Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Pharm Dev Technol ; 29(5): 468-476, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38662798

RESUMO

Carboxylesterase enzymes convert a prodrug ramipril into the biologically active metabolite ramiprilat. It is prescribed for controlling ocular hypertension after oral administration. High concentrations of carboxylesterase enzymes in rectal and colon tissue can transform ramipril significantly to ramiprilat. Sustained rectal delivery of ramipril has been developed for intra-ocular pressure lowering effect using a normotensive rabbit model. Rectal suppositories have been formulated using a matrix base of HPMC K100-PEG 400-PEG 6000, incorporating varying amounts of Gelucire by the fusion moulding method. The presence of Gelucire in the suppository exhibited sustained structural relaxation-based release kinetics of RM compared to its absence. Intravenous and oral administration of ramipril has decreased IOP in the treated rabbit up to 90 and 360 min, respectively. Treated rabbits with suppositories have revealed decreased IOP for an extended period compared to the above. Formulation containing GEL 3% reduced intra-ocular pressure to 540 min, with the highest area under the decreased IOP curve. Compared to oral, the pharmacodynamic bioavailability of ramipril has been improved significantly using a sustained-release rectal suppository. A rectal suppository for sustained delivery of ramipril could be used to lower IOP significantly.


Assuntos
Administração Retal , Preparações de Ação Retardada , Pressão Intraocular , Pró-Fármacos , Ramipril , Animais , Coelhos , Pressão Intraocular/efeitos dos fármacos , Pró-Fármacos/administração & dosagem , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Ramipril/administração & dosagem , Ramipril/farmacocinética , Ramipril/farmacologia , Supositórios , Masculino , Disponibilidade Biológica , Anti-Hipertensivos/administração & dosagem , Anti-Hipertensivos/farmacocinética , Anti-Hipertensivos/farmacologia , Lipídeos/química , Liberação Controlada de Fármacos , Administração Oral , Polietilenoglicóis
2.
Molecules ; 28(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37241839

RESUMO

Meloxicam (MLX) is one of the most effective NSAIDs, but its poor water solubility and low bioavailability limit its clinical application. In this study, we designed a thermosensitive in situ gel of the hydroxypropyl-ß-cyclodextrin inclusion complex (MLX/HP-ß-CD-ISG) for rectal delivery to improve bioavailability. The best method for preparing MLX/HP-ß-CD was the saturated aqueous solution method. The optimal inclusion prescription was optimized using an orthogonal test, and the inclusion complex was evaluated via PXRD, SEM, FTIR and DSC. Then, MLX/HP-ß-CD-ISG was characterized regarding the gel properties, release in vitro, and pharmacokinetics in vivo. The inclusion rate of the inclusion complex obtained via the optimal preparation process was 90.32 ± 3.81%. The above four detection methods show that MLX is completely embedded in the HP-ß-CD cavity. The developed MLX/HP-ß-CD-ISG formulation has a suitable gelation temperature of 33.40 ± 0.17 °C, a gelation time of 57.33 ± 5.13 s, pH of 7.12 ± 0.05, good gelling ability and meets the requirements of rectal preparations. More importantly, MLX/HP-ß-CD-ISG significantly improved the absorption and bioavailability of MLX in rats, prolonging the rectal residence time without causing rectal irritation. This study suggests that the MLX/HP-ß-CD-ISG can have a wide application prospect with superior therapeutic benefits.


Assuntos
beta-Ciclodextrinas , Ratos , Animais , 2-Hidroxipropil-beta-Ciclodextrina , Meloxicam , Composição de Medicamentos/métodos , Anti-Inflamatórios não Esteroides , Solubilidade
3.
Mar Drugs ; 20(5)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35621986

RESUMO

Chitosan (CS) is a linear polysaccharide obtained by the deacetylation of chitin, which, after cellulose, is the second biopolymer most abundant in nature, being the primary component of the exoskeleton of crustaceans and insects. Since joining the pharmaceutical field, in the early 1990s, CS attracted great interest, which has constantly increased over the years, due to its several beneficial and favorable features, including large availability, biocompatibility, biodegradability, non-toxicity, simplicity of chemical modifications, mucoadhesion and permeation enhancer power, joined to its capability of forming films, hydrogels and micro- and nanoparticles. Moreover, its cationic character, which renders it unique among biodegradable polymers, is responsible for the ability of CS to strongly interact with different types of molecules and for its intrinsic antimicrobial, anti-inflammatory and hemostatic activities. However, its pH-dependent solubility and susceptibility to ions presence may represent serious drawbacks and require suitable strategies to be overcome. Presently, CS and its derivatives are widely investigated for a great variety of pharmaceutical applications, particularly in drug delivery. Among the alternative routes to overcome the problems related to the classic oral drug administration, the mucosal route is becoming the favorite non-invasive delivery pathway. This review aims to provide an updated overview of the applications of CS and its derivatives in novel formulations intended for different methods of mucosal drug delivery.


Assuntos
Quitosana , Nanopartículas , Quitina , Quitosana/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Preparações Farmacêuticas
4.
Pharm Dev Technol ; 25(5): 535-546, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31903824

RESUMO

The study aimed to investigate the feasibility of incorporation of metoclopramide hydrochloride (MCP HCl) in mucoadhesive thermoreversible liquid suppository (MCP HCl-LS) to bypass the first-pass metabolism and maximize its efficacy to be a promising substitute for parenteral therapy. MCP HCl-LS was formulated using Pluronic (PF127/PF68) and hydroxypropylmethylcellulose (HPMC) and in vitro evaluated through their gelation temperature, gel strength (GS), mucoadhesive force, and in vitro release studies. Also, the MCP HCl-LS was evaluated for its rheological behavior and examined for rectal mucosal integrity after administration. The results revealed that the MCP HCl-LS; composed of PF127/PF68/HPMC (20/7/0.5% w/w) was in the liquid state at room temperature, experienced gelation at 30.23 °C, with suitable GS of 28.66 s and rectal retention force of 43.03 × 102 dyne/cm2. The pharmacokinetic data showed that the MCP HCl-LS exhibited a significant increase (p < 0.05) in AUC0-480 (219.688 vs 172.333 ng.h.mL-1 of the marketed) and 1.3-fold increase in relative bioavailability compared to Primperan® suppository, indicating that LS formula bypassed the first-pass metabolism. Moreover, MCP HCl-LS did not cause any morphological harm to the rectal tissues suggested that the developed formulation was safe and could be a potentially useful alternative drug carrier for rectal delivery of MCP HCl in patients experiencing chemotherapy-induced nausea and vomiting.


Assuntos
Antieméticos/química , Adesão Celular , Composição de Medicamentos/métodos , Mucosa Intestinal/metabolismo , Metoclopramida/química , Reto/metabolismo , Administração Retal , Animais , Antieméticos/administração & dosagem , Antieméticos/farmacocinética , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Géis/química , Técnicas In Vitro , Metoclopramida/administração & dosagem , Metoclopramida/farmacocinética , Náusea/induzido quimicamente , Náusea/tratamento farmacológico , Poloxâmero/química , Coelhos , Supositórios , Temperatura , Vômito/induzido quimicamente , Vômito/tratamento farmacológico
5.
AAPS PharmSciTech ; 21(3): 97, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32128636

RESUMO

Budesonide is a glucocorticoid for the treatment of ulcerative colitis (UC). The current study aims to develop a thermosensitive in situ and adhesive gel for rectal delivery of budesonide. HPMC K4M was selected as the adhesive agent based on the adhesive force and the effect on gel performance. The formulation of gel was optimized by using the central composite design-response surface methodology (CCD-RSM); a mathematical model was successfully developed to predict desired formulations as well as to analyze relationships between the amount of Pluronic F-127, Pluronic F-68, and HPMC K4M and the performances of gel. Based on CCD-RSM, a thermosensitive in situ and adhesive gel consisting of 0.002% budesonide, 0.74% HPMC, 4.87% F-68, and 19.0% F-127 was developed. Furthermore, the in vivo behavior of gel was evaluated in Sprague-Dawley rats. In comparison with budesonide solution, rectal administration of budesonide gel at 0.1 mg/kg in rats showed relative bioavailability of 230% with significant increase in rectum uptake.


Assuntos
Adesivos/administração & dosagem , Anti-Inflamatórios/administração & dosagem , Budesonida/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Adesivos/metabolismo , Administração Retal , Animais , Anti-Inflamatórios/metabolismo , Disponibilidade Biológica , Budesonida/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Géis , Masculino , Poloxâmero/administração & dosagem , Poloxâmero/metabolismo , Ratos , Ratos Sprague-Dawley , Reto/efeitos dos fármacos , Reto/metabolismo
6.
Drug Dev Ind Pharm ; 45(2): 252-264, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30303407

RESUMO

Tolmetin sodium (TS) is a nonsteroidal anti-inflammatory drug (NSAID) indicated for treatment of musculoskeletal issues. As other NSAID, TS displays a marked side effects on the gastro-intestinal (GI) tract after oral administration. Traditional solid suppositories can cause pain and discomfort for patients, may reach the end of the colon; consequently, the drug can undergo the first-pass effect. TS liquid suppository (TS-LS) was developed to enhance patient compliance and rectal mucosal safety in high-risk patients receiving highly NSAID therapy. This work was conducted to optimize and evaluate Poloxamer P407/P188-based thermoresponsive TS-LS by using mucoadhesive polymers such as methylcellulose (MC). TS-LS was prepared by cold method and characterized their in vitro physicochemical properties as gelation temperature (GT), gel strength, bioadhesive properties, and in vitro release. The safety of the prepared suppository on rectum, stomach, and liver was evaluated histologically. Pharmacokinetic analyses were performed to compare rectal TS-LS to orally Rhumtol® capsules. The results showed that the optimized TS-LS; composed of P407/P188/MC (21/9/0.5% w/w) displayed gelation at rectum temperature ∼32.90 °C, gel strength of 21.35 s and rectal retention force at the administration site of 24.25 × 102 dyne/cm2. Moreover, TS-LS did not cause any morphological damage to the rectal tissues. Pharmacokinetic parameters of optimized TS-LS formulation revealed 4.6 fold increase in bioavailability as compared to Rhumtol® capsules. Taken together, the results demonstrated that liquid suppository is a potential and physically safe rectal delivery carrier for improvement rectal bioavailability and in vivo safety of TS.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Tolmetino/administração & dosagem , Administração Oral , Administração Retal , Animais , Anti-Inflamatórios não Esteroides/farmacocinética , Anti-Inflamatórios não Esteroides/toxicidade , Disponibilidade Biológica , Cápsulas , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Composição de Medicamentos , Géis , Humanos , Masculino , Poloxâmero , Coelhos , Ratos Sprague-Dawley , Supositórios , Temperatura , Adesivos Teciduais , Tolmetino/farmacocinética , Tolmetino/toxicidade
7.
Pharmaceuticals (Basel) ; 17(8)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39204084

RESUMO

The present research emphasizes fabrication alongside the assessment of an innovative nano-vesicular membranous system known as invasomes (NVMs) laden with Mirtazapine for rectal administration. This system could circumvent the confines of orally administered counterparts regarding dose schedules and bioavailability. Mirtazapine invasomes were tailored by amalgamating phospholipid, cineole, and ethanol through a thin-film hydration approach rooted in the Box-Behnken layout. Optimization of composition parameters used to fabricate desired NVMs' physicochemical attributes was undertaken using the Design-Expert® program. The optimal MRZ-NVMs were subsequently transformed to a pH-triggered in situ rectal gel followed by animal pharmacodynamic and pharmacokinetic investigations relative to rectal plain gel and oral suspension. The optimized NVMs revealed a diameter size of 201.3 nm, a z potential of -28.8 mV, an entrapment efficiency of 81.45%, a cumulative release within 12 h of 67.29%, and a cumulative daily permeated quantity of 468.68 µg/cm2. Compared to the oral suspension, pharmacokinetic studies revealed a 2.85- and 4.45-fold increase in calculated rectal bioavailability in circulation and brain, respectively. Pharmacodynamic and immunohistopathology evaluations exposed superior MRZ-NVMs attributed to the orally administered drug. Consequently, rectal MRZ-NVMs can potentially be regarded as a prospective nanoplatform with valuable pharmacokinetics and tolerability assets.

8.
Front Pharmacol ; 14: 1111267, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36843930

RESUMO

Objective: The aim of this study was to develop a thermosensitive in situ gel (TISG) as an effective rectal delivery platform for delivering Periplaneta americana extracts (PA) to alleviate ulcerative colitis (UC) and explore the underlying molecular mechanism. Materials and methods: Thermosensitive (poloxamer 407) and adhesive polymers (chondroitin sulfate modified carboxymethyl chitosan, CCMTS) were used to construct the in situ gel. CCMTS and aldehyde poloxamer 407 (P407-CHO) were synthesized and chemically cross-linked by Schiff base reaction to formulate thermosensitive in situ gel, which carried Periplaneta americana extracts (PA/CCMTS-P). The cytotoxicity and cellular uptake of CCMTS-P were investigated in lipopolysaccharide (LPS) -induced macrophages by CCK-8 assay. The anti-inflammatory effects of PA/CCMTS-P were studied in lipopolysaccharide-induced RAW264.7 cells and dextran sulfate sodium (DSS)-induced ulcerative colitis mouse models. In addition, the ability of PA/CCMTS-P to restore the intestinal mucosal barrier after rectal administration was evaluated by immunohistochemical analysis (IHC). Results: PA/CCMTS-P was prepared and characterized as gel with a phase-transition temperature of 32.9°C. The results of the in vitro experiments indicated that the hydrogels promoted the cellular uptake of Periplaneta americana extracts without causing any toxicity as compared to the free gel. PA/CCMTS-P showed superior anti-inflammatory activity both in vitro and in vivo, which restored the damaged intestinal mucosal barrier associated by inhibiting necroptosis in dextran sulfate sodium-induced ulcerative colitis models. Conclusion: The findings from our study show that the rectal administration of PA/CCMTS-P holds a promising potential for the treatment of ulcerative colitis.

9.
Int J Pharm ; 642: 123149, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37336301

RESUMO

Because of their poor water-soluble properties and non-specific distribution, most hydrophobic therapeutics had limited benefit for patients with ulcerative colitis. Herein, an in-situ oil-based gel has been developed as a rectal delivery vehicle for these therapeutics. In situ gel-forming oil (BBLG) was composed of soybean phosphatidyl choline (40%, w/w), glyceryl dioleate (50%, w/w), and ethanol (10%, w/w). The hydrophobic laquinimod (LAQ) as a model drug was easily dissolved in gel-forming oil and its solubility was reaching to 7 ± 0.1 mg/mL. Importantly, upon contact with the colonic fluids, the gel-forming oil was quickly transited to a semi-solid gel, adhering to the inflamed colon mucosa and forming a protective barrier. Transmission Electron Microscopy showed that the gel network was arranged by the connected lipid spheres and LAQ was non-crystally encapsulated into the lipid spheres. Moreover, the universal adhesive test showed that the adhesive force and the adhesive energy of BBLG toward fresh colon tissues were 711 ± 12 mN and 25 ± 2 J/m2, which was 2.14-fold and 5-fold higher than that of the marketed Poloxamer 407 gel, respectively. Meanwhile, in vivo imaging confirmed that the retention time of BBLG in the colon lumen was more than 8 h after rectal administration. In vivo animal studies showed that BBLG also greatly enhanced the therapeutic impact of LAQ on TNBS-treated rats with ulcerative colitis, as evidenced by reduced disease activity index (DAI) scores and weight loss. Moreover, the colonic inflammation was significantly alleviated and the goblet cells were obliviously restored after treatment. Importantly, the gut mucosa barrier was largely repaired without any formation of fibrosis remodeling. Conclusively, in situ liquid gel may be a potential delivery system of hydrophobic medicines for ulcerative colitis.


Assuntos
Colite Ulcerativa , Colite , Ratos , Animais , Colite Ulcerativa/tratamento farmacológico , Colo , Inflamação/tratamento farmacológico , Administração Retal , Lipídeos , Modelos Animais de Doenças , Colite/tratamento farmacológico
10.
Drug Des Devel Ther ; 16: 1407-1431, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35586185

RESUMO

Background: Ibuprofen (IBU), a nonsteroidal anti-inflammatory drug, shows poor gastrointestinal absorption due to its low solubility, which limits its clinical application. Objective: In the present study, we aimed to develop thermosensitive gel-mediated ibuprofen-solid lipid nanoparticles (IBU-SLN-ISG) to improve the dissolution and bioavailability of IBU after rectal delivery. Methods: IBU-loaded SLNs (IBU-SLNs) were developed and optimized applying Box-Behnken design. The optimized IBU-SLNs were characterized by physicochemical parameters and morphology. Then, the optimized IBU-SLNs was incorporated into the gel and characterized for gel properties and rheology and investigated its release in vitro, pharmacokinetics in vivo, rectal irritation and rectal retention time. Results: The optimized SLNs had an EE of 90.74 ± 1.40%, DL of 11.36 ± 1.20%, MPS of 166.77 ± 2.26 nm, PDI of 0.27 ± 0.08, and ZP of -21.00 ± 0.59 mV. The FTIR spectra confirmed successful encapsulation of the drug inside the nanoparticle as only peaks responsible for the lipid could be identified. This corroborated well with XRD spectra, which showed a completely amorphous state of the IBU-SLNs as compared to the crystalline nature of the pure drug. The gelation temperature of the prepared IBU-SLN-ISG was 33.30 ± 0.78°C, the gelation time was 14.67 ± 2.52 s, the gel strength was 54.00 ± 1.41 s, and the mucoadhesion was (11.54±0.37) × 102dyne/cm2. The in vitro results of IBU-SLNs and IBU-SLN-ISG showed a biphasic release pattern with initial burst release followed by sustained release. More importantly, IBU-SLN-ISG produced much better absorption of IBU and improved bioavailability in rats. In addition, IBU-SLN-ISG caused no irritation or damage to rectal tissues, and could be retained in the rectum for a long time. Conclusion: Thermosensitive in situ gel loaded with IBU-solid lipid nanoparticles might be further developed as a more convenient and effective rectal dosage form.


Assuntos
Ibuprofeno , Nanopartículas , Animais , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Ibuprofeno/química , Lipossomos , Nanopartículas/química , Tamanho da Partícula , Ratos , Reto
11.
Acta Biomater ; 143: 233-252, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35245681

RESUMO

Ulcerative colitis (UC) usually occurs in the superficial mucosa of the colorectum. Here, a double-network hydrogel (PMSP) was constructed from maleimided γ-polyglutamic acid and thiolated γ-polyglutamic acid through crosslinking of thiol-maleimide and self-oxidized thiols. PMSP with a negative charge specifically adhered to the inflamed mucosa with positively charged proteins rather than to the healthy mucosa. PMSP exhibited good mechanical strength with storage modulus (G') of 17.6 Pa and a linear viscoelastic region (LVR) of 107.2% strain. Moreover, PMSP showed a stronger bio-adhesive force toward the inflamed tissue-mimicking substrate than toward its healthy counterpart. In vivo imaging confirmed that PMSP specifically adhered to the inflamed colonic mucosa of rats with TNBS-induced UC. KPV (Lys-Pro-Val) as a model drug was easily captured by PMSP through electrostatic interactions, thus retaining its bioactivity for a longer time under high temperature conditions. Moreover, the alleviating effect of KPV on rats with TNBS-induced colitis was significantly improved by PMSP after intracolonic administration. The epithelial barrier of the colon also effectively recovered following PMSP-KPV treatment. PMSP-KPV also modulated the gut flora, markedly augmenting the abundance of beneficial microorganisms in gut homeostasis. The mechanism by which PMSP-KPV induces a therapeutic effect may be associated with the inhibition of oxidative stress. Conclusively, the PMSP hydrogel seems to be a promising rectal delivery system for the therapy of UC. STATEMENT OF SIGNIFICANCE: Ulcerative colitis (UC) is a chronic and relapsing disease of the gastrointestinal tract. A key therapeutic approach to treat UC is to repair the mucosal barriers. Here, a double-network hydrogel (PMSP) was constructed from maleimided and thiolated γ-polyglutamic acid through crosslinking of thiol-maleimide and self-oxidized thiols. The negatively charged PMSP specifically adhered to the inflamed colon rather than its healthy counterpart and was retained for a longer time. KPV as a model drug was easily captured by PMSP, which provided better stability to KPV when exposed to high temperature of 50 °C. The epithelial mucosal barrier of the colon was effectively recovered by the rectal administration of PMSP-KPV to rats with TNBS-induced UC. Moreover, PMSP-KPV modulated the gut flora of colitic rats, markedly augmenting the abundance of beneficial microorganisms. Conclusively, PMSP seems to be a promising rectal delivery system for UC therapy.


Assuntos
Colite Ulcerativa , Hidrogéis , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colo , Hidrogéis/química , Mucosa Intestinal/metabolismo , Ácido Poliglutâmico/farmacologia , Ratos , Compostos de Sulfidrila/farmacologia
12.
Drug Deliv Transl Res ; 12(12): 3083-3103, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35622235

RESUMO

Duloxetine HCl (DXH) is a reuptake inhibitor of serotonin and norepinephrine used to treat the major depressive disorder. Following its extensive hepatic metabolism, acid-labile nature, and limited aqueous solubility, DXH has poor oral bioavailability (40%). The rectal route has been suggested as another route of administration to surmount such challenges. The present study aimed to prepare DXH-loaded glycerosomal (DXH-GLYS) in situ gel for rectal administration to increase DXH permeability and improve its bioavailability. Box-Behnken design (BBD) was adopted to prepare and optimize nanoglycerosomes. The impact of Phospholipon 90G (PL90G), Tween 80 concentrations, and glycerol percentage on encapsulation efficiency, nanoglycerosomal size, % cumulative DXH released, and the cumulative DXH permeated per unit area after 24 h were studied by the design. The pharmacokinetic and pharmacodynamic behavior of optimized formulation was investigated in rats. The formulated DXH-GLYS had a vesicle size ranging between 135.9 and 430.6 nm and an entrapment efficiency between 69.11 and 98.12%. The permeation experiment revealed that the optimized DXH-GLYS in situ gel increased DXH permeation by 2.62-fold compared to DXH solution. Pharmacokinetics studies disclosed that the DXH-GLYS in situ rectal gel exhibited 2.24-times increment in DXH bioavailability relative to oral DXH solution. The pharmacodynamic study revealed that the DXH-GLYS rectal treatment significantly improved the behavioral analysis parameters and was more efficacious as an antidepressant than the oral DXH solution. Collectively, these findings demonstrate that GLYS can be considered a potentially valuable rectal nanocarrier that could boost the DXH efficacy.


Assuntos
Transtorno Depressivo Maior , Portadores de Fármacos , Animais , Ratos , Cloridrato de Duloxetina , Portadores de Fármacos/farmacocinética , Géis , Disponibilidade Biológica , Tamanho da Partícula , Sistemas de Liberação de Medicamentos
13.
ACS Biomater Sci Eng ; 7(10): 4859-4869, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34547895

RESUMO

KPV (Lys-Pro-Val), which is a tripeptide derived from α-MSH (α-melanocyte-stimulating hormone), has an anti-inflammatory effect on colitis. However, KPV solution is very unstable when rectally administered, compromising its therapeutic efficacy. Herein, cysteamine-grafted γ-polyglutamic acid (SH-PGA) was synthesized by conjugating cysteamine with the carboxyl groups of γ-PGA. The synthesized SH-PGA has the thiol grafting amount of 4.5 ± 0.3 mmol/g. Without the use of the cross-linker, the SH-PGA hydrogel with 4% of the polymer was formed by self-cross-linking of thiol groups. Moreover, the formation of the SH-PGA hydrogel was not affected by KPV. The KPV/SH-PGA hydrogel presented higher elastic modulus (G') than the corresponding viscous modulus (G″) at 0.01-10 Hz, exhibiting good mechanical stability. The KPV/SH-PGA hydrogel presented a shear-thinning behavior, which was helpful for rectal administration. Only 30% of KPV was released from the KPV/SH-PGA hydrogel within 20 min, followed by a sustained-release behavior. Importantly, the stability of KPV in the SH-PGA hydrogel was obviously enhanced, which was presented by detecting its anti-inflammatory activity and promoting cell migration potential after 2 h of exposure to 37 °C. The enhanced therapeutic effect of the KPV/SH-PGA hydrogel on colitis was confirmed on 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced ulcerative colitis rats. The colitis symptoms including body weight loss and the disease activity index score were obviously attenuated by rectally administering the KPV/SH-PGA hydrogel. Besides, the KPV/SH-PGA hydrogel treatment prevented the colon shortening of TNBS-infused rats and decreased the colonic myeloperoxidase level. The morphology of the colon including the epithelial barrier, crypt, and intact goblet cells was recovered after KPV/SH-PGA hydrogel treatment. Besides, the KPV/SH-PGA hydrogel decreased the expression of proinflammatory cytokines such as tumor necrosis factor α and interleukin 6. Collectively, the KPV/SH-PGA hydrogel may provide a promising strategy for the treatment of ulcerative colitis.


Assuntos
Colite Ulcerativa , Animais , Colite Ulcerativa/induzido quimicamente , Cisteamina , Hidrogéis , Ácido Poliglutâmico/análogos & derivados , Ratos , Ácido Trinitrobenzenossulfônico/toxicidade
14.
Theranostics ; 10(8): 3594-3611, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32206110

RESUMO

Background: Accumulating evidences indicate that nanomedicines greatly decrease the side effects and enhance the efficacy of colorectal cancer (CRC) treatment. In particular, the use of rectal delivery of nanomedicines, with advantages such as fast therapeutic effects and a diminishing hepatic first-pass effect, is currently emerging. Method: We established a CRC targeted delivery system, in which α-lactalbumin peptosomes (PSs) co-loaded with a microRNA (miR)-31 inhibitor (miR-31i) and curcumin (Cur) were encapsuslated in thiolated TEMPO oxidized Konjac glucomannan (sOKGM) microspheres, referred as sOKGM-PS-miR-31i/Cur. The CRC targeting capability, drug release profiles, mucoadhesive-to-penetrating properties and therapeutic efficacy of sOKGM-PS-miR-31i/Cur delivery system were evaluated in colorectal cancer cells and azoxymethane-dextran sodium (AOM-DSS) induced tumor models. Results: sOKGM-PS-miR-31i/Cur delivery system were stable in the harsh gastrointestinal environment after rectal or oral administration; and were also mucoadhesive due to disulfide bond interactions with the colonic mucus layer, resulting in an enhanced drug retention and local bioavailability in the colon. Concomitantly, the released PS-miR-31i/Cur PSs from the microsphere was mucus-penetrating, efficiently passing through the colonic mucus layer, and allowed Cur and miR-31i specifically target to colon tumor cells with the guide of CD133 targeting peptides. Consequently, rectal delivery of sOKGM-PS-miR-31i/Cur microspheres suppressed tumor growth in an azoxymethane-dextran sodium sulfate (AOM-DSS)-induced tumor model. Conclusion: sOKGM-PS-miR-31i/Cur microspheres are effective rectal delivery system with combined advantages of mucoadhesive and mucus-penetrating properties, representing a potent and viable therapeutic approach for CRC.


Assuntos
Antagomirs/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Curcumina/administração & dosagem , MicroRNAs/antagonistas & inibidores , Animais , Antagomirs/administração & dosagem , Disponibilidade Biológica , Moléculas de Adesão Celular/metabolismo , Curcumina/farmacocinética , Curcumina/uso terapêutico , Sistemas de Liberação de Medicamentos , Quimioterapia Combinada , Molécula de Adesão da Célula Epitelial/administração & dosagem , Molécula de Adesão da Célula Epitelial/farmacocinética , Molécula de Adesão da Célula Epitelial/uso terapêutico , Lactalbumina/farmacocinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microesferas , Nanomedicina/métodos , Nanomedicina/estatística & dados numéricos , Oligonucleotídeos/administração & dosagem , Oligonucleotídeos/farmacocinética , Absorção Retal/fisiologia
15.
Curr Drug Targets ; 19(15): 1782-1800, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29792143

RESUMO

Diabetes mellitus, a metabolic disorder of glucose metabolism, is mainly associated with insulin resistance to the body cells, or impaired production of insulin by the pancreatic ß-cells. Insulin is mainly required to regulate glucose metabolism in type 1 diabetes mellitus patients; however, many patients with type 2 diabetes mellitus also require insulin, especially when their condition cannot be controlled solely by oral hypoglycemic agents. Hence, major research is ongoing attempting to improve the delivery of insulin in order to make it more convenient to patients who experience side effects from the conventional treatment procedure or non-adherence to insulin regimen due to multiple comorbid conditions. Conventionally, insulin is administered via subcutaneous route which is also one of the sole reasons of patient's non-compliance due to the invasiveness of this method. Several attempts have been done to improve patient compliance, reduce side effects, improve delivery adherence, and to enhance the pharmaceutical performance of the insulin therapy. Despite facing substantial challenges in developing efficient delivery systems for insulin, vast research studies have been carried out for the development of smart delivery systems to deliver insulin via ocular, buccal, pulmonary, oral, transdermal, as well as rectal routes. Therefore, the present review was aimed to overview the challenges encountered with the current insulin delivery systems and to summarize recent advancements in technology of various novel insulin delivery systems being discovered and introduced in the current market.


Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Insulina/administração & dosagem , Administração Bucal , Administração Cutânea , Administração Oftálmica , Administração Oral , Administração Retal , Portadores de Fármacos , Sistemas de Liberação de Medicamentos/instrumentação , Humanos , Insulina/uso terapêutico , Cooperação do Paciente
16.
Drug Discov Ther ; 11(6): 293-299, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29332886

RESUMO

The development of peptide therapeutics owing to the advances in biotechnology has overcome some unmet medical needs; however, the route of administration is still limited to injections. Systemic delivery of insulin via an enteral route remains a great challenge due to its instability and low mucosal permeability. In this study, we investigated the effect of drug condensation in a suppository on the efficacy of insulin after rectal administration. Suppositories with dimples are prepared by a mold method using a hard fat (Suppocire® AM). Insulin or fluorescein isothiocyanate-dextran (molecular weight: 3,000-5,000) (FD4) as a model of a hydrophilic macromolecule was loaded in the dimples, and sealed with other lipids with different melting points. The in vitro release test showed that the time to 50% drug release depends on the melting point of the lipid for sealing but not on the number of dimples. The suppositories with one-, or three-dimple containing insulin and caprylocaproyl macrogol-8 glyceride (Labrasol®) were administered to rats at 0.5 U/head. The reduction in plasma glucose level was more significant for the one-dimple-type suppository than for the three-dimple-type although the one-dimple-type suppository contained less amount of Labrasol by one-third compared to the three-dimple-type. These results suggest that condensation of an insulin dose in a limited surface area of a suppository improves systemic availability via the rectal route with a reduced amount of an absorption enhancer.


Assuntos
Glicemia/efeitos dos fármacos , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Veículos Farmacêuticos , Supositórios , Administração Retal , Animais , Dextranos , Fluoresceína-5-Isotiocianato/análogos & derivados , Glicerídeos , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/farmacologia , Técnicas In Vitro , Insulina/farmacocinética , Insulina/farmacologia , Absorção Intestinal , Ratos , Temperatura de Transição
17.
Gels ; 3(3)2017 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-30920522

RESUMO

Hydrogels have become key players in the field of drug delivery owing to their great versatility in terms of composition and adjustability to various administration routes, from parenteral (e.g., intravenous) to non-parenteral (e.g., oral, topical) ones. In addition, based on the envisioned application, the design of bioadhesive or mucoadhesive hydrogels with prolonged residence time in the administration site may be beneficial. For example, hydrogels are used as wound dressings and patches for local and systemic therapy. In a similar way, they can be applied in the vaginal tract for local treatment or in the nasal cavity for a similar goal or, conversely, to target the central nervous system by the nose-to-brain pathway. Overall, hydrogels have demonstrated outstanding capabilities to ensure patient compliance, while achieving long-term therapeutic effects. The present work overviews the most relevant and recent applications of hydrogels in drug delivery with special emphasis on mucosal routes.

18.
Drug Des Devel Ther ; 10: 2855-2867, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27660416

RESUMO

In situ administration of 5-fluorouracil (5FU) "thermosensitive" gel effectively reduced systemic side effects in treating colon rectal cancer; however, the penetration efficacy of the formulation was considerably low due to the poor lipid solubility of 5FU. The aim of this study was to develop thermosensitive gel-mediated 5FU water-in-oil microemulsion (TG-5FU-ME) for improving the infiltration of 5FU. An in vitro release test showed that TG-5FU-ME sustained the drug's release up to 10 hours. TG-5FU-ME exhibited good stability, and the microemulsion entrapped did not show any change in morphology and 5FU content during the 4-month storage. Transportation test in the Caco-2 cell monolayer showed that TG-5FU-ME had a permeability 6.3 times higher than that of 5FU thermosensitive gel, and the intracellular uptake of 5FU increased by 5.4-fold compared to that of 5FU thermosensitive gel. In vivo tissue distribution analysis exhibited that the TG-5FU-ME group had drug levels in rectal tissue and mesenteric lymph nodes, which were significantly higher than those of 5FU thermosensitive gel group, with very low blood levels of 5FU in both groups. Furthermore, TG-5FU-ME was not associated with detectable morphological damage to the rectal tissue. Conclusively, TG-5FU-ME might be an efficient rectal delivery system to treat colorectal cancer.

19.
Int J Nanomedicine ; 9: 3815-24, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25143730

RESUMO

The primary aim of this work was to investigate the potential of bile salt, sodium taurocholate (NaTC), in improving the bioavailability and anti-tumor efficacy of docetaxel (DCT) upon rectal administration. Poloxamer-based nanomicelles with thermosensitive and mucoadhesive properties were prepared using the cold method. The optimized nanomicellar formulation was evaluated in terms of physicochemical and viscoelastic parameters. Nanomicelles containing bile salt maintained sufficient gelation strength (234×10(2) mPa·s) and mucoadhesive force (17.3×10(2) dyne/cm(2)) to be retained in the upper part of the rectum. They significantly enhanced the DCT internalization across the rectal mucosa and showed a high plasma level during the first 4 hours of the study period, compared to nanomicelles with no bile salt. As a result, a slightly higher rectal bioavailability of ~33% was observed in nanomicelles containing bile salt, compared to ~28% from the latter system. The higher pharmacokinetic parameters for rectally administered DCT/P407/P188/Tween 80/NaTC (0.25%/11%/15%/10%/0.1% by weight, respectively) resulted in significant anti-tumor efficacy. However, the tumor regression rate for the NaTC group was not statistically different from that for nanomicelles without NaTC. Therefore, overall results suggest that thermosensitive nanomicelles could be a potential dosage form for improvement of the bioavailability and chemotherapeutic profile of DCT.


Assuntos
Antineoplásicos/farmacocinética , Ácidos e Sais Biliares/química , Portadores de Fármacos/química , Micelas , Nanopartículas/química , Taxoides/farmacocinética , Administração Retal , Animais , Antineoplásicos/sangue , Antineoplásicos/química , Peso Corporal , Docetaxel , Feminino , Masculino , Camundongos Nus , Coelhos , Ratos Sprague-Dawley , Taxoides/sangue , Taxoides/química , Viscosidade , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Artigo em Inglês | WPRIM | ID: wpr-627702

RESUMO

Rectal delivery of drugs has been proven to be effective in terms of drug absorption and distribution comparable with other routes such as oral, buccal, sublingual or even nasal. In this study, two new suppository bases were developed using combinations of locally sourced hydrogenated palm kernel oil, hydrogenated palm kernel stearin and hydrogenated palm kernel olein with mixtures of stearic acid and glyceryl monostearate. When formulated with aspirin, these bases produced suppositories with acceptable characteristics. These aspirin suppositories were tested on twelve healthy subjects after an approval from the Medical Ethics Committee, University of Malaya had been procured. We quantified aspirin from the urine samples of the subjects to determine the relative availability of the different suppository preparations relative to an oral dose. The excretion of salicylic acid, one of the metabolite of aspirin in human urine taking aspirin was quantified. The F value was found to range from 1.16 to 1.38. Hence, the excretion results showed that these palm kernel oil blends are suitable suppository bases.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa