Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pain Res ; 15: 2029-2040, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35923842

RESUMO

Background: In the central nervous system, post-inhibitory rebound firing (RF) may mediate overactivity of neurons under pathophysiological condition. RF is also observed in dorsal root ganglion (IRA) neurons. However, the functional significance of RF in primary sensory neurons has remained unknown. After peripheral sensory nerve/neuron injury, DRG neurons exhibit hyperexcitability. Therefore, RF may play a role in neuropathic pain. Methods: Chronic compression of DRG (CCD) is used as a neuropathic pain model. Rats were divided into 2 groups: Sham and CCD groups. Patch clamp was performed on the whole DRG and cultured DRG neurons to record RF and T-type Ca2+ currents. The blocker of T-type Ca2+ channels, NiCl2, was applied to DRG neurons. Results: Rebound neurons were more excitable than non-rebound neurons. And they discharged RF with prominent after depolarizing potentials, which were blocked by NiCl2. After DRG injury, the proportion of rebound neurons augmented, and rebound neurons' excitability increased. Meanwhile, the steady-state activation curve of T-type Ca2+ channels was shifted toward the left. Conclusion: RF may be related to highly excitable neurons and sensitive to both depolarization and hyperpolarization. T-type Ca2+ channels were critical to RF, potentially enhancing the spontaneous firing of rebound neurons in response to resting membrane potential fluctuations.

2.
Front Comput Neurosci ; 14: 26, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32372936

RESUMO

The majority of neurons in the neuronal system of the brain have a complex morphological structure, which diversifies the dynamics of neurons. In the granular layer of the cerebellum, there exists a unique cell type, the unipolar brush cell (UBC), that serves as an important relay cell for transferring information from outside mossy fibers to downstream granule cells. The distinguishing feature of the UBC is that it has a simple morphology, with only one short dendritic brush connected to its soma. Based on experimental evidence showing that UBCs exhibit a variety of dynamic behaviors, here we develop two simple models, one with a few detailed ion channels for simulation and the other one as a two-variable dynamical system for theoretical analysis, to characterize the intrinsic dynamics of UBCs. The reasonable values of the key channel parameters of the models can be determined by analysis of the stability of the resting membrane potential and the rebound firing properties of UBCs. Considered together with a large variety of synaptic dynamics installed on UBCs, we show that the simple-structured UBCs, as relay cells, can extend the range of dynamics and information from input mossy fibers to granule cells with low-frequency resonance and transfer stereotyped inputs to diverse amplitudes and phases of the output for downstream granule cells. These results suggest that neuronal computation, embedded within intrinsic ion channels and the diverse synaptic properties of single neurons without sophisticated morphology, can shape a large variety of dynamic behaviors to enhance the computational ability of local neuronal circuits.

3.
J Clin Cell Immunol ; 8(2)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28775912

RESUMO

Neural networks play a critical role in establishing constraints on excitability in the central nervous system. Several recent studies have suggested that network dysfunction in the brain and spinal cord are compromised following insult by a neurodegenerative trigger and might precede eventual neuronal loss and neurological impairment. Early intervention of network excitability and plasticity might therefore be critical in resetting hyperexcitability and preventing later neuronal damage. Here, the behavior of neurons that generate burst firing upon recovery from inhibitory input or intrinsic membrane hyperpolarization (rebound neurons) is examined in the context of neural networks that underlie rhythmic activity observed in areas of the brain and spinal cord that are vulnerable to neurodegeneration. In a non-inflammatory rodent model of spongiform neurodegenerative disease triggered by retrovirus infection of glia, rebound neurons are particularly vulnerable to neurodegeneration, likely due to an inherently low calcium buffering capacity. The dysfunction of rebound neurons translates into a dysfunction of rhythmic neural circuits, compromising normal neurological function and leading to eventual morbidity. Understanding how virus infection of glia can mediate dysfunction of rebound neurons, induce hyperexcitability and loss of rhythmic function, pathologic features observed in neurodegenerative disorders ranging from epilepsy to motor neuron disease, might therefore suggest a common pathway for early therapeutic intervention.

4.
Front Cell Neurosci ; 3: 14, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19949453

RESUMO

The cerebellum has been implicated as a major player in producing temporal acuity. Theories of cerebellar timing typically emphasize the role of the cerebellar cortex while overlooking the role of the deep cerebellar nuclei (DCN) that provide the sole output of the cerebellum. Here we review anatomical and electrophysiological studies to shed light on the DCN's ability to support temporal pattern generation in the cerebellum. Specifically, we examine data on the structure of the DCN, the biophysical properties of DCN neurons and properties of the afferent systems to evaluate their contribution to DCN firing patterns. In addition, we manipulate one of the afferent structures, the inferior olive (IO), using systemic harmaline injection to test for a network effect on activity of single DCN neurons in freely moving animals. Harmaline induces a rhythmic firing pattern of short bursts on a quiescent background at about 8 Hz. Other neurons become quiescent for long periods (seconds to minutes). The observed patterns indicate that the major effect harmaline exerts on the DCN is carried indirectly by the inhibitory Purkinje cells (PCs) activated by the IO, rather than by direct olivary excitation. Moreover, we suggest that the DCN response profile is determined primarily by the number of concurrently active PCs, their firing rate and the level of synchrony occurring in their transitions between continuous firing and quiescence. We argue that DCN neurons faithfully transfer temporal patterns resulting from strong correlations in PCs state transitions, while largely ignoring the timing of simple spikes from individual PCs. Future research should aim at quantifying the contribution of PC state transitions to DCN activity, and the interplay between the different afferent systems that drive DCN activity.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa