Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Emerg Infect Dis ; 30(4): 823-826, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526410

RESUMO

We identified rat hepatitis E virus (HEV) RNA in farmed pigs from Spain. Our results indicate that pigs might be susceptible to rat HEV and could serve as viral intermediaries between rodents and humans. Europe should evaluate the prevalence of rat HEV in farmed pigs to assess the risk to public health.


Assuntos
Vírus da Hepatite E , Humanos , Ratos , Animais , Suínos , Espanha/epidemiologia , Vírus da Hepatite E/genética , Europa (Continente) , Fazendas , Saúde Pública , RNA
2.
J Clin Microbiol ; 61(12): e0071023, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38038482

RESUMO

The emergence of Rocahepevirus ratti [species HEV ratti (r HEV)] as a causative agent of hepatitis E in humans presents a new potential threat to global public health. The R. ratti genotype 1 (r-1 HEV) variant only shares 50%-60% genomic identity with Paslahepevirus balayani [species HEV balayani (b HEV)] variants, which are the main causes of hepatitis E infection in humans. Here, we report antigen diagnoses for r-1 HEV and b HEV using an enzymatic immunoassay (EIA) method. We detected recombinant virus-like particles protein (HEV 239) of r HEV and b HEV using a collection of hepatitis E virus (HEV)-specific monoclonal antibodies. Two optimal candidates, the capture antibody P#1-H4 and the detection antibodies C145 (P#1-H4*/C145#) and C158 (P#1-H4*/C158#), were selected to detect antigen in infected rat samples and r-1 HEV- or b HEV-infected human clinical samples. The two candidates showed similar diagnostic efficacy to the Wantai HEV antigen kit in b HEV-infected clinical samples. Genomic divergence resulted in low diagnostic efficacy of the Wantai HEV antigen kit (0%, 0 of 10) for detecting r-1 HEV infection. Compared with the P#1-H4*/C145# candidate (80%, 8 of 10), the P#1-H4*/C158# candidate had excellent diagnostic efficacy in r-1 HEV-infected clinical samples (100%, 10 of 10). The two candidates bind to a discrete antigenic site that is highly conserved across r HEV and b HEV. P#1-H4*/C145# and P#1-H4*/C158# are efficacious candidate antibody combinations for rat HEV antigen detection.


Assuntos
Vírus da Hepatite E , Hepatite E , Ratos , Humanos , Animais , Vírus da Hepatite E/genética , Anticorpos Anti-Hepatite , Técnicas Imunoenzimáticas , Testes Imunológicos
3.
Clin Infect Dis ; 75(2): 288-296, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34718428

RESUMO

BACKGROUND: Hepatitis E virus (HEV) variants belonging to Orthohepevirus species A (HEV-A) are the primary cause of human hepatitis E. However, we previously reported that Orthohepevirus species C genotype 1 (HEV-C1), a divergent HEV variant commonly found in rats, also causes hepatitis in humans. Here, we present a clinical-epidemiological investigation of human HEV-C1 infections detected in Hong Kong, with an emphasis on outcomes in immunocompromised individuals. METHODS: A surveillance system for detecting human HEV-C1 infections was established in Hong Kong. Epidemiological and clinical characteristics of HEV-C1 cases identified via this system between 1 August 2019 and 31 December 2020 were retrieved. Phylogenetic analysis of HEV-C1 strain sequences was performed. Infection outcomes of immunocompromised individuals with HEV-A and HEV-C1 infections were analyzed. RESULTS: HEV-C1 accounted for 8 of 53 (15.1%) reverse-transcription polymerase chain reaction (RT-PCR)-confirmed HEV infections in Hong Kong during the study period, raising the total number of HEV-C1 infections detected in the city to 16. Two distinct HEV-C1 strain groups caused human infections. Patients were elderly and/or immunocompromised; half tested negative for HEV immunoglobulin M. Cumulatively, HEV-C1 accounted for 9 of 21 (42.9%) cases of hepatitis E recorded in immunocompromised patients in Hong Kong. Immunocompromised HEV-C1 patients progressed to persistent hepatitis at similar rates (7/9 [77.8%]) as HEV-A patients (10/12 [75%]). HEV-C1 patients responded to oral ribavirin, although response to first course was sometimes poor or delayed. CONCLUSIONS: Dedicated RT-PCR-based surveillance detected human HEV-C1 cases that evade conventional hepatitis E diagnostic testing. Immunosuppressed HEV-C1-infected patients frequently progress to persistent HEV-C1 infection, for which ribavirin is a suitable treatment option.


Assuntos
Hepatite C , Vírus da Hepatite E , Hepatite E , Idoso , Animais , Vírus da Hepatite E/genética , Hong Kong/epidemiologia , Humanos , Filogenia , RNA Viral/genética , Ratos , Ribavirina
4.
Emerg Infect Dis ; 24(12): 2241-2250, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30457530

RESUMO

All hepatitis E virus (HEV) variants reported to infect humans belong to the species Orthohepevirus A (HEV-A). The zoonotic potential of the species Orthohepevirus C (HEV-C), which circulates in rats and is highly divergent from HEV-A, is unknown. We report a liver transplant recipient with hepatitis caused by HEV-C infection. We detected HEV-C RNA in multiple clinical samples and HEV-C antigen in the liver. The complete genome of the HEV-C isolate had 93.7% nt similarity to an HEV-C strain from Vietnam. The patient had preexisting HEV antibodies, which were not protective against HEV-C infection. Ribavirin was an effective treatment, resulting in resolution of hepatitis and clearance of HEV-C viremia. Testing for this zoonotic virus should be performed for immunocompromised and immunocompetent patients with unexplained hepatitis because routine hepatitis E diagnostic tests may miss HEV-C infection. HEV-C is also a potential threat to the blood product supply.


Assuntos
Vírus da Hepatite E , Hepatite E/epidemiologia , Hepatite E/etiologia , Transplante de Fígado/efeitos adversos , Transplantados , Animais , Antivirais/uso terapêutico , Genoma Viral , Genômica/métodos , Hepatite E/tratamento farmacológico , Hepatite E/virologia , Vírus da Hepatite E/classificação , Vírus da Hepatite E/genética , Humanos , Masculino , Pessoa de Meia-Idade , Fases de Leitura Aberta , Ratos , Resultado do Tratamento , Carga Viral , Sequenciamento Completo do Genoma
5.
Arch Virol ; 163(5): 1345-1349, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29404765

RESUMO

All three genetic groups of ratHEV have been found in Indonesia, suggesting the presence of additional variants of ratHEV in unexamined areas of Indonesia. A total of 242 wild rats were captured in Bali and Sumbawa, Indonesia, during 2014-2016. Among them, 4.1% were seropositive for anti-ratHEV IgG and two (0.8%) had detectable ratHEV RNA: ratESUMBAWA-140L and ratEBali2016D-047L, sharing 84.9-85.4% and 86.9-92.1% nucleotide identity with the reported G2 strains, respectively. The provisional criteria supported the notion that the ratEBali2016D-047L and ratESUMBAWA-140L strains were novel G2 variants. These results suggested the spatial distribution of further divergent ratHEV strains in Indonesia.


Assuntos
Vírus da Hepatite E/genética , Vírus da Hepatite E/isolamento & purificação , Hepatite E/veterinária , Doenças dos Roedores/virologia , Animais , Animais Selvagens/virologia , Genoma Viral , Anticorpos Anti-Hepatite/sangue , Hepatite E/epidemiologia , Hepatite E/transmissão , Hepatite E/virologia , Vírus da Hepatite E/imunologia , Humanos , Indonésia/epidemiologia , Filogenia , RNA Viral/genética , Ratos , Doenças dos Roedores/epidemiologia
7.
Emerg Microbes Infect ; 13(1): 2295389, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38095070

RESUMO

Rat hepatitis E virus (ratHEV; species Rocahepevirus ratti) is considered a newly emerging cause of acute hepatitis of zoonotic origin. ratHEV infection of people living with HIV (PLWH) might portend a worse, as with hepatitis E virus (HEV; species Paslahepevirus balayani), and consequently this group may constitute a high-risk population. We aimed to evaluate the prevalence of ratHEV by measuring viral RNA and specific IgG antibodies in a large Spanish cohort of PLWH. Multicentre study conducted in Spain evaluating PLWHIV included in the Spanish AIDS Research Network (CoRIS). Patients were evaluated for ratHEV infection using PCR at baseline and anti-ratHEV IgG by dot blot analysis to evaluate exposure to ratHEV strains. Patients with detectable ratHEV RNA were followed-up to evaluate persistence of viremia and IgG seroconversion. Eight-hundred and forty-two individuals were tested. A total of 9 individuals showed specific IgG antibodies against ratHEV, supposing a prevalence of 1.1 (95% CI; 0.5%-2.1%). Of these, only one was reactive to HEV IgG antibodies by ELISA. One sample was positive for ratHEV RNA (prevalence of infection: 0.1%; 95% CI: 0.08%-0.7%). The case was a man who had sex with men exhibiting a slightly increased alanine transaminase level (49 IU/L) as only biochemical alteration. In the follow-up, the patients showed undetectable ratHEV RNA and seroconversion to specific ratHEV IgG antibodies. Our study shows that ratHEV is geographical broadly distributed in Spain, representing a potential zoonotic threat.


Assuntos
Infecções por HIV , Vírus da Hepatite E , Hepatite E , Masculino , Humanos , Animais , Ratos , Vírus da Hepatite E/genética , Hepatite E/epidemiologia , Anticorpos Anti-Hepatite , RNA Viral , Imunoglobulina G , Infecções por HIV/complicações
8.
Emerg Microbes Infect ; 13(1): 2396865, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39193634

RESUMO

ABSTRACTRat hepatitis E virus (ratHEV) is an emerging cause of acute hepatitis of zoonotic origin. Since seroprevalence studies are scarce, at-risk groups are almost unknown. Because blood-borne infections frequently occur in people with drug use, who are particularly vulnerable to infection due to lack of housing and homelessness, this population constitutes a priority in which ratHEV infection should be evaluated. Therefore, the aim of this study was to evaluate the ratHEV seroprevalence and RNA detection rate in drug users as a potential at-risk population. We designed a retrospective study involving individuals that attended drug rehabilitation centres. Exposure to ratHEV was assessed by specific antibody detection using ELISA and dot blot (DB) assay and the presence of active infection by ratHEV RNA detection using RT-qPCR. Three-hundred and forty-one individuals were included, the most of them being men (67.7%) with an average age of 45 years. A total of 17 individuals showed specific IgG antibodies against ratHEV (4.6%; 95% CI; 3.1%-7.9%). One case of active ratHEV infection was identified (0.3%; 95% CI: 0.1%-1.8%). This was a 57-year-old homeless woman with limited financial resources, who had active cocaine and heroin use via parenteral route. In conclusion, we identified a potential exposure to ratHEV among drug users. Targeted studies in drug users with proper control groups are necessary to evaluate high-risk populations and transmission routes more accurately.


Assuntos
Usuários de Drogas , Vírus da Hepatite E , Hepatite E , Humanos , Pessoa de Meia-Idade , Hepatite E/epidemiologia , Hepatite E/virologia , Hepatite E/veterinária , Masculino , Feminino , Estudos Soroepidemiológicos , Adulto , Estudos Retrospectivos , Vírus da Hepatite E/imunologia , Vírus da Hepatite E/genética , Vírus da Hepatite E/isolamento & purificação , RNA Viral/sangue , Anticorpos Anti-Hepatite/sangue , Animais , Imunoglobulina G/sangue , Adulto Jovem , Ratos
9.
Microbiol Spectr ; 11(6): e0267523, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37850788

RESUMO

IMPORTANCE: Hepatitis E virus (HEV) infection constitutes a significant health problem worldwide. In recent years, in addition to the zoonotic HEV3 and HEV4, emerging highly divergent hepevirus of rat origin (rat HEV [RHEV]) has been associated with human acute and chronic hepatitis. As environmental surveillance can be a complementary tool to explore emerging viruses of human and rodent origin, we investigated the epidemiology and the genetic variability of RHEV targeting 14 wastewater treatment plants in an Italian geographic area considered a hot spot for HEV infection in humans. Our results revealed that RHEV is a significant component of the wastewater microbiota with viral RNA detected in 43.9% of the specimens tested, adding further evidence to the need to investigate more in depth the real burden of RHEV infections in humans.


Assuntos
Vírus da Hepatite E , Hepatite E , Animais , Humanos , Ratos , Hepatite E/epidemiologia , Hepatite E/veterinária , Águas Residuárias , Filogenia , Genótipo , Vírus da Hepatite E/genética , Itália/epidemiologia
10.
Virus Res ; 314: 198766, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35364118

RESUMO

Rat hepatitis E virus (HEV-C1) in the Orthohepevirus C species has been reported to cause zoonotic infection and hepatitis in humans. HEV-C1 strains have been detected from wild rats in many countries in Europe, Asia, and North America. However, in Japan, no HEV-C1 strains have been identified. In the present study, 5 (1.2%) of 428 wild rats (Rattus norvegicus or R. rattus) were positive for anti-HEV-C1 IgG. Although all 428 rat sera were negative for HEV-C1 RNA, it was detectable in 20 (19.8%) of 101 rat fecal samples collected on a swine farm, where HEV (genotype 3b, HEV-3b) was prevalent and wild rats were present. In addition, HEV-C1 RNA was detectable in the intestinal contents and liver tissues of 7 (18.9%) of 37 additional rats captured on the same farm. The HEV-C1 strain (ratEJM1703495L) obtained in this study shared only 75.8-84.7% identity with reported HEV-C1 strains over the entire genome but propagated efficiently in cultured cells. HEV-3b strains were detected in the rats' intestinal contents, with 97.3-99.5% identity to those in pigs on the same farm, but were undetectable in rat liver tissues, suggesting that wild rats do not support the replication of HEV-3b of swine origin.


Assuntos
Vírus da Hepatite E , Hepatite E , Doenças dos Suínos , Animais , Hepatite E/veterinária , Vírus da Hepatite E/genética , Japão , Filogenia , RNA , RNA Viral/genética , Ratos , Suínos
11.
Viruses ; 14(2)2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-35215886

RESUMO

Rat hepatitis E virus (rat HEV) was first identified in wild rats and was classified as the species Orthohepevirus C in the genera Orthohepevirus, which is genetically different from the genotypes HEV-1 to HEV-8, which are classified as the species Orthohepevirus A. Although recent reports suggest that rat HEV transmits to humans and causes hepatitis, the infectivity of rat HEV to non-human primates such as cynomolgus and rhesus monkeys remains controversial. To investigate whether rat HEV infects non-human primates, we inoculated one cynomolgus monkey and five rhesus monkeys with a V-105 strain of rat HEV via an intravenous injection. Although no significant elevation of alanine aminotransferase (ALT) was observed, rat HEV RNA was detected in fecal specimens, and seroconversion was observed in all six monkeys. The partial nucleotide sequences of the rat HEV recovered from the rat HEV-infected monkeys were identical to those of the V-105 strain, indicating that the infection was caused by the rat HEV. The rat HEV recovered from the cynomolgus and rhesus monkeys successfully infected both nude and Sprague-Dawley rats. The entire rat HEV genome recovered from nude rats was identical to that of the V-105 strain, suggesting that the rat HEV replicates in monkeys and infectious viruses were released into the fecal specimens. These results demonstrated that cynomolgus and rhesus monkeys are susceptible to rat HEV, and they indicate the possibility of a zoonotic infection of rat HEV. Cynomolgus and rhesus monkeys might be useful as animal models for vaccine development.


Assuntos
Hepatite Viral Animal/transmissão , Hepevirus/fisiologia , Infecções por Vírus de RNA/veterinária , Zoonoses Virais/transmissão , Alanina Transaminase/sangue , Animais , Anticorpos Antivirais/sangue , Fezes/virologia , Feminino , Hepatite Viral Animal/virologia , Macaca fascicularis , Macaca mulatta , Masculino , Infecções por Vírus de RNA/transmissão , Infecções por Vírus de RNA/virologia , RNA Viral/análise , Ratos , Zoonoses Virais/virologia , Replicação Viral
12.
Virus Res ; 302: 198483, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34146611

RESUMO

Rat hepatitis E virus (HEV) has been isolated from wild rats worldwide and the potential of zoonotic transmission has been documented. Escherichia coli (E. coli) is utilized as an effective system for producing HEV-like particles. However, the production of rat HEV ORF2 proteins in E. coli forming virus-like particles (VLPs) has not yet been reported. In this study, nine rat HEV ORF2 proteins of the ratELOMB-131L strain with truncated N- and C-termini (amino acids 339-594, 349-594, 351-594, 354-594, 357-594, 357-599, 357-604, 357-609, and 357-614 of ORF2 protein) were expressed in E. coli and the 357-614 protein self-assembled most efficiently. A bioanalyzer showed that the purified 357-614 protein has a molecular weight of 33.5 kDa and a purity of 93.2%. Electron microscopy revealed that the purified 33.5 kDa protein formed VLPs with a diameter of 21-52 (average 32) nm, and immunoelectron microscopy using an anti-rat HEV ORF2 monoclonal antibody (TA7014) indicated that the observed VLPs were derived from rat HEV ORF2. The VLPs attached to and entered the PLC/PRF/5 cells and blocked the neutralization of rat HEV by TA7014, suggesting that the VLPs possess the antigenic structure of infectious rat HEV particles. In addition, rat HEV VLPs showed high immunogenicity in mice. The present results would be useful for future studies on the development of VLP-based vaccines for HEV prevention in a rat model and for the prevention of rat HEV infection in humans.


Assuntos
Infecções por Escherichia coli , Vírus da Hepatite E , Hepatite E , Animais , Proteínas do Capsídeo/química , Escherichia coli/genética , Escherichia coli/metabolismo , Anticorpos Anti-Hepatite , Vírus da Hepatite E/genética , Camundongos , Ratos
13.
Front Med (Lausanne) ; 8: 726363, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34540871

RESUMO

Background: Hepatitis E Virus (HEV) is one of the most common causes of hepatitis worldwide, and South-Western France is a high HEV seroprevalence area. While most cases of HEV infection are associated with the species Orthohepevirus-A, several studies have reported a few cases of HEV infections due to Orthohepevirus-C (HEV-C) that usually infects rats. Most of these human cases have occurred in immunocompromised patients. We have screened for the presence of HEV-C in our region. Methods and Results: We tested 224 sera, mostly from immunocompromised patients, for HEV-C RNA using an in-house real time RT-PCR. Liver function tests gave elevated results in 63% of patients: mean ALT was 159 IU/L (normal < 40 IU/L). Anti-HEV IgG (49%) and anti-HEV IgM (9.4%) were frequently present but none of the samples tested positive for HEV-C RNA. Conclusion: HEV-C does not circulate in the human population of South-Western France, despite the high seroprevalence of anti-HEV IgG.

14.
Virus Res ; 278: 197868, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31962066

RESUMO

Recent reports have shown that rat hepatitis E virus (HEV) is capable of infecting humans. We also successfully propagated rat HEV into human PLC/PRF/5 cells, raising the possibility of a similar mechanism shared by human HEV and rat HEV. Rat HEV has the proline-rich sequence, PxYPMP, in the open reading frame 3 (ORF3) protein that is indispensable for its release. However, the release mechanism remains unclear. The overexpression of dominant-negative (DN) mutant of vacuolar protein sorting (Vps)4A or Vps4B decreased rat HEV release to 23.9 % and 18.0 %, respectively. The release of rat HEV was decreased to 8.3 % in tumor susceptibility gene 101 (Tsg101)-depleted cells and to 31.5 % in apoptosis-linked gene 2-interacting protein X (Alix)-depleted cells. Although rat HEV ORF3 protein did not bind to Tsg101, we found a 90-kDa protein capable of binding to wild-type rat HEV ORF3 protein but not to ORF3 mutant with proline to leucine mutations in the PxYPMP motif. Rat HEV release was also decreased in Ras-associated binding 27A (Rab27A)- or hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs)-depleted cells (to 20.1 % and 18.5 %, respectively). In addition, the extracellular rat HEV levels in the infected PLC/PRF/5 cells were increased after treatment with Bafilomycin A1 and decreased after treatment with GW4869. These results indicate that rat HEV utilizes multivesicular body (MVB) sorting for its release and that the exosomal pathway is required for rat HEV egress. A host protein alternative to Tsg101 that can bind to rat HEV ORF3 should be explored in further study.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/fisiologia , Vírus da Hepatite E/fisiologia , Corpos Multivesiculares/fisiologia , Corpos Multivesiculares/virologia , Liberação de Vírus , Animais , Linhagem Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Humanos , Transporte Proteico , Ratos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Virais/metabolismo , Replicação Viral
16.
Virus Res ; 249: 16-30, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29471051

RESUMO

Rat hepatitis E virus (ratHEV) genome has four open reading frames (ORFs: ORF1, ORF2, ORF3 and ORF4). The functions of ORF3 and ORF4 are unknown. An infectious cDNA clone (pUC-ratELOMB-131L_wt, wt) and its derivatives including ORF3-defective (ΔORF3) and ORF4-defective (ΔORF4) mutants, were constructed and their full-length RNA transcripts transfected into PLC/PRF/5 cells. ΔORF3 replicated as efficiently as wt in cells. However, ≤1/1000 of the number of progenies were detectable in the culture supernatant of ΔORF3-infected cells compared with wt-infected cells. ORF4 protein was not detectable in ratHEV-infected cells or in the liver tissues of ratHEV-infected rats. No marked differences were noted between wt and ΔORF4 regarding the viral replication and protein expression. ORF3 mutants with proline-to-leucine mutations at amino acids (aa) 93, 96 and/or 98 in ORF3 were constructed and transfected into PLC/PRF/5 cells. Wt and an ORF3 mutant with leucine at aa 98 (ORF3-L98) replicated efficiently (density 1.15-1.16 g/cm3), while ORF3-L93 + L96 exhibited a decreased viral release and banded at 1.26-1.27 g/cm3, similar to ΔORF3. In conclusion, the ORF3 protein, especially its proline residues at aa 93 and 96, is essential for the release of membrane-associated ratHEV particles, and ORF4 is unnecessary for the replication of ratHEV.


Assuntos
Técnicas de Inativação de Genes , Vírus da Hepatite E/fisiologia , Proteínas Mutantes/metabolismo , Fases de Leitura Aberta , Proteínas Virais/metabolismo , Replicação Viral , Animais , Vírus da Hepatite E/genética , Proteínas Mutantes/genética , Ratos , Carga Viral , Proteínas Virais/genética
17.
J Virol Methods ; 233: 78-88, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26992654

RESUMO

Hepatitis E virus (HEV) is the causative agent of acute hepatitis. Rat HEV is a recently discovered virus related to, but distinct from, human HEV. Since laboratory rats can be reproducibly infected with rat HEV and a cell culture system has been established for rat HEV, this virus may be used as a surrogate virus for human HEV, enabling studies on virus replication and mechanism of infection. However, monoclonal antibodies (MAbs) against rat HEV capsid (ORF2) protein are not available. In this study, 12 murine MAbs were generated against a recombinant ORF2 protein of rat HEV (rRatHEV-ORF2: amino acids 101-644) and were classified into at least six distinct groups by epitope mapping and a cross-reactivity analysis with human HEV ORF2 proteins. Two non-cross-reactive MAbs recognizing the protruding (P) domain detected both non-denatured and denatured rRatHEV-ORF2 protein and efficiently captured cell culture-produced rat HEV particles that had been treated with deoxycholate and trypsin, but not those without prior treatment. In addition, these two MAbs were able to efficiently neutralize replication of cell culture-generated rat HEV particles without lipid membranes (but not those with lipid membranes) in a cell culture system, similar to human HEV.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/imunologia , Mapeamento de Epitopos , Vírus da Hepatite E/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Especificidade de Anticorpos/imunologia , Antígenos Virais/imunologia , Western Blotting , Proteínas do Capsídeo/genética , Técnicas de Cultura de Células , Reações Cruzadas/imunologia , Ensaio de Imunoadsorção Enzimática , Epitopos/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Vírus da Hepatite E/genética , Humanos , Testes de Neutralização , Reação em Cadeia da Polimerase , RNA Viral , Ratos , Proteínas Recombinantes/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa