RESUMO
In the current biopharmaceutical scenario, constant bioprocess monitoring is crucial for the quality and integrity of final products. Thus, process analytical techniques, such as those based on Raman spectroscopy, have been used as multiparameter tracking methods in pharma bioprocesses, which can be combined with chemometric tools, like Partial Least Squares (PLS) and Artificial Neural Networks (ANN). In some cases, applying spectra pre-processing techniques before modeling can improve the accuracy of chemometric model fittings to observed values. One of the biological applications of these techniques could have as a target the virus-like particles (VLP), a vaccine production platform for viral diseases. A disease that has drawn attention in recent years is Zika, with large-scale production sometimes challenging without an appropriate monitoring approach. This work aimed to define global models for Zika VLP upstream production monitoring with Raman considering different laser intensities (200 mW and 495 mW), sample clarification (with or without cells), spectra pre-processing approaches, and PLS and ANN modeling techniques. Six experiments were performed in a benchtop bioreactor to collect the Raman spectral and biochemical datasets for modeling calibration. The best models generated presented a mean absolute error and mean relative error respectively of 3.46 × 105 cell/mL and 35 % for viable cell density (Xv); 4.1 % and 5 % for cell viability (CV); 0.245 g/L and 3 % for glucose (Glc); 0.006 g/L and 18 % for lactate (Lac); 0.115 g/L and 26 % for glutamine (Gln); 0.132 g/L and 18 % for glutamate (Glu); 0.0029 g/L and 3 % for ammonium (NH4+); and 0.0103 g/L and 2 % for potassium (K+). Sample without conditioning (with cells) improved the models' adequacy, except for Glutamine. ANN better predicted CV, Gln, Glu, and K+, while Xv, Glc, Lac, and NH4+ presented no statistical difference between the chemometric tools. For most of the assessed experimental parameters, there was no statistical need for spectra pre-filtering, for which the models based on the raw spectra were selected as the best ones. Laser intensity impacts quality model predictions in some parameters, Xv, Gln, and K+ had a better performance with 200 mW of intensity (for PLS, ANN, and ANN, respectively), for CV the 495 mW laser intensity was better (for PLS), and for the other biochemical variables, the use of 200 or 495 mW did not impact model fitting adequacy.
Assuntos
Análise Espectral Raman , Zika virus , Análise Espectral Raman/métodos , Reatores Biológicos , Análise dos Mínimos Quadrados , Redes Neurais de Computação , Lasers , Humanos , Infecção por Zika virus/virologia , AnimaisRESUMO
Genetic engineering technology is an ideal method to improve insecticidal efficiency by combining the advantages of different pathogenic microorganisms. Thus, six ascovirus genes were introduced into the genomic DNA of Autographa californica nucleopolyhedrovirus (AcMNPV) to possibly transfer the intrinsically valuable insecticidal properties from ascovirus to baculovirus. The viral budded virus (BV) production and viral DNA replication ability of AcMNPV-111 and AcMNPV-165 were significantly stronger than that of AcMNPV-Egfp (used as the wild-type virus in this study), whereas AcMNPV-33 had reduced ones. AcMNPV-111 and AcMNPV-165 also exhibited excellent insecticidal efficiency in the in vivo bioassays: AcMNPV-111 showed a 24.1% decrease in the LT50 value and AcMNPV-165 exhibited a 56.3% decrease in the LD50 value compared with AcMNPV-Egfp against the 3rd instar of Spodoptera exigua larvae, respectively. Furthermore, the size of the occlusion bodies (OBs) of AcMNPV-33, AcMNPV-111, and AcMNPV-165 were significantly increased compared to that of AcMNPV-Egfp. AcMNPV-111 and AcMNPV-165 had stable virulence against the 2nd to 4th instars tested larvae and higher OB yield than AcMNPV-Egfp in the 3rd and 4th instar larvae. Correlation and regression analyses indicated that it is better to use 5 OBs/larva virus to infect the 2nd instar larvae to produce AcMNPV-111 and 50 OBs/larva virus to infect the 3rd instar larvae to produce AcMNPV-165. The results of this study obtained recombinant viruses with enhanced virulence and exhibited a diversity of ascovirus gene function based on the baculovirus platform, which provided a novel strategy for the improvement of baculovirus as a biological insecticide.
Assuntos
Ascoviridae , Replicação Viral , Animais , Replicação Viral/genética , Ascoviridae/genética , Replicação do DNA , Virulência/genética , DNA Viral/genética , Baculoviridae , Spodoptera/genética , Larva/genética , Engenharia GenéticaRESUMO
Pigeon circovirus (PiCV) is able to infect racing and meat pigeons of all ages and is a key factor that triggers young pigeon disease syndrome (YPDS). PiCV vaccine research has been impeded because PiCV cannot be grown or propagated in cell cultures. Virus-like particles (VLPs), which can be generated by a wide range of expression systems, have been shown to have outstanding immunogenicity and constitute promising vaccines against a wide range of pathogens. Cap protein, which contains neutralizing antibody epitopes, is the only capsid protein of PiCV. In this study, the baculovirus expression system was utilized to express the PiCV Cap protein, which was self-assembled into VLPs with a spherical morphology and diameters of 15-18 nm. Specific antibodies against the Cap protein were induced after BALB/c mice immunized intramuscularly (i.m.) with VLPs combined with adjuvant. Based on these findings, PiCV VLPs may be a promising candidate vaccine against PiCV.
Assuntos
Doenças das Aves/virologia , Infecções por Circoviridae/veterinária , Circovirus/fisiologia , Columbidae/virologia , Animais , Anticorpos Antivirais/imunologia , Baculoviridae/genética , Baculoviridae/metabolismo , Doenças das Aves/imunologia , Doenças das Aves/prevenção & controle , Proteínas do Capsídeo/administração & dosagem , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Infecções por Circoviridae/imunologia , Infecções por Circoviridae/prevenção & controle , Infecções por Circoviridae/virologia , Circovirus/genética , Circovirus/imunologia , Columbidae/imunologia , Feminino , Expressão Gênica , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Vacinas Virais/imunologiaRESUMO
Avian influenza outbreaks have placed a tremendous economic burden on the poultry industry, necessitating the need for an effective vaccine. Although multiple vaccine candidates are available, its development is hindered by several drawbacks associated with the vaccine platforms and as such, more improvements to the vaccines are needed. Therefore, in this study, the vaccine efficacy in the murine models was assessed prior to evaluation in chickens. An oral recombinant baculovirus (rBV) vaccine expressing influenza hemagglutinin (HA) (A/H5N1) was generated and its efficacy was investigated against homologous avian influenza infection in mice. Our results confirmed that oral administration of rBVs enhanced the level of virus-specific antibodies in the sera following boost immunization. Upon challenge infection with a lethal dose of highly pathogenic avian influenza virus (HPAI, H5N1) virus, a marked increase in mucosal IgG and IgA were observed. Drastically increased antibody secretory cell responses from the bone marrow cells and splenocytes of vaccinated mice were observed, in addition to the strongly elicited germinal center responses in the lungs and the spleens. Vaccinated mice showed significantly reduced lung pro-inflammatory cytokine responses, lung viral loads, body weight loss, and mortality. Though mice were only partially protected upon challenge infection, these results highlight the potential of orally administered rBVs expressing the HA as a vaccine candidate for controlling avian influenza outbreaks.
Assuntos
Virus da Influenza A Subtipo H5N1 , Vacinas contra Influenza , Influenza Aviária , Infecções por Orthomyxoviridae , Animais , Anticorpos Antivirais , Baculoviridae/genética , Galinhas , Camundongos , Infecções por Orthomyxoviridae/prevenção & controleRESUMO
Baculoviruses have already been used for insect pest control, but the slow killing speed limits their further promotion and application. Here we provide a strategy for improving baculovirus insecticidal activity using Helicoverpa armigera nucleopolyhedrovirus (HearNPV) to express double-stranded RNAs (dsRNAs) targeting cotton bollworm (Helicoverpa armigera) juvenile hormone (JH)-related genes. Droplet-feeding bioassays show that the 50% lethal concentration (LC50) values of recombinant baculoviruses expressing the dsRNA of JH acid methyl transferase gene (HaJHAMT) and the JH acid binding protein gene (HaJHBP) were 1.24 × 104 polyhedral inclusion bodies (PIB)/mL and 2.26 × 104 PIB/mL, respectively. Both were much lower than the control value (8.12 × 104 PIB/mL). Meanwhile, the LT50 of recombinant baculovirus expressing dsRNA of HaJHBP was only 54.2% of the control value, which means that larval death was accelerated. Furthermore, the mRNA level of target genes was reduced in recombinant baculovirus-treated cotton bollworm larvae. Transcription of several key genes involved in hormone signaling pathways-for example, ecdysone receptor gene (HaEcR)-was also altered. This study establishes a new strategy for pest management by interfering with insect hormone-related gene expression via baculoviruses, and the engineered baculoviruses have great potential application in cotton production.
Assuntos
Baculoviridae/fisiologia , Genes de Insetos , Interações Hospedeiro-Patógeno/genética , Insetos/genética , Insetos/virologia , Hormônios Juvenis/genética , RNA de Cadeia Dupla/genética , Animais , Sobrevivência Celular , Expressão Gênica , Genes Reporter , Vetores Genéticos/genética , Larva , Interferência de RNARESUMO
Androctonus australis Hector insect toxin (AaIT), an insect-selective toxin, was identified in the venom of the scorpion Androctonus australis. The exclusive and specific target of the toxin is the voltage-gated sodium channels of the insect, resulting in fast excitatory paralysis and even death. Because of its strict toxic selectivity and high bioactivity, AaIT has been widely used in experiments exploring pest bio-control. Recombinant expression of AaIT in a baculovirus or a fungus can increase their virulence to insect pests and diseases vectors. Likewise, transgenic plants expressing AaIT have notable anti-insect activity. AaIT is an efficient toxin and has great potential to be used in the development of commercial insecticides.
Assuntos
Controle de Insetos/métodos , Engenharia de Proteínas/métodos , Venenos de Escorpião/genética , Animais , Baculoviridae/genética , Baculoviridae/patogenicidade , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/genética , Fungos/patogenicidade , Insetos/microbiologia , Insetos/virologia , Venenos de Escorpião/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Virulência/genéticaRESUMO
The recombinant baculovirus has been widely used as an efficient tool to mediate gene delivery into mammalian cells but has barely been used in fish cells. In the present study, we constructed a recombinant baculovirus containing the dual-promoter cytomegalovirus (CMV) and white spot syndrome virus (WSSV) immediate-early gene 1 (ie1) (WSSV ie1), followed by a puromycinâ»green fluorescent protein (Puro-GFP, pf) or puromycinâ»red fluorescent protein (Puro-RFP, pr) cassette, which simultaneously allowed for easy observation, rapid titer determination, drug selection, and exogenous gene expression. This recombinant baculovirus was successfully transduced into fish cells, including Mylopharyngodon piceus bladder (MPB), fin (MPF), and kidney (MPK); Oryzias latipes spermatogonia (SG3); and Danio rerio embryonic fibroblast (ZF4) cells. Stable transgenic cell lines were generated after drug selection, which was further verified by Western blot. A cell monoclonal formation assay proved the stable heredity of transgenic MPB cells. In addition, a recombinant baculovirus containing a pr cassette and four transcription factors for induced pluripotent stem cells (iPSC) was constructed and transduced into ZF4 cells, and these exogenous genes were simultaneously delivered and transcribed efficiently in drug-selected ZF4 cells, proving the practicability of this modified recombinant baculovirus system. We also proved that the WSSV ie1 promoter had robust activity in fish cells in vitro and in vivo. Taken together, this modified recombinant baculovirus can be a favorable transgenic tool to obtain transient or stable transgenic fish cells.
Assuntos
Baculoviridae/genética , Peixes/genética , Expressão Gênica , Vetores Genéticos/genética , Transgenes , Animais , Linhagem Celular , Ordem dos Genes , Técnicas de Transferência de Genes , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Regiões Promotoras Genéticas , Proteínas Recombinantes/genéticaRESUMO
The evolution of highly pathogenic H5N1 avian influenza viruses (HPAI-H5N1) has resulted in the appearance of a number of diverse groups of HPAI-H5N1 based on the presence of genetically similar clusters of their haemagglutinin sequences (clades). An H5 antigen encoded by a recombinant baculovirus and expressed in insect cells was used for oil-emulsion-based vaccine prototypes. In several experiments, vaccination was performed at 10 days of age, followed by challenge infection on day 21 post vaccination (PV) with HPAI-H5N1 clades 2.2, 2.2.1, and 2.3.2. A further challenge infection with HPAI-H5N1 clade 2.2.1 was performed at day 42 PV. High haemagglutination inhibition titres were observed for the recH5 vaccine antigen, and lower haemagglutination inhibition titres for the challenge virus antigens. Nevertheless, the rate of protection from mortality and clinical signs was 100% when challenged at 21 days PV and 42 days PV, indicating protection over the entire broiler chicken rearing period without a second vaccination. The unvaccinated control chickens mostly died between two and five days after challenge infection. A low level of viral RNA was detected by reverse transcription followed by a quantitative polymerase chain reaction in a limited number of birds for a short period after challenge infection, indicating a limited spread of HPAI-H5N1 at flock level. Furthermore, it was observed that the vaccine can be used in a differentiation infected from vaccinated animals (DIVA) approach, based on the detection of nucleoprotein antibodies in vaccinated/challenged chickens. The vaccine fulfilled all expectations of an inactivated vaccine after one vaccination against challenge with different clades of H5N1-HPAI and is suitable for a DIVA approach.
Assuntos
Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Aviária/prevenção & controle , Proteínas/imunologia , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Embrião de Galinha , Galinhas , Feminino , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Influenza Aviária/virologia , Insetos , Peptídeos , Proteínas/genética , Organismos Livres de Patógenos Específicos , Vacinação/veterinária , Vacinas de Produtos InativadosRESUMO
BACKGROUND: Gene therapy represents an interesting alternative treatment for cancers. Interferon-beta is well known as a multifunctional cytokine that provides antiviral, antiproliferative, antiangiogenic and immunomodulating effects. For this reason introduction of this cytokine gene in baculovirus vector is seen as a rather promising tool for anticancer therapy. AIM: Investigation of biological behavior in vitro and in vivo of lung cancer cells modified by interferon-beta gene which was introduced into the cells in vitro with baculovirus vector. MATERIALS AND METHODS: Studies were performed on mouse Lewis lung carcinoma cells as the tumor model (LL cell line). Transductions of cells by recombinant baculoviruses, in vitro and in vivo analysis of tumor cell biology and immunocytochemical method have been used. RESULTS: The study of various in vitro biological parameters of LL cancer cells transduced by recombinant baculovirus with interferon gene demonstrated that the transduction of cells is accompanied by significant inhibition of their proliferation and ability to form colonies in semisolid agar. Also, transduction of LL cells with interferon gene inhibited their tumorigenicity, i.e. the ability to cause formation of tumors and metastases in lungs of mice in vivo. Anti-tumor activity of recombinant interferon is realized via high level of its local production in tumors, induced by LL carcinoma cells, transduced with recombinant interferon-beta gene. Recombinant baculovirus without interferon gene did not influence significantly on tumorigenicity and metastatic ability of lung cancer cells. CONCLUSIONS: Introduction of interferon-beta gene in Lewis lung carcinoma cells in vitro in recombinant baculovirus leads to inhibition of their proliferation potential and malignant behavior in vitro, tumorigenicity and metastatic activity in vivo.
Assuntos
Interferon beta/genética , Neoplasias Pulmonares/patologia , Animais , Baculoviridae/genética , Carcinoma Pulmonar de Lewis/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Terapia Genética/métodos , Vetores Genéticos , Imuno-Histoquímica , Interferon beta/metabolismo , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Transplante de Neoplasias , FenótipoRESUMO
Baculoviruses have a long history of safe use as specific, environmentally friendly insecticides that provide alternatives to chemical pesticides for controlling insect pests. However, their use has been limited by several factors, particularly their slow pathogenicity. In this study, we constructed a recombinant Bombyx mori nucleopolyhedrovirus (BmNPV) and an Autographa californica multiple nucleopolyhedrovirus (AcMNPV) that expressed an insect-specific cyto-insectotoxin (Cit1a) from the venom of the central Asian spider Lachesana tarabaevi. Cit1a is a comparatively long linear cytolytic molecule that contains a predicted α-helix structure composed of two short membrane-acting antimicrobial peptides (MAMPs) that are joined together in a "head-to-tail" shape. Cit1a fused to polyhedrin gene (polh) (polh-cit1a) was expressed in the nuclei as polyhedra in silkworm larvae, Bm5 and Sf9 cells. An early death of Bm5 and Sf9 cells by recombinant BmNPV/Polh-Cit1a and AcMNPV/Polh-Cit1a was observed compared with control viruses that lacked the toxin gene. The infected cells showed a loss of cytoplasm, membrane integrity, and structural changes, suggesting that recombinant baculovirus-infected cells were killed by the necrosis caused by Cit1a. In addition, the BmNPV/Polh-Cit1a showed a significant reduction in the median lethal time (LT50) against silkworm larvae compared with those of control BmNPV that lacked the cit1a gene.
Assuntos
Baculoviridae/genética , Citotoxinas/biossíntese , Citotoxinas/toxicidade , Vetores Genéticos , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/toxicidade , Venenos de Aranha , Animais , Baculoviridae/crescimento & desenvolvimento , Bombyx/fisiologia , Bombyx/virologia , Morte Celular , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citotoxinas/genética , Insetos , Proteínas Recombinantes de Fusão/genética , Análise de Sobrevida , Fatores de TempoRESUMO
Foot-and-mouth disease (FMD) is an important infection affecting the health and productivity of cloven-hoofed livestock. Development of improved vaccines and diagnostic reagents is being explored to facilitate the disease control. There is an emerging interest in virus-like particles (VLPs), as their constituent structural proteins are the major immunogens. The VLPs are similar to natural virus particles but lack viral nucleic acid. The objective of the present study was to express the VLPs of FMD virus (FMDV) serotype Asia-1 (IND 63/72), using baculovirus system and characterize them for antigenic structure. The VLPs expressed in insect cells showed immunoreactivity similar to inactivated cell culture FMDV. Further they possess similar sensitivity to trypsin as the inactivated cell culture FMDV, suggesting that trypsin-sensitive antigenic sites could be similarly arranged. Our findings suggest that the FMD VLPs have similar antigenic conformational feature like the wild type virus, thus supporting their utility in development of non-infectious FMD vaccines and/or diagnostic assays.
Assuntos
Vírus da Febre Aftosa/imunologia , Febre Aftosa/virologia , Vírion/imunologia , Animais , Anticorpos Antivirais/imunologia , Febre Aftosa/imunologia , Vírus da Febre Aftosa/química , Vírus da Febre Aftosa/genética , Lepidópteros , Recombinação Genética , Spodoptera , Tripsina/química , Proteínas Virais/genética , Proteínas Virais/imunologia , Vírion/química , Vírion/genéticaRESUMO
The success of using the insect cell-baculovirus expression technology (BEST) relies on the efficient construction of recombinant baculovirus with genetic stability and high productivity, ideally within a short time period. Generation of recombinant baculoviruses requires the transfection of insect cells, harvesting of recombinant baculovirus pools, isolation of plaques, and the expansion of baculovirus stocks for their use for recombinant protein production. Moreover, many options exist for selecting the genetic elements to be present in the recombinant baculovirus. This chapter describes the most commonly used homologous recombination systems for the production of recombinant baculoviruses, as well as strategies to maximize generation efficiency and recombinant protein or baculovirus production. The key steps for generating baculovirus stocks and troubleshooting strategies are described.
Assuntos
Baculoviridae , Proteínas Recombinantes , Baculoviridae/genética , Animais , Proteínas Recombinantes/genética , Vetores Genéticos/genética , Transfecção/métodos , Recombinação Homóloga , Células Sf9 , Linhagem Celular , Spodoptera/virologia , Insetos/genética , Insetos/virologiaRESUMO
This work aimed to assess the Sf9 cell metabolism during growth, and infection steps with recombinant baculovirus bearing rabies virus proteins, to finally obtain rabies VLP in two culture systems: Schott flask (SF) and stirred tank reactor (STR). Eight assays were performed in SF and STR (four assays in each system) using serum-free SF900 III culture medium. Two non-infection growth kinetics assays and six recombinant baculovirus infection assays. The infection runs were carried out at 0.1 pfu/cell multiplicity of infection (MOI) for single baculovirus bearing rabies glycoprotein (BVG) and matrix protein (BVM) and a coinfection with both baculoviruses at MOI of 3 and 2 pfu/cell for BVG and BVM, respectively. The SF assays were done in triplicate. The glucose, glutamine, glutamate, lactate, and ammonium uptake or release specific rates were quantified over the exponential growth phase and infection stage. The highest uptake specific rate was observed for glucose (42.5 × 10-12 mmol cell/h) in SF and for glutamine (30.8 × 10-12 mmol/cell/h) in STR, in the exponential growth phases. A wave pattern was observed for assessed analytes throughout the infection phase and the glucose had the highest wave amplitude within the 10-10 mmol cell/h order. This alternative uptake and release behavior is in harmony with the lytic cycle of baculovirus in insect cells. The virus propagation and VLP generation were not limited by glucose, glutamine, and glutamate, neither by the toxicity of lactate nor ammonium under the conditions appraised in this work. The findings from this work can be useful to set baculovirus infection processes at high cell density to improve rabies VLP yield, purity, and productivity.
Assuntos
Compostos de Amônio , Vírus da Raiva , Raiva , Animais , Células Sf9 , Vírus da Raiva/genética , Glutamina , Baculoviridae/genética , Proteínas Recombinantes/genética , Meios de Cultura Livres de Soro , Ácido Glutâmico , Lactatos , Glucose , SpodopteraRESUMO
Spider silk is a type of natural protein fiber with excellent toughness and tensile strength. The mechanical properties of chimeric silk have been improved by integrating the spider silk protein gene into the silkworm (Bombyx mori) genome, but this strategy requires a long time to produce genetically modified silkworms. In this study, to rapidly produce chimeric silkworms/spider silk with improved toughness and tensile strength, recombinant Autographa californica multiple nucleopolyhedrovirus (AcMNPV), AcMNPV-FHP-MaSp-G, harboring a full-length Trichonephila clavipes major ampullate spidroin G (MaSp-G) gene driven by the silkworm fibroin heavy chain (Fib-H) promoter, was constructed, in which the signal peptide sequence of the MaSp-G gene was replaced by the signal peptide sequence of the Fib-H gene. Western blot and LC-MS/MS results showed that MaSp-G was successfully expressed in the posterior silk gland of silkworm larvae infected with AcMNPV-FHP-MaSp-G and secreted into the cocoon. Mechanical property tests revealed that the average maximum breaking stress and the average maximum elastic strain of chimeric silkworms/spider silk were 497.867 MPa and 14.824%, respectively, which were 36.53% and 23.55% greater than those of silk produced by normal silkworms. Fourier transform infrared (FTIR) spectroscopy revealed that the proportions of ß-sheets, α-helices, and ß-turns in the chimeric silk increased by 18.22%, 16.92%, and 18.72%, respectively. These results indicate that the mechanical properties of the chimeric silk produced by silkworms infected with AcMNPV-FHP-MaSp-G were significantly improved, which provides a new method for rapid production of chimeric silk in a genetically modified/genome-edited silkworm-independent manner.
RESUMO
Aim: To evaluate the protective efficacy induced by heterologous immunization with recombinant baculoviruses or virus-like particles targeting the CST1 and ROP18 antigens of Toxoplasma gondii.Materials & methods: Recombinant baculovirus and virus-like particle vaccines expressing T. gondii CST1 or ROP18 antigens were developed to evaluate protective immunity in mice upon challenge infection with 450 Toxoplasma gondii (ME49).Results: Immunization with CST1 or ROP18 vaccines induced similar levels of T. gondii-specific IgG and IgA responses. Compared with ROP 18, CST1 vaccine showed better antibody-secreting cell response, germinal center B cell activation, and significantly reduced brain cyst burden and body weight loss.Conclusion: Our findings suggest that CST1 heterologous immunization elicited better protection than ROP18, providing important insight into improving the toxoplasmosis vaccine design strategy.
[Box: see text].
Assuntos
Antígenos de Protozoários , Proteínas de Protozoários , Toxoplasma , Toxoplasmose , Animais , Camundongos , Antígenos de Protozoários/imunologia , Toxoplasma/imunologia , Toxoplasmose/prevenção & controle , Toxoplasmose/imunologia , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/genética , Feminino , Baculoviridae/genética , Vacinas Protozoárias/imunologia , Vacinas Protozoárias/administração & dosagem , Imunoglobulina G/imunologia , Anticorpos Antiprotozoários/imunologia , Imunização/métodos , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Imunoglobulina A/imunologia , HumanosRESUMO
Plaque assay method enables the quantification of infectious baculovirus when defined as plaque forming units (PFU). It allows to determine the amount of infectious virus needed to infect the cells at a specific multiplicity of infection (MOI). Serial dilutions of baculovirus stock are added to the Sf9 cells monolayer followed by addition of 5% Agarose overlay. Six days after infection clear infection halos are observed using a neutral red solution. Here we describe the quantification of recombinant baculovirus expression vector (rBEV) carrying a transgene in an rAAV expression cassette. Reproducible quantification of PFU is obtained with this method.
Assuntos
Baculoviridae , Vetores Genéticos , Ensaio de Placa Viral , Baculoviridae/genética , Células Sf9 , Ensaio de Placa Viral/métodos , Animais , Vetores Genéticos/genética , Transgenes , Vírion/genética , Dependovirus/genética , Spodoptera/virologiaRESUMO
The Zika disease caused by the Zika virus was declared a Public Health Emergency by the World Health Union (WHO), with microcephaly as the most critical consequence. Aiming to reduce the spread of the virus, biopharmaceutical organizations invest in vaccine research and production, based on multiple platforms. A crescent vaccine production approach is based on virus-like particles (VLP), for not having genetic material in its composition, hypoallergenic and non-mutant character. For bioprocess, it is essential to have means of real-time monitoring, which can be assessed using process analysis techniques such as Near-infrared (NIR) spectroscopy, that can be combined with chemometric methods, like Partial-Least Squares (PLS) and Artificial Neural Networks (ANN) for prediction of biochemical variables. This work proposes a biochemical Zika VLP upstream production at-line monitoring model using NIR spectroscopy comparing sampling conditions (with or without cells), analytical blank (air, ultrapure water), and spectra pre-processing approaches. Seven experiments in a benchtop bioreactor using recombinant baculovirus/Sf9 insect cell platform in serum-free medium were performed to obtain biochemical and spectral data for chemometrics modeling (PLS and ANN), composed by a random data split (80 % calibration, 20 % validation) for cross-validation of the PLS models and 70 % training, 15 % testing, 15 % validation for ANN. The best models generated in the present work presented an average absolute error of 1.59 × 105 cell/mL for density of viable cells, 2.37 % for cell viability, 0.25 g/L for glucose, 0.007 g/L for lactate, 0.138 g/L for glutamine, 0.18 g/L for glutamate, 0,003 g/L for ammonium, and 0.014 g/L for potassium.
RESUMO
Introduction: Recombinant adeno-associated virus (rAAV) vectors provide a safe and efficient means for in vivo gene delivery, although its large-scale production remains challenging. Featuring high manufacturing speed, flexible product design, and inherent safety and scalability, the baculovirus/Sf9 cell system offers a practical solution to the production of rAAV vectors in large quantities and high purity. Nonetheless, removal and inactivation of recombinant baculoviruses during downstream purification of rAAV vectors remain critical prior to clinical application. Methods: The present study utilized a newly developed fluorescent-TCID50 (F-TCID50) assay to determine the infectious titer of recombinant baculovirus (rBV) stock after baculovirus removal and inactivation, and to evaluate the impact of various reagents and solutions on rBV infectivity. Results and discussion: The results showed that a combination of sodium lauryl sulfate (SLS) and Triton X-100 lysis, AAVx affinity chromatography, low pH hold (pH3.0), CsCl ultracentrifugation, and NFR filtration led to effective removal and/or inactivation of recombinant baculoviruses, and achieved a log reduction value (LRV) of more than 18.9 for the entire AAV purification process. In summary, this study establishes a standard protocol for downstream baculovirus removal and inactivation and a reliable F-TCID50 assay to detect rBV infectivity, which can be widely applied in AAV manufacturing using the baculovirus system.
RESUMO
The α5ß1 integrin heterodimer is involved in many cellular processes and is an anti-cancer therapeutic target. Therefore, access to quantities of protein suitable for studies aimed at understanding its biological functions is important. To this end, a large-scale protein expression system, utilizing the recombinant baculovirus/SF9 insect cell expression system, was created to produce the extracellular domain of the α5ß1 integrin. An incorporated 8X-histidine tag enabled one-step nickel-column purification. Following sequence confirmation by LC-MS/MS, the conformation of the heterodimer was characterized by native dot blot and negative stain electron microscopy. Cellular transduction inhibition studies confirmed biological activity. The system allows expression and purification of α5ß1 integrin in quantities suitable for an array of different experiments including structural biology.
Assuntos
Clonagem Molecular/métodos , Integrina alfa5beta1/genética , Integrina alfa5beta1/isolamento & purificação , Sequência de Aminoácidos , Animais , Baculoviridae/genética , Linhagem Celular , Cromatografia Líquida , Humanos , Insetos , Integrina alfa5beta1/química , Integrina alfa5beta1/metabolismo , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Espectrometria de Massas em Tandem , Regulação para CimaRESUMO
The Duck Tembusu virus (DTMUV), a pathogenic flavivirus, has been causing significant economic losses in the Chinese poultry industry since 2010. This virus can severely decrease egg production and inhibit the growth of laying ducks and ducklings. While many vaccines have been developed to prevent DTMUV infection, fresh outbreaks continue to occur, as few effective vaccines are available. The E glycoprotein of DTMUV is the primary target for inducing protective immunity in the natural host. Therefore, we conducted an investigation and successfully developed a recombinant baculovirus containing the DTMUV E gene. Ducklings were then vaccinated with the purified protein derived from this virus as a potential vaccine candidate. Our findings demonstrated that the E glycoprotein of DTMUV was highly expressed in Sf9 cells. The vaccination of ducklings with the recombinant baculovirus Bac-E resulted in the induction of strong humoral and cellular immune responses. Most significantly, we observed that the vaccine provided 100% protective immunity against lethal challenges with the DTMUV YY5 strain.