mixed support for the abundant-centre hypothesis-where the abundance of species peaks in the centre of the range and declines towards the edges-with limited support in conservative tests within species, but general support in among-species tests that control for unbalanced sampling and consider a broader definition of the range centre. Overall, results are consistent with a gradual decline in suitable conditions and increase in challenge towards the range edge that eventually limit the ability of populations to persist.


Assuntos
Aves , Ecologia , Animais , Dinâmica Populacional , Geografia , América do Norte , Ecossistema
3.
Ecol Appl ; 34(5): e2983, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38840517

RESUMO

Understanding the factors influencing species range limits is increasingly crucial in anticipating migrations due to human-caused climate change. In the boreal biome, ongoing climate change and the associated increases in the rate, size, and severity of disturbances may alter the distributions of boreal tree species. Notably, Interior Alaska lacks native pine, a biogeographical anomaly that carries implications for ecosystem structure and function. The current range of lodgepole pine (Pinus contorta var. latifolia) in the adjacent Yukon Territory may expand into Interior Alaska, particularly with human assistance. Evaluating the potential for pine expansion in Alaska requires testing constraints on range limits such as dispersal limitations, environmental tolerance limits, and positive or negative biotic interactions. In this study, we used field experiments with pine seeds and transplanted seedlings, complemented by model simulations, to assess the abiotic and biotic factors influencing lodgepole pine seedling establishment and growth after fire in Interior Alaska. We found that pine could successfully recruit, survive, grow, and reproduce across our broadly distributed network of experimental sites. Our results show that both mammalian herbivory and competition from native tree species are unlikely to constrain pine growth and that environmental conditions commonly found in Interior Alaska fall well within the tolerance limits for pine. If dispersal constraints are released, lodgepole pine could have a geographically expansive range in Alaska, and once established, its growth is sufficient to support pine-dominated stands. Given the impacts of lodgepole pine on ecosystem processes such as increases in timber production, carbon sequestration, landscape flammability, and reduced forage quality, natural or human-assisted migration of this species is likely to substantially alter responses of Alaskan forest ecosystems to climate change.


Assuntos
Pinus , Pinus/fisiologia , Alaska , Mudança Climática , Modelos Biológicos , Plântula , Demografia , Animais , Ecossistema
4.
Proc Natl Acad Sci U S A ; 117(31): 18169-18171, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32675238

RESUMO

Environmental limits of animal life are invariably revised when the animals themselves are investigated in their natural habitats. Here we report results of a scientific mountaineering expedition to survey the high-altitude rodent fauna of Volcán Llullaillaco in the Puna de Atacama of northern Chile, an effort motivated by video documentation of mice (genus Phyllotis) at a record altitude of 6,205 m. Among numerous trapping records at altitudes of >5,000 m, we captured a specimen of the yellow-rumped leaf-eared mouse (Phyllotis xanthopygus rupestris) on the very summit of Llullaillaco at 6,739 m. This summit specimen represents an altitudinal world record for mammals, far surpassing all specimen-based records from the Himalayas and other mountain ranges. This discovery suggests that we may have generally underestimated the altitudinal range limits and physiological tolerances of small mammals simply because the world's high summits remain relatively unexplored by biologists.


Assuntos
Altitude , Ecossistema , Sigmodontinae/fisiologia , Animais , Chile
5.
Ecol Lett ; 25(1): 38-51, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34708503

RESUMO

Estimates of the percentage of species "committed to extinction" by climate change range from 15% to 37%. The question is whether factors other than climate need to be included in models predicting species' range change. We created demographic range models that include climate vs. climate-plus-competition, evaluating their influence on the geographic distribution of Pinus edulis, a pine endemic to the semiarid southwestern U.S. Analyses of data on 23,426 trees in 1941 forest inventory plots support the inclusion of competition in range models. However, climate and competition together only partially explain this species' distribution. Instead, the evidence suggests that climate affects other range-limiting processes, including landscape-scale, spatial processes such as disturbances and antagonistic biotic interactions. Complex effects of climate on species distributions-through indirect effects, interactions, and feedbacks-are likely to cause sudden changes in abundance and distribution that are not predictable from a climate-only perspective.


Assuntos
Ecossistema , Pinus , Mudança Climática , Florestas , Árvores
6.
Ecol Lett ; 25(2): 498-508, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34972244

RESUMO

Carbon use efficiency (CUE) represents how efficient a plant is at translating carbon gains through gross primary productivity (GPP) into net primary productivity (NPP) after respiratory costs (Ra ). CUE varies across space with climate and species composition, but how CUE will respond to climate change is largely unknown due to uncertainty in Ra at novel high temperatures. We use a plant physiological model validated against global CUE observations and LIDAR vegetation canopy height data and find that model-predicted decreases in CUE are diagnostic of transitions from forests to shrubland at dry range edges. Under future climate scenarios, we show mean growing season CUE increases in core forested areas, but forest extent decreases at dry range edges, with substantial uncertainty in absolute CUE due to uncertainty in Ra . Our results highlight that future forest resilience is nuanced and controlled by multiple competing mechanisms.


Assuntos
Carbono , Mudança Climática , Ciclo do Carbono , Florestas , Plantas , Árvores
7.
Am Nat ; 200(1): 17-31, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35737994

RESUMO

AbstractUnderstanding the mechanisms that generate biogeographic range limits is a long-standing goal of ecology. It is widely hypothesized that distributional limits reflect the environmental niche, but this hypothesis is complicated by the potential for intraspecific niche heterogeneity. In dioecious species, sexual niche differentiation may cause divergence between the sexes in their limits of environmental suitability. We studied range boundary formation in Texas bluegrass (Poa arachnifera), a perennial dioecious plant, testing the alternative hypotheses that range limits reflect the niche limits of females only versus the combined contributions of females and males, including their interdependence via mating. Common garden experiments across a longitudinal aridity gradient revealed female-biased flowering approaching eastern range limits, suggesting that mate limitation may constrain the species' distribution. However, a demographic model showed that declines in λ approaching range limits were driven almost entirely by female vital rates. The dominant role of females was attributable to seed viability being robust to sex ratio variation and to low sensitivity of λ to reproductive transitions. We suggest that female-dominant range limits may be common to long-lived species with polygamous mating systems and that female responses to environmental drivers may often be sufficient for predicting range shifts in response to environmental change.


Assuntos
Poa , Ecossistema , Plantas , Razão de Masculinidade , Texas
8.
Am Nat ; 200(3): 316-329, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35977783

RESUMO

AbstractElevational ranges within many taxa are greater in the north temperate region than the tropics. Two hypotheses to explain the pattern are, first, that large elevational ranges in the temperate region arise because species have evolved broad tolerance curves in response to seasonality and, second, that a low diversification rate in the temperate region (speciation minus extinction) has led to relatively few species, each of which occupies a large elevational range in the absence of competitors (character release). We build a quantitative genetic model of selection on a phenotypic trait, whereby increased tolerance is modeled as arising from plasticity in the trait. We show that broad tolerances result in evolution of large elevational ranges because they induce shallower genotypic clines and hence reduced maladaptive gene flow. The evolution of large elevational ranges results in relatively few competing species arranged along the elevational gradient at a species carrying capacity. In such saturated communities, species have much elevational overlap. In contrast, in similar-sized communities that could accommodate many more species, the resulting character release is associated with smaller elevational overlaps. Empirical assessment of these predictions should contribute to assessing any role for ecological limits in driving the latitudinal diversity gradient in species richness.


Assuntos
Altitude , Biodiversidade
9.
Proc Biol Sci ; 289(1974): 20220202, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35538777

RESUMO

What prevents populations of a species from adapting to the novel environments outside the species' geographic distribution? Previous models highlighted how gene flow across spatial environmental gradients determines species expansion versus extinction and the location of species range limits. However, space is only one of two axes of environmental variation-environments also vary in time, and we know temporal environmental variation has important consequences for population demography and evolution. We used analytical and individual-based evolutionary models to explore how temporal variation in environmental conditions influences the spread of populations across a spatial environmental gradient. We find that temporal variation greatly alters our predictions for range dynamics compared to temporally static environments. When temporal variance is equal across the landscape, the fate of species (expansion versus extinction) is determined by the interaction between the degree of temporal autocorrelation in environmental fluctuations and the steepness of the spatial environmental gradient. When the magnitude of temporal variance changes across the landscape, stable range limits form where this variance increases maladaptation sufficiently to prevent local persistence. These results illustrate the pivotal influence of temporal variation on the likelihood of populations colonizing novel habitats and the location of species range limits.


Assuntos
Ecossistema , Fluxo Gênico , Evolução Biológica
10.
Mol Ecol ; 31(7): 1951-1962, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34662483

RESUMO

Understanding the impact of historical and demographic processes on genetic variation is essential for devising conservation strategies and predicting responses to climate change. Recolonization after Pleistocene glaciations is expected to leave distinct genetic signatures, characterised by lower genetic diversity in previously glaciated regions. Populations' positions within species ranges also shape genetic variation, following the central-marginal paradigm dictating that peripheral populations are depauperate, sparse and isolated. However, the general applicability of these patterns and relative importance of historical and demographic factors remains unknown. Here, we analysed the distribution of genetic variation in 91 native species of North American plants by coupling microsatellite data and species distribution modelling. We tested the contributions of historical climatic shifts and the central-marginal hypothesis on genetic diversity and structure on the whole data set and across subsets based on taxonomic groups and growth forms. Decreased diversity was found with increased distance from potential glacial refugia, coinciding with the expected make-up of postglacially colonised localities. At the range periphery, lower genetic diversity, higher inbreeding levels and genetic differentiation were reported, following the assumptions of the central-marginal hypothesis. History and demography were found to have approximately equal importance in shaping genetic variation.


Assuntos
Variação Genética , Repetições de Microssatélites , Demografia , Variação Genética/genética , Repetições de Microssatélites/genética , América do Norte , Plantas/genética , Refúgio de Vida Selvagem
11.
J Fish Biol ; 100(3): 835-842, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34931706

RESUMO

We report new records of the fisheries-harvested subtropical greater amberjack Seriola dumerili for the south-east Pacific Ocean. Despite local fishers' asserting that three Seriola morphotypes exist in the region, only one species (the yellowtail amberjack Seriola lalandi) was previously scientifically recorded for Rapa Nui (also known as Easter Island). Whilst we present the first "scientific record", S. dumerili, traditional ecological knowledge suggests that this is likely a pre-existing (albeit transient) species of the Rapa Nui ecoregion. Establishing the existing/historic distributional limits of commercially and ecologically valuable species is key for observing climate-driven distribution shifts, and the inclusion of traditional ecological knowledge is particularly important in areas with relatively lower scientific effort.


Assuntos
Perciformes , Animais , Regiões Antárticas , Pesqueiros , Peixes , Polinésia
12.
Ecol Lett ; 24(11): 2427-2438, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34453406

RESUMO

Predicting which ecological factors constrain species distributions is a fundamental ecological question and critical to forecasting geographic responses to global change. Darwin hypothesised that abiotic factors generally impose species' high-latitude and high-elevation (typically cool) range limits, whereas biotic interactions more often impose species' low-latitude/low-elevation (typically warm) limits, but empirical support has been mixed. Here, we clarify three predictions arising from Darwin's hypothesis and show that previously mixed support is partially due to researchers testing different predictions. Using a comprehensive literature review (885 range limits), we find that biotic interactions, including competition, predation and parasitism, contributed to >60% of range limits and influenced species' warm limits more often than cool limits. Abiotic factors contributed more often than biotic interactions to cool range limits, but temperature contributed frequently to both cool and warm limits. Our results suggest that most range limits will be sensitive to climate warming, but warm-limit responses in particular will depend strongly on biotic interactions.


Assuntos
Mudança Climática , Clima , Animais , Ecossistema , Comportamento Predatório , Temperatura
13.
Ecol Appl ; 31(1): e02228, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32970879

RESUMO

As geographic range estimates for the IUCN Red List guide conservation actions, accuracy and ecological realism are crucial. IUCN's extent of occurrence (EOO) is the general region including the species' range, while area of occupancy (AOO) is the subset of EOO occupied by the species. Data-poor species with incomplete sampling present particular difficulties, but species distribution models (SDMs) can be used to predict suitable areas. Nevertheless, SDMs typically employ abiotic variables (i.e., climate) and do not explicitly account for biotic interactions that can impose range constraints. We sought to improve range estimates for data-poor, parapatric species by masking out areas under inferred competitive exclusion. We did so for two South American spiny pocket mice: Heteromys australis (Least Concern) and Heteromys teleus (Vulnerable due to especially poor sampling), whose ranges appear restricted by competition. For both species, we estimated EOO using SDMs and AOO with four approaches: occupied grid cells, abiotic SDM prediction, and this prediction masked by approximations of the areas occupied by each species' congener. We made the masks using support vector machines (SVMs) fit with two data types: occurrence coordinates alone; and coordinates along with SDM predictions of suitability. Given the uncertainty in calculating AOO for low-data species, we made estimates for the lower and upper bounds for AOO, but only make recommendations for H. teleus as its full known range was considered. The SVM approaches (especially the second one) had lower classification error and made more ecologically realistic delineations of the contact zone. For H. teleus, the lower AOO bound (a strongly biased underestimate) corresponded to Endangered (occupied grid cells), while the upper bounds (other approaches) led to Near Threatened. As we currently lack data to determine the species' true occupancy within the post-processed SDM prediction, we recommend that an updated listing for H. teleus include these bounds for AOO. This study advances methods for estimating the upper bound of AOO and highlights the need for better ways to produce unbiased estimates of lower bounds. More generally, the SVM approaches for post-processing SDM predictions hold promise for improving range estimates for other uses in biogeography and conservation.


Assuntos
Mudança Climática , Máquina de Vetores de Suporte , Animais , Clima , Ecossistema , Camundongos
14.
J Anim Ecol ; 90(3): 585-593, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33201545

RESUMO

Understanding how climate change impacts trailing-edge populations requires information about how abiotic and biotic factors limit their distributions. Theory indicates that socially mediated Allee effects can limit species distributions by suppressing growth rates of peripheral populations when social information is scarce. The goal of our research was to determine if socially mediated Allee effects limit the distribution of Canada warbler Cardellina canadensis at the trailing-edge of the geographic range. Using 4 years of observational data from 71 sites and experimental data at 10 sites, we tested two predictions of the socially mediated range limitation hypothesis: (a) local growth rates should be positively correlated with local density and (b) the addition of social cues immediately outside the trailing-edge range boundary would result in colonization of formerly unoccupied habitat and increased growth rates. During the third breeding season, social cues were experimentally added at 10 formerly unoccupied sites within and beyond the species' local range margin to determine if the addition of social information could increase density and effectively expand the species' range. No experimental sites were colonized after adding social cues and no evidence of Allee effects was found. Rather, temperature, precipitation and negative density dependence strongly influenced population growth rates. Although theoretical models indicate that the presence of socially mediated Allee effects at species range boundaries could increase the rate of climate-induced range shifts and local extinctions, empirical results from the first test of this hypothesis suggest that Allee effects play a minimal role in limiting species' distributions.


Assuntos
Ecossistema , Passeriformes , Animais , Mudança Climática , Dinâmica Populacional , Estações do Ano , Temperatura
15.
Am J Bot ; 108(11): 2112-2126, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34755895

RESUMO

Plant phenology research has surged in recent decades, in part due to interest in phenological sensitivity to climate change and the vital role phenology plays in ecology. Many local-scale studies have generated important findings regarding the physiology, responses, and risks associated with shifts in plant phenology. By comparison, our understanding of regional- and global-scale phenology has been largely limited to remote sensing of green-up without the ability to differentiate among plant species. However, a new generation of analytical tools and data sources-including enhanced remote sensing products, digitized herbarium specimen data, and public participation in science-now permits investigating patterns and drivers of phenology across extensive taxonomic, temporal, and spatial scales, in an emerging field that we call macrophenology. Recent studies have highlighted how phenology affects dynamics at broad scales, including species interactions and ranges, carbon fluxes, and climate. At the cusp of this developing field of study, we review the theoretical and practical advances in four primary areas of plant macrophenology: (1) global patterns and shifts in plant phenology, (2) within-species changes in phenology as they mediate species' range limits and invasions at the regional scale, (3) broad-scale variation in phenology among species leading to ecological mismatches, and (4) interactions between phenology and global ecosystem processes. To stimulate future research, we describe opportunities for macrophenology to address grand challenges in each of these research areas, as well as recently available data sources that enhance and enable macrophenology research.


Assuntos
Mudança Climática , Ecossistema , Plantas , Estações do Ano
16.
Mol Ecol ; 29(4): 704-719, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31990426

RESUMO

The central-marginal hypothesis (CMH) posits that range margins exhibit less genetic diversity and greater inter-population genetic differentiation compared to range cores. CMH predictions are based on long-held "abundant-centre" assumptions of a decline in ecological conditions and abundances towards range margins. Although much empirical research has confirmed CMH, exceptions remain almost as common. We contend that mangroves provide a model system to test CMH that alleviates common confounding factors and may help clarify this lack of consensus. Here, we document changes in black mangrove (Avicennia germinans) population genetics with 12 nuclear microsatellite loci along three replicate coastlines in the United States (only two of three conform to underlying "abundant-centre" assumptions). We then test an implicit prediction of CMH (reduced genetic diversity may constrain adaptation at range margins) by measuring functional traits of leaves associated with cold tolerance, the climatic factor that controls these mangrove distributional limits. CMH predictions were confirmed only along the coastlines that conform to "abundant-centre" assumptions and, in contrast to theory, range margin A. germinans exhibited functional traits consistent with greater cold tolerance compared to range cores. These findings support previous accounts that CMH may not be a general rule across species and that reduced neutral genetic diversity at range margins may not be a constraint to shifts in functional trait variation along climatic gradients.


Assuntos
Avicennia/genética , Ecossistema , Genética Populacional , Avicennia/crescimento & desenvolvimento , Mudança Climática , Fluxo Gênico/genética , Variação Genética/genética , Repetições de Microssatélites/genética
17.
Ecol Appl ; 30(7): e02158, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32365241

RESUMO

Many forests in dry mountain regions are characterized by a lower elevational treeline. Understanding the controls on the position of lower treeline is important for predicting future forest distributional shifts in response to global environmental change. Lower treelines currently at their climate limit are expected to be more sensitive to changing climate, whereas lower treelines constrained by non-climatic factors are less likely to respond directly to climate change but may be sensitive to other global change agents. In this study, we used existing vegetation classifications to map lower treelines for our 1.7 million km2 study region in the U. S. Intermountain West. We modeled topoclimatic drivers of lower treeline position for each of three dominant forest types to identify topoclimatically limited treelines. We then used spatial data of edaphic properties, recent fire, and land use to identify lower treelines potentially constrained above their ecophysiological limits by non-climatic processes. We found that the lower treeline ecotone of pinyon-juniper woodlands is largely limited by topoclimate and is likely to be sensitive to increasing temperatures and associated droughts, though these effects may be heterogeneously distributed across the landscape. In contrast, dry mixed-conifer lower treelines in the northern portion of the study area rarely reached their modeled topoclimatic limit, suggesting that non-climatic processes, including fire and land use, constrain the lower treeline above its ecophysiological limits in this forest type. Our results suggest that much of the lower treeline in the Intermountain West is currently climate limited and will thus be sensitive to ongoing climate changes. Lower treelines in other arid or semi-arid mountainous regions around the globe may also be strongly sensitive to climate, though treeline response to climate change will be mediated at the local scale by soil properties, biotic interactions, and natural or anthropogenic disturbances. Our regional study of lower treeline provides a framework for identifying the drivers of lower treeline formation and allows for more robust projections of future treeline dynamics, which are needed to anticipate shifting global distributions of the forest biome.


Assuntos
Incêndios , Árvores , Mudança Climática , Florestas , Temperatura , Estados Unidos
18.
J Anim Ecol ; 89(4): 940-954, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31758805

RESUMO

A central theme of range-limit theory (RLT) posits that abiotic factors form high-latitude/altitude limits, whereas biotic interactions create lower limits. This hypothesis, often credited to Charles Darwin, is a pattern widely assumed to occur in nature. However, abiotic factors can impose constraints on both limits and there is scant evidence to support the latter prediction. Deviations from these predictions may arise from correlations between abiotic factors and biotic interactions, as a lack of data to evaluate the hypothesis, or be an artifact of scale. Combining two tenets of ecology-niche theory and predator-prey theory-provides an opportunity to understand how biotic interactions influence range limits and how this varies by trophic level. We propose an expansion of RLT, interactive RLT (iRLT), to understand the causes of range limits and predict range shifts. Incorporating the main predictions of Darwin's hypothesis, iRLT hypothesizes that abiotic and biotic factors can interact to impact both limits of a species' range. We summarize current thinking on range limits and perform an integrative review to evaluate support for iRLT and trophic differences along range margins, surveying the mammal community along the boreal-temperate and forest-tundra ecotones of North America. Our review suggests that range-limit dynamics are more nuanced and interactive than classically predicted by RLT. Many (57 of 70) studies indicate that biotic factors can ameliorate harsh climatic conditions along high-latitude/altitude limits. Conversely, abiotic factors can also mediate biotic interactions along low-latitude/altitude limits (44 of 68 studies). Both scenarios facilitate range expansion, contraction or stability depending on the strength and the direction of the abiotic or biotic factors. As predicted, biotic interactions most often occurred along lower limits, yet there were trophic differences. Carnivores were only limited by competitive interactions (n = 25), whereas herbivores were more influenced by predation and parasitism (77%; 55 of 71 studies). We highlight how these differences may create divergent range patterns along lower limits. We conclude by (a) summarizing iRLT; (b) contrasting how our model system and others fit this hypothesis and (c) suggesting future directions for evaluating iRLT.


Assuntos
Altitude , Ecossistema , Animais , Mamíferos , América do Norte , Comportamento Predatório
19.
BMC Genomics ; 20(1): 989, 2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31847812

RESUMO

BACKGROUND: Studying plasticity in gene expression in natural systems is crucial, for predicting and managing the effects of climate change on plant species. To understand the contribution of gene expression level variations to abiotic stress compensation in a Himalaya plant (Primula sikkimensis), we carried out a transplant experiment within (Ambient), and beyond (Below Ambient and Above Ambient) the altitudinal range limit of species. We sequenced nine transcriptomes (three each from each altitudinal range condition) using Illumina sequencing technology. We compared the fitness variation of transplants among three transplant conditions. RESULTS: A large number of significantly differentially expressed genes (DEGs) between below ambient versus ambient (109) and above ambient versus ambient (85) were identified. Transcripts involved in plant growth and development were mostly up-regulated in below ambient conditions. Transcripts involved in signalling, defence, and membrane transport were mostly up-regulated in above ambient condition. Pathway analysis revealed that most of the genes involved in metabolic processes, secondary metabolism, and flavonoid biosynthesis were differentially expressed in below ambient conditions, whereas most of the genes involved in photosynthesis and plant hormone signalling were differentially expressed in above ambient conditions. In addition, we observed higher reproductive fitness in transplant individuals at below ambient condition compared to above ambient conditions; contrary to what we expect from the cold adaptive P. sikkimensis plants. CONCLUSIONS: We reveal P. sikkimensis's capacity for rapid adaptation to climate change through transcriptome variation, which may facilitate the phenotypic plasticity observed in morphological and life history traits. The genes and pathways identified provide a genetic resource for understanding the temperature stress (both the hot and cold stress) tolerance mechanism of P. sikkimensis in their natural environment.


Assuntos
Altitude , Regulação da Expressão Gênica de Plantas , Primula/genética , Perfilação da Expressão Gênica , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Primula/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
20.
Ecol Lett ; 22(4): 664-673, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30734458

RESUMO

The formation and maintenance of biogeographic regions and the latitudinal gradient of species richness are thought to be influenced, in part, by the spatial distribution of physical habitat (habitat continuity). But the importance of habitat continuity in relation to other variables for shaping richness gradients and delimiting biogeographic regions has not been well established. Here, we show that habitat continuity is a top predictor of biogeographic structure and the richness gradient of eastern Pacific rocky shore gastropods (spanning c. 23 000 km, from 43°S to 48°N). Rocky shore habitat continuity is generally low within tropical/subtropical regions (compared to extratropical regions), but particularly at biogeographic boundaries where steep richness gradients occur. Regions of high rocky shore habitat continuity are located towards the centres of biogeographic regions where species turnover tends to be relatively low. Our study highlights the importance of habitat continuity to help explain patterns and processes shaping the biogeographic organisation of species.


Assuntos
Biodiversidade , Ecossistema
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa