Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Arch Microbiol ; 206(7): 319, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907853

RESUMO

Arazyme is an extracellular metalloprotease which is secreted by a Gram-negative symbiotic bacterium called Serratia proteomaculans. There are limited studies on various biological activities of arazyme. This preliminary study was designed to investigate the anti-cancer and anti-inflammatory capacities of recombinant arazyme (rAra) in vitro and in vivo. Arazyme gene, araA was cloned and expressed in E. coli BL21 (DE3) using pET-28a as a vector. Nickel column purification was used to obtain pure rAra. SDS-PAGE and protein assay were used to identify the product and to measure protein content, respectively. Skimmed milk test and casein assay were carried out to assess protease activity. MCF7 cells as a breast cancer cell model were exposed to different concentrations of rAra to study anti-breast cancer potentials using MTT assay. The anti-inflammatory property of rAra was investigated using a murine air-pouch model. PCR and SDS-PAGE data showed that cloning and expression of rAra was successful and the enzyme of interest was observed at 52 KDa. Protein assay indicated that 1 mg/ml of rAra was obtained through purification. A clear zone around the enzyme on skimmed milk agar confirmed the proteolytic activity of rAra and the enzymatic activity was 320 U/mg protein in the casein assay. Cytotoxic effects of rAra reported as IC50 were 16.2 µg/ml and 13.2 mg/ml after 24 h and 48 h, respectively. In the air-pouch model, both the neutrophil count and myeloperoxidase activity, which are measures of inflammation, were significantly reduced. The results showed that rAra can be used in future mechanistic studies and R&D activities in the pharmaceutical industry to investigate the safety and efficacy of the recombinant arazyme.


Assuntos
Anti-Inflamatórios , Neoplasias da Mama , Clonagem Molecular , Escherichia coli , Proteínas Recombinantes , Serratia , Humanos , Animais , Feminino , Anti-Inflamatórios/farmacologia , Camundongos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Células MCF-7 , Neoplasias da Mama/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Serratia/genética , Serratia/enzimologia , Metaloproteases/genética , Metaloproteases/metabolismo , Metaloproteases/isolamento & purificação , Antineoplásicos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
2.
Extremophiles ; 28(1): 15, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300354

RESUMO

Glaciozyma antarctica PI12 is a psychrophilic yeast isolated from Antarctica. In this work, we describe the heterologous production, biochemical properties and in silico structure analysis of an arginase from this yeast (GaArg). GaArg is a metalloenzyme that catalyses the hydrolysis of L-arginine to L-ornithine and urea. The cDNA of GaArg was reversed transcribed, cloned, expressed and purified as a recombinant protein in Escherichia coli. The purified protein was active against L-arginine as its substrate in a reaction at 20 °C, pH 9. At 10-35 °C and pH 7-9, the catalytic activity of the protein was still present around 50%. Mn2+, Ni2+, Co2+ and K+ were able to enhance the enzyme activity more than two-fold, while GaArg is most sensitive to SDS, EDTA and DTT. The predicted structure model of GaArg showed a very similar overall fold with other known arginases. GaArg possesses predominantly smaller and uncharged amino acids, fewer salt bridges, hydrogen bonds and hydrophobic interactions compared to the other counterparts. GaArg is the first reported arginase that is cold-active, facilitated by unique structural characteristics for its adaptation of catalytic functions at low-temperature environments. The structure and function of cold-active GaArg provide insights into the potentiality of new applications in various biotechnology and pharmaceutical industries.


Assuntos
Basidiomycota , Saccharomyces cerevisiae , Arginase/genética , Basidiomycota/genética , Arginina , Escherichia coli
3.
Microb Cell Fact ; 23(1): 170, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867249

RESUMO

BACKGROUND: The gram-positive bacterium Bacillus subtilis is widely used for industrial enzyme production. Its ability to secrete a wide range of enzymes into the extracellular medium especially facilitates downstream processing since cell disruption is avoided. Although various heterologous enzymes have been successfully secreted with B. subtilis, the secretion of cytoplasmic enzymes with high molecular weight is challenging. Only a few studies report on the secretion of cytoplasmic enzymes with a molecular weight > 100 kDa. RESULTS: In this study, the cytoplasmic and 120 kDa ß-galactosidase of Paenibacillus wynnii (ß-gal-Pw) was expressed and secreted with B. subtilis SCK6. Different strategies were focused on to identify the best secretion conditions. Tailormade codon-optimization of the ß-gal-Pw gene led to an increase in extracellular ß-gal-Pw production. Consequently, the optimized gene was used to test four signal peptides and two promoters in different combinations. Differences in extracellular ß-gal-Pw activity between the recombinant B. subtilis strains were observed with the successful secretion being highly dependent on the specific combination of promoter and signal peptide used. Interestingly, signal peptides of both the general secretory- and the twin-arginine translocation pathway mediated secretion. The highest extracellular activity of 55.2 ± 6 µkat/Lculture was reached when secretion was mediated by the PhoD signal peptide and expression was controlled by the PAprE promoter. Production of extracellular ß-gal-Pw was further enhanced 1.4-fold in a bioreactor cultivation to 77.5 ± 10 µkat/Lculture with secretion efficiencies of more than 80%. CONCLUSION: For the first time, the ß-gal-Pw was efficiently secreted with B. subtilis SCK6, demonstrating the potential of this strain for secretory production of cytoplasmic, high molecular weight enzymes.


Assuntos
Bacillus subtilis , Peso Molecular , Paenibacillus , beta-Galactosidase , Bacillus subtilis/genética , Bacillus subtilis/enzimologia , Bacillus subtilis/metabolismo , beta-Galactosidase/metabolismo , beta-Galactosidase/genética , Paenibacillus/enzimologia , Paenibacillus/genética , Citoplasma/metabolismo , Regiões Promotoras Genéticas , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Sinais Direcionadores de Proteínas
4.
Appl Microbiol Biotechnol ; 108(1): 365, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842543

RESUMO

Lipases are important biocatalysts and ubiquitous in plants, animals, and microorganisms. The high growth rates of microorganisms with low production costs have enabled the wide application of microbial lipases in detergent, food, and cosmetic industries. Herein, a novel lipase from Lacticaseibacillus rhamnosus IDCC 3201 (Lac-Rh) was isolated and its activity analyzed under a range of reaction conditions to evaluate its potential industrial application. The isolated Lac-Rh showed a molecular weight of 24 kDa and a maximum activity of 3438.5 ± 1.8 U/mg protein at 60 °C and pH 8. Additionally, Lac-Rh retained activity in alkaline conditions and in 10% v/v concentrations of organic solvents, including glycerol and acetone. Interestingly, after pre-incubation in the presence of multiple commercial detergents, Lac-Rh maintained over 80% of its activity and the stains from cotton were successfully removed under a simulated laundry  setting. Overall, the purified lipase from L. rhamnosus IDCC 3201 has potential for use as a detergent in industrial applications. KEY POINTS: • A novel lipase (Lac-Rh) was isolated from Lacticaseibacillus rhamnosus IDCC 3201 • Purified Lac-Rh exhibited its highest activity at a temperature of 60 °C and a pH of 8, respectively • Lac-Rh remains stable in commercial laundry detergent and enhances washing performance.


Assuntos
Detergentes , Estabilidade Enzimática , Lacticaseibacillus rhamnosus , Lipase , Lipase/metabolismo , Lipase/química , Lipase/genética , Lacticaseibacillus rhamnosus/enzimologia , Lacticaseibacillus rhamnosus/genética , Lacticaseibacillus rhamnosus/química , Concentração de Íons de Hidrogênio , Detergentes/química , Temperatura , Peso Molecular , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo
5.
Appl Microbiol Biotechnol ; 106(17): 5511-5524, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35876873

RESUMO

Because of the therapeutical impacts of hydrolytic enzymes in different diseases, in particular malignancies, we aimed to produce a recombinant putative L-glutaminase (GLS ASL-1) from a recently characterized halo-thermotolerant Bacillus sp. SL-1. For this purpose, the glsA gene was identified and efficiently overexpressed in the Origami™ B (DE3) strain. The yield of the purified GLS ASL-1 was ~ 20 mg/L, indicating a significant expression of recombinant enzyme in the Origami. The enzyme activity assay revealed a significant hydrolytic effect of the recombinant GLS ASL-1 on L-asparagine (Asn) (i.e., Km 39.8 µM, kcat 19.9 S-1) with a minimal affinity for L-glutamine (Gln). The GLS ASL-1 significantly suppressed the growth of leukemic Jurkat cells through apoptosis induction (47.5%) in the IC50 dosage of the enzyme. The GLS ASL-1 could also change the Bax/Bcl2 expression ratio, indicating its apoptotic effect on cancer cells. The in silico analysis was conducted to predict structural features related to the histidine-tag exposure in the N- or C-terminal of the recombinant GLS ASL-1. In addition, molecular docking simulation for substrate specificity revealed a greater binding affinity of Asn to the enzyme binding-site residues than Gln, which was confirmed in experimental procedures as well. In conclusion, the current study introduced a recombinant GLS ASL-1 with unique functional and structural features, highlighting its potential pharmaceutical and medical importance. GLS ASL-1 represents the first annotated enzyme from Bacillus with prominent asparaginase activity, which can be considered for developing alternative enzymes in therapeutic applications. KEY POINTS: • Hydrolytic enzymes have critical applications in different types of human malignancies. • A recombinant L-glutaminase (GLS ASL-1) was produced from halo-thermotolerant Bacillus sp. SL-1. • GLS ASL-1 displayed a marked hydrolytic activity on L-asparagine compared to the L-glutamine. • GLS ASL-1 with significant substrate promiscuity may be an alternative for developing novel pharmaceuticals.


Assuntos
Bacillus , Neoplasias , Asparaginase , Asparagina , Glutaminase , Glutamina , Humanos , Simulação de Acoplamento Molecular
6.
Biochemistry (Mosc) ; 87(9): 903-915, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36180991

RESUMO

Cholesterol oxidase is a highly demanded enzyme used in medicine, pharmacy, agriculture, chemistry, and biotechnology. It catalyzes oxidation of 3ß-hydroxy-5-ene- to 3-keto-4-ene- steroids with the formation of hydrogen peroxide. Here, we expressed 6xHis-tagged mature form of the extracellular cholesterol oxidase (ChO) from the actinobacterium Nocardioides simplex VKM Ac-2033D (55.6 kDa) in Escherichia coli cells. The recombinant enzyme (ChONs) was purified using affinity chromatography. ChONs proved to be functional towards cholesterol, cholestanol, phytosterol, pregnenolone, and dehydroepiandrosterone. Its activity depended on the structure and length of the aliphatic side chain at C17 atom of the steroid nucleus and was lower with pregnenolone and dehydroepiandrosterone. The enzyme was active in a pH range of 5.25÷6.5 with the pH optimum at 6.0. Kinetic assays and storage stability tests demonstrated that the characteristics of ChONs were generally comparable with or superior to those of commercial ChO from Streptomyces hygroscopicus (ChOSh). The results contribute to the knowledge on microbial ChOs and evidence that ChO from N. simplex VKM Ac-2033D is a promising agent for further applications.


Assuntos
Colesterol Oxidase , Fitosteróis , Actinobacteria , Colestanóis , Colesterol Oxidase/química , Desidroepiandrosterona/química , Peróxido de Hidrogênio , Pregnenolona , Esteroides/química
7.
Xenobiotica ; 52(2): 199-208, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35139770

RESUMO

ß-Eudesmol (BEU) is a sesquiterpenoid component of Atractylodes lancea with cytotoxic activity against cholangiocarcinoma. Its lipophilic nature makes BEU a likely substrate of human cytochrome P450 (P450) enzymes.Using ligand-binding difference spectroscopy, the affinities of this compound to recombinant CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 were investigated in Escherichia coli membrane preparations.CYP3A4 showed a type I spectral change, with a binding constant Ks of 77 ± 23 (mean ± SD) µM at 0.5 µM P450 (Ks/[P450] ≈ 155). The reference substrate testosterone (TES) and the inhibitor fluconazole bound to the enzyme with apparent affinities of 86 ± 4 µM (type I) and 21 µM (type II), respectively. BEU was bound by CYP3A4 in a non-cooperative manner (Hill coefficient n ≈ 0.8). CYP1A2 showed reverse type I difference spectra with either BEU or caffeine (CAF). The CYP1A2 affinity for BEU was higher (0.23 mM) than for CAF (0.37 mM) but lower than for phenacetin (0.11 mM, type I). BEU did not bind significantly to CYP2C9, CYP2C19, and CYP2D6.Confirmation of metabolic activity and studies on the involvement of other human P450 isoforms are required. Double-beam spectrometry is needed to validate Ks measurements made with a microplate reader.


Assuntos
Citocromo P-450 CYP1A2 , Citocromo P-450 CYP3A , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2C19/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Microssomos Hepáticos/metabolismo , Isoformas de Proteínas/metabolismo , Sesquiterpenos de Eudesmano , Análise Espectral
8.
Pestic Biochem Physiol ; 183: 105084, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35430074

RESUMO

The insect-specific epsilon class of glutathione S-transferases (GSTEs) plays important roles in insecticide detoxification in insects. In our previous work, five GSTEs were identified in Locusta migratoria, and two recombinant GSTEs, rLmGSTE1 and rLmGSTE4, showed high catalytic activity when 1-chloro-2,4-dinitrobenzene (CDNB) was used as a substrate. In this work, we further investigated whether these two GSTEs could metabolize three insecticides including malathion, deltamethrin and DDT. Using ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC/MS) method, we found that rLmGSTE4, but not rLmGSTE1, can metabolize malathion and DDT. Malathion bioassays of L.migratoria after the expression of LmGSTE4 was suppressed by RNA interference (RNAi) showed increased insect mortality from 33.8% to 68.9%. However, no changes in mortality were observed in deltamethrin- or DDT-treated L.migratoria after the expression of LmGSTE4 was suppressed by RNAi. Our results provided direct evidences that LmGSTE4 participates in malathion detoxification in L.migratoria. These findings are important for understanding the mechanisms of insecticide resistance in L.migratoria and developing new strategies for managing the insect populations in the field.


Assuntos
Inseticidas , Locusta migratoria , Animais , DDT/metabolismo , DDT/farmacologia , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Inativação Metabólica/genética , Resistência a Inseticidas/genética , Inseticidas/metabolismo , Inseticidas/farmacologia , Locusta migratoria/genética , Locusta migratoria/metabolismo , Malation/metabolismo , Malation/farmacologia
9.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35162993

RESUMO

Mycotoxins are highly toxic metabolites produced by fungi that pose a huge threat to human and animal health. Contamination of food and feed with mycotoxins is a worldwide issue, which leads to huge financial losses, annually. Decades of research have developed various approaches to degrade mycotoxins, among which the biological methods have been proved to have great potential and advantages. This review provides an overview on the important advances in the biological removal of mycotoxins over the last decade. Here, we provided further insight into the chemical structures and the toxicity of the main mycotoxins. The innovative strategies including mycotoxin degradation by novel probiotics are summarized in an in-depth discussion on potentialities and limitations. We prospected the promising future for the development of multifunctional approaches using recombinant enzymes and microbial consortia for the simultaneous removal of multiple mycotoxins.


Assuntos
Micotoxinas , Animais , Alimentos , Contaminação de Alimentos/análise , Fungos/metabolismo , Inativação Metabólica , Micotoxinas/metabolismo
10.
J Sci Food Agric ; 102(14): 6530-6538, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35587543

RESUMO

BACKGROUND: Enzymes are biocatalysts that play a vital role in the production of biomolecules. Plants can be a valuable and cost-effective source for producing well-structured recombinant enzymes. Glucose is one of the most important biological molecules, providing energy to most living systems. An electrochemical method for immobilization of enzyme is promising because it is economic, generates less component waste, improves the signal-to-noise ratio, leads to a lower limit of detection, and stabilizes and protects the enzyme structure. RESULTS: A glucose biosensor was constructed using polyaniline (PANI) and a recombinant enzyme from corn, plant-produced manganese peroxidase (PPMP), with polymerization of aniline as a monomer in the presence of gold nanoparticles (AuNPs)-glucose oxidase (GOx), and bovine serum albumin. Using linear sweep voltammetry and cyclic voltammetry techniques, PANI-AuNPs-GOx-PPMP/Au electrode exhibited a superior sensing property with a wider linear range of 0.005-16.0 mm, and a lower detection limit of 0.001 mm compared to PANI-GOx-PPMP/Au electrode and PANI-GOx-PPMP/AuNPs/Au electrode. The biosensor selectivity was assessed by determining glucose concentrations in the presence of ascorbic acid, dopamine, aspartame, and caffeine. CONCLUSION: We conclude that a plant-produced Mn peroxidase enzyme combined with conductive polymers and AuNPs results in a promising nanocomposite biosensor for detecting glucose. The use of such devices for quality control in the food industry can have a significant economic impact. © 2022 Society of Chemical Industry.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Nanocompostos , Compostos de Anilina/química , Ácido Ascórbico , Aspartame , Cafeína , Dopamina , Eletrodos , Enzimas Imobilizadas/química , Glucose , Glucose Oxidase/química , Glucose Oxidase/genética , Ouro/química , Nanocompostos/química , Peroxidases , Polímeros , Soroalbumina Bovina , Zea mays
11.
J Appl Toxicol ; 41(9): 1438-1445, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33438235

RESUMO

Anthraquinones exhibit various pharmacological activities (e.g., antioxidant and laxative) and are commonly found in consumer products including foods, dietary supplements, drugs, and traditional medicines. Despite their widespread use, there are limited data available on their toxicokinetic properties. Cytochrome P450 enzymes (CYPs) in the liver play major roles in metabolizing exogenous chemicals (e.g., pharmaceuticals, food ingredients, and environmental pollutants) and endogenous biomolecules (e.g., steroid hormones and cholesterol). Inhibition of CYP activities may lead to serious interactions among these compounds. Here, in silico (quantitative structure-activity relationship modeling) and in vitro (human recombinant enzymes and liver microsomes) methods were used to identify inhibitors of five major CYP isoforms (CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) among 22 anthraquinones. First, in silico prediction and in vitro human recombinant enzyme assays were conducted for all compounds, and results showed that most of the anthraquinones were potent CYP1A2 inhibitors. Second, five selected anthraquinones (emodin, aloe-emodin, rhein, purpurin, and rubiadin) were further evaluated in human liver microsomes. Finally, plasma concentrations of the five anthraquinones in animal and humans were identified in the literature and compared to their in vitro inhibition potency (IC50 values) towards CYP activities. Emodin, rhein, and aloe-emodin inhibited activities of multiple CYPs in human liver microsomes and potential in vivo inhibition may occur due to their high plasma concentrations. These in silico and in vitro results enabled rapid identification of potential CYP inhibitors and prioritized future in-depth studies.


Assuntos
Antraquinonas/farmacologia , Inibidores das Enzimas do Citocromo P-450/farmacologia , Animais , Simulação por Computador , Citocromo P-450 CYP1A2 , Emodina/farmacologia , Humanos , Técnicas In Vitro , Isoenzimas/antagonistas & inibidores , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Relação Quantitativa Estrutura-Atividade , Proteínas Recombinantes
12.
Int J Mol Sci ; 22(17)2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34502503

RESUMO

Cold-adapted enzymes are useful tools in the organic syntheses conducted in mixed aqueous-organic or non-aqueous solvents due to their molecular flexibility that stabilizes the proteins in low water activity environments. A novel psychrophilic laccase gene from Kabatiella bupleuri, G3 IBMiP, was spliced by Overlap-Extension PCR (OE-PCR) and expressed in Pichia pastoris. Purified recombinant KbLcc1 laccase has an optimal temperature of 30 °C and pH of 3.5, 5.5, 6.0, and 7.0 in the reaction with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), guaiacol, sinapic acid, and syringaldazine, respectively. Moreover, laccase KbLcc1 is highly thermolabile, as it loses 40% of activity after 30 min at 40 °C and is inactivated at 50 °C after the same period of incubation. The new enzyme remained active with 1 mM of Ni2+, Cu2+, Mn2+, and Zn2+ and with 2 mM of Co2+, Ca2+, and Mg2+, but Fe2+ greatly inhibited the laccase activity. Moreover, 1% ethanol had no impact on KbLcc1, although acetone and ethyl acetate decreased the laccase activity. The presence of hexane (40%, v/v) caused a 58% increase in activity. Laccase KbLcc1 could be applied in the decolorization of synthetic dyes and in the biotransformation of ferulic acid to vanillin. After 5 days of reaction at 20 °C, pH 3.5, with 1 mM ABTS as a mediator, the vanillin concentration was 21.9 mg/L and the molar yield of transformation reached 14.39%.


Assuntos
Ascomicetos/enzimologia , Ascomicetos/metabolismo , Lacase/metabolismo , Benzaldeídos/metabolismo , Biotransformação/genética , Clonagem Molecular/métodos , Temperatura Baixa , Cor , Expressão Gênica/genética , Concentração de Íons de Hidrogênio , Cinética , Lacase/genética , Pichia/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
13.
Molecules ; 26(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34361556

RESUMO

Wastewater emissions from textile factories cause serious environmental problems. Manganese peroxidase (MnP) is an oxidoreductase with ligninolytic activity and is a promising biocatalyst for the biodegradation of hazardous environmental contaminants, and especially for dye wastewater decolorization. This article first summarizes the origin, crystal structure, and catalytic cycle of MnP, and then reviews the recent literature on its application to dye wastewater decolorization. In addition, the application of new technologies such as enzyme immobilization and genetic engineering that could improve the stability, durability, adaptability, and operating costs of the enzyme are highlighted. Finally, we discuss and propose future strategies to improve the performance of MnP-assisted dye decolorization in industrial applications.


Assuntos
Corantes/química , Enzimas Imobilizadas/química , Peroxidases/química , Têxteis , Águas Residuárias/química , Biodegradação Ambiental , Catálise
14.
Metab Eng ; 62: 235-248, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32835805

RESUMO

Bacillus subtilis, a spore-forming industrial bacterium, is widely used for production of enzymes and valuable chemicals. The spore-formation, however, always results in remarkably reduced cell-density, thereby reducing product yield. Here, we constructed different non-spore-forming B. subtilis mutants via single-gene regulation. During the three spore-forming stages: signal sensing, transduction, and sporulation, we found that deleting only a single gene of sporulation, i.e. spo0A, spoIIIE, and spoIVB, can completely block the spore generation. Interestingly, the engineered non-sporulating mutants exhibited physiological heterogeneity and distinct synthetic capabilities. The spo0A-null spore-free mutant displayed remarkably high enzyme production capacity, such as 194% enhance amylase production. However, the spoIVB-null non-spore-forming mutant was especially efficient in producing secondary metabolites, such as surfactin; its flask titer increased significantly to 16.7 g/L, with the overexpression and Leu addition strategy. Our results offer a new strategy for re-modeling B. subtilis to further improve its fermentation efficiency and application.


Assuntos
Bacillus subtilis , Esporos Bacterianos , Bacillus subtilis/genética , Fermentação , Esporos Bacterianos/genética , Transcriptoma
15.
Anal Biochem ; 603: 113774, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32445636

RESUMO

Nucleotide pyrophosphatase/phosphodiesterase 4 (NPP4) is a membrane-bound enzyme that hydrolyzes extracellular diadenosine polyphosphates such as diadenosine triphosphate (Ap3A) and diadenosine tetraphosphate (Ap4A) yielding mononucleotides. NPP4 on the surface of endothelial cells was reported to promote platelet aggregation by hydrolyzing Ap3A to ADP, which activates pro-thrombotic G protein-coupled P2Y1 and P2Y12 receptors. Thus, NPP4 inhibitors have potential as novel antithrombotic drugs. In the present study we expressed soluble human NPP4 in Sf9 insect cells and established an enzyme assay using diadenosine tetraphosphate (Ap4A) as a substrate. The reaction product ATP was quantified by luciferin-luciferase reaction in a 96-well plate format. The sensitive method displayed a limit of detection (LOD) of 14.6 nM, and a Z'-factor of 0.68 indicating its suitability for high-throughput screening. The new assay was applied for studying enzyme kinetics and led to the identification of the first NPP4 inhibitors.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Medições Luminescentes/métodos , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Cinética , Diester Fosfórico Hidrolases/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
16.
Microb Cell Fact ; 19(1): 100, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393258

RESUMO

BACKGROUND: The secretory production of recombinant proteins in yeast simplifies isolation and purification but also faces possible complications due to the complexity of the secretory pathway. Therefore, correct folding, maturation and intracellular transport of the recombinant proteins are important processing steps with a higher effort needed for complex and large proteins. The aim of this study was to elucidate the secretion potential of Yarrowia lipolytica for low and high molecular weight ß-glycosidases in a comparative cultivation approach. RESULTS: A low sized ß-glucosidase from Pyrococcus furiosus (CelB; 55 kDa) and a large sized ß-galactosidase isolated from the metagenome (M1; 120 kDa) were integrated into the acid extracellular protease locus using the CRISPR-Cas9 system to investigate the size dependent secretion of heterologous proteins in Y. lipolytica PO1f. The recombinant strains were cultivated in the bioreactor for 78 h and the extra- and intracellular enzyme activities were determined. The secretion of CelB resulted in an extracellular volumetric activity of 187.5 µkatoNPGal/Lmedium, while a volumetric activity of 2.98 µkatoNPGal/Lmedium was measured during the M1 production. However, when the amount of functional intra- and extracellular enzyme was investigated, the high molecular weight M1 (85%) was secreted more efficiently than CelB (27%). Real-time PCR experiments showed a linear correlation between the transcript level and extracellular activity for CelB, while a disproportional high mRNA level was observed regarding M1. Interestingly, mass spectrometry data revealed the unexpected secretion of two endogenous intracellular glycolytic enzymes, which is reported for the first time for Y. lipolytica. CONCLUSION: The results of this study provide deeper insights into the secretion potential of Y. lipolytica. A secretion limitation for the low-size CelB was observed, while the large size M1 enzyme was produced in lower amounts but was secreted efficiently. It was shown for the first time that Y. lipolytica is a promising host for the secretion of heterologous high molecular weight proteins (> 100 kDa), although the total secreted amount has to be increased further.


Assuntos
Proteínas Arqueais/biossíntese , Glucosidases/biossíntese , Yarrowia/metabolismo , Proteínas Arqueais/classificação , Reatores Biológicos , Glucosidases/classificação , Peso Molecular , Pyrococcus furiosus/enzimologia , Pyrococcus furiosus/genética , Proteínas Recombinantes/biossíntese
17.
Biotechnol Lett ; 42(11): 2333-2344, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32638188

RESUMO

Acute lymphoblastic leukaemia (ALL) affects lymphoblastic cells and is the most common neoplasm during childhood. Among the pharmaceuticals used in the treatment protocols for ALL, Asparaginase (ASNase) from Escherichia coli (EcAII) is an essential biodrug. Meanwhile, the use of EcAII in neoplastic treatments causes several side effects, such as immunological reactions, hepatotoxicity, neurotoxicity, depression, and coagulation abnormalities. Commercial EcAII is expressed as a recombinant protein, similar to novel enzymes from different organisms; in fact, EcAII is a tetrameric enzyme with high molecular weight (140 kDa), and its overexpression in recombinant systems often results in bacterial cell death or the production of aggregated or inactive EcAII protein, which is related to the formation of inclusion bodies. On the other hand, several commercial expression strains have been developed to overcome these expression issues, but no studies on a systematic evaluation of the E. coli strains aiming to express recombinant asparaginases have been performed to date. In this study, we evaluated eleven expression strains at a low temperature (16 °C) with different characteristics to determine which is the most appropriate for asparaginase expression; recombinant wild-type EcAII (rEcAII) was used as a prototype enzyme and the secondary structure content, oligomeric state, aggregation and specific activity of the enzymes were assessed. Structural analysis suggested that a correctly folded tetrameric rEcAII was obtained using ArcticExpress (DE3), a strain that co-express chaperonins, while all other strains produced poorly folded proteins. Additionally, the enzymatic assays showed high specific activity of proteins expressed by ArcticExpress (DE3) when compared to the other strains used in this work.


Assuntos
Asparaginase/química , Asparaginase/metabolismo , Escherichia coli/enzimologia , Asparaginase/genética , Cromatografia em Gel , Dicroísmo Circular , Temperatura Baixa , Citosol/metabolismo , Escherichia coli/química , Escherichia coli/classificação , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Estrutura Secundária de Proteína
18.
J Biol Chem ; 293(26): 10042-10058, 2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29674318

RESUMO

α-Galactosidases (EC 3.2.1.22) are retaining glycosidases that cleave terminal α-linked galactose residues from glycoconjugate substrates. α-Galactosidases take part in the turnover of cell wall-associated galactomannans in plants and in the lysosomal degradation of glycosphingolipids in animals. Deficiency of human α-galactosidase A (α-Gal A) causes Fabry disease (FD), a heritable, X-linked lysosomal storage disorder, characterized by accumulation of globotriaosylceramide (Gb3) and globotriaosylsphingosine (lyso-Gb3). Current management of FD involves enzyme-replacement therapy (ERT). An activity-based probe (ABP) covalently labeling the catalytic nucleophile of α-Gal A has been previously designed to study α-galactosidases for use in FD therapy. Here, we report that this ABP labels proteins in Nicotiana benthamiana leaf extracts, enabling the identification and biochemical characterization of an N. benthamiana α-galactosidase we name here A1.1 (gene accession ID GJZM-1660). The transiently overexpressed and purified enzyme was a monomer lacking N-glycans and was active toward 4-methylumbelliferyl-α-d-galactopyranoside substrate (Km = 0.17 mm) over a broad pH range. A1.1 structural analysis by X-ray crystallography revealed marked similarities with human α-Gal A, even including A1.1's ability to hydrolyze Gb3 and lyso-Gb3, which are not endogenous in plants. Of note, A1.1 uptake into FD fibroblasts reduced the elevated lyso-Gb3 levels in these cells, consistent with A1.1 delivery to lysosomes as revealed by confocal microscopy. The ease of production and the features of A1.1, such as stability over a broad pH range, combined with its capacity to degrade glycosphingolipid substrates, warrant further examination of its value as a potential therapeutic agent for ERT-based FD management.


Assuntos
Doença de Fabry/enzimologia , Nicotiana/enzimologia , alfa-Galactosidase/metabolismo , Biocatálise , Membrana Celular/metabolismo , Doença de Fabry/patologia , Feminino , Fibroblastos/metabolismo , Humanos , Masculino , Nicotiana/citologia , alfa-Galactosidase/genética
19.
BMC Microbiol ; 19(1): 89, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31064343

RESUMO

BACKGROUND: Nattokinase (NK), which is a member of the subtilisin family, is a potent fibrinolytic enzyme that might be useful for thrombosis therapy. Extensive work has been done to improve its production for the food industry. The aim of our study was to enhance NK production by tandem promoters in Bacillus subtilis WB800. RESULTS: Six recombinant strains harboring different plasmids with a single promoter (PP43, PHpaII, PBcaprE, PgsiB, PyxiE or PluxS) were constructed, and the analysis of the fibrinolytic activity showed that PP43 and PHpaII exhibited a higher expression activity than that of the others. The NK yield that was mediated by PP43 and PHpaII reached 140.5 ± 3.9 FU/ml and 110.8 ± 3.6 FU/ml, respectively. These promoters were arranged in tandem to enhance the expression level of NK, and our results indicated that the arrangement of promoters in tandem has intrinsic effects on the NK expression level. As the number of repetitive PP43 or PHpaII increased, the expression level of NK was enhanced up to the triple-promoter, but did not increase unconditionally. In addition, the repetitive core region of PP43 or PHpaII could effectively enhance NK production. Eight triple-promoters with PP43 and PHpaII in different orders were constructed, and the highest yield of NK finally reached 264.2 ± 7.0 FU/ml, which was mediated by the promoter PHpaII-PHpaII-PP43. The scale-up production of NK that was promoted by PHpaII-PHpaII-PP43 was also carried out in a 5-L fermenter, and the NK activity reached 816.7 ± 30.0 FU/mL. CONCLUSIONS: Our studies demonstrated that NK was efficiently overproduced by tandem promoters in Bacillus subtilis. The highest fibrinolytic activity was promoted by PHpaII-PHpaII-PP43, which was much higher than that had been reported in previous studies. These multiple tandem promoters were used successfully to control NK expression and might be useful for improving the expression level of the other genes.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/biossíntese , Regiões Promotoras Genéticas , Subtilisinas/biossíntese , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Reatores Biológicos , Fibrinolíticos , Proteínas Recombinantes/genética , Subtilisinas/genética
20.
Cryobiology ; 87: 15-27, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30890324

RESUMO

Superoxide dismutases (SODs) are crucial in scavenging reactive oxygen species (ROS); however, studies regarding SOD functions in insects under cold conditions are rare. In this paper, two novel Cu/Zn-SOD genes in the desert beetle Microdera punctipennis, an extracellular copper/zinc SOD (MpecCu/Zn-SOD) and an intracellular copper/zinc SOD (MpicCu/Zn-SOD), were identified and characterized. The results of quantitative real-time PCR showed that MpecCu/Zn-SOD expression was significantly up-regulated by 4 °C exposure for 0.5 h, but MpicCu/Zn-SOD was not. Superoxide anion radical (O2•-) content in beetles under 4 °C exposure for 0.5 h showed an initial sharp increase and fluctuated during the cold treatment period, which was consistent with the relative mRNA level of MpecCu/Zn-SOD. The total SOD activity in the beetle was negatively correlated to the O2•- content with a correlation coefficient of -0.437. An E. coli system was employed to study the function of each MpCu/Zn-SOD gene. The fusion proteins Trx-His-MpCu/Zn-SODs were over expressed in E. coli BL21 using pET32a vector, and identified by SDS-PAGE and Western blotting. The transformed bacteria BL21(pET32a-MpecCu/Zn-SOD) and BL21(pET32a-MpicCu/Zn-SOD) showed increased cold tolerance to -4 °C as well as increased SOD activity compared to the control BL21(pET32a). The relative conductivity and malondialdehyde content in the two MpCu/Zn-SODs transformed bacteria under -4 °C were significantly lower than the control BL21(pET32a). Furthermore, BL21(pET32a-MpecCu/Zn-SOD) had significantly higher SOD activity and cold tolerance than BL21(pET32a-MpicCu/Zn-SOD) under -4 °C treatment, and had lower conductivity than BL21(pET32a-MpicCu/Zn-SOD). In conclusion, low temperature led to the accumulation of O2•- in M. punctipennis, which stimulated the expression of extracellular MpCu/Zn-SOD gene and the increase of total SOD activity. E. coli overexpressing Trx-His-MpCu/Zn-SODs increased resistance to cold treatment-induced oxidative stress. Our findings will be helpful in further study of Cu/Zn-SOD genes in insect cold-tolerance.


Assuntos
Besouros/enzimologia , Escherichia coli/fisiologia , Superóxido Dismutase/metabolismo , Animais , Temperatura Baixa , Besouros/metabolismo , Cobre/metabolismo , Criopreservação , Escherichia coli/genética , RNA Mensageiro/genética , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/genética , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa