Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Andrologia ; 54(9): e14520, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35818990

RESUMO

The current study has been designed to explore the effects of running exercise training protocols (ETPs), with different intensities, on testicular redox and antioxidant capacities. Moreover, the crosstalk between oxidative stress (OS) and mitochondria-related apoptosis was analysed. To this end, 24 Wistar rats were subdivided into sedentary control, low- (LICT), moderate- (MICT), and high (HICT)-intensity continuous running ETP groups. Following 8 weeks, the Johnsen score, sperm count, testicular malondialdehyde (MDA) content, total oxidant status (TOS), and redox biomarkers, including glutathione peroxidase (GPX), superoxide dismutase (SOD), and catalase (CAT) levels were evaluated. Additionally, the expression levels of Bcl-2, Bax, caspase-3, proteins involving in the mitochondria-related apoptosis, and the apoptotic index were analysed. The LICT and MICT running ETPs did not affect the spermatogenesis development, sperm count, and antioxidant and redox capacities. Accordingly, no significant changes were revealed in Bcl-2, Bax, and caspase-3 expression levels and apoptosis index compared to sedentary rats. In contrast, the HICT-induced rats showed a significant (p < 0.05) reduction in spermatogenesis development, sperm count, antioxidant and redox capacities versus control, LICT, and MICT groups. Moreover, the expression of Bcl-2 was decreased, while the Bax and caspase-3 expression levels were increased in the HICT-induced group. Finally, the apoptosis index was increased in the HICT group. In conclusion, the suppressed redox system after HICT can trigger the mitochondria-mediated ROS overload, result in OS condition in the testicular tissue, and reversely target the mitochondrial membrane permeability. All of these molecular alterations are suspected to initiate progressive mitochondria-related apoptosis after HICT.


Assuntos
Corrida , Testículo , Animais , Antioxidantes/farmacologia , Apoptose , Caspase 3/metabolismo , Masculino , Mitocôndrias , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Wistar , Sêmen/metabolismo , Proteína X Associada a bcl-2/metabolismo
2.
Pharmacol Res ; 146: 104321, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31229562

RESUMO

Ascorbic acid (AA) is a water-soluble vitamin (C) found in all bodily organs. Most mammals synthesize it, humans are required to eat it, but all mammals need it for healthy functioning. AA reaches its highest concentration in the brain where both neurons and glia rely on tightly regulated uptake from blood via the glucose transport system and sodium-coupled active transport to accumulate and maintain AA at millimolar levels. As a prototype antioxidant, AA is not only neuroprotective, but also functions as a cofactor in redox-coupled reactions essential for the synthesis of neurotransmitters (e.g., dopamine and norepinephrine) and paracrine lipid mediators (e.g., epoxiecoisatrienoic acids) as well as the epigenetic regulation of DNA. Although redox capacity led to the promotion of AA in high doses as potential treatment for various neuropathological and psychiatric conditions, ample evidence has not supported this therapeutic strategy. Here, we focus on some long-neglected aspects of AA neurobiology, including its modulatory role in synaptic transmission as demonstrated by the long-established link between release of endogenous AA in brain extracellular fluid and the clearance of glutamate, an excitatory amino acid. Evidence that this link can be disrupted in animal models of Huntington´s disease is revealing opportunities for new research pathways and therapeutic applications (e.g., epilepsy and pain management). In fact, we suggest that improved understanding of the regulation of endogenous AA and its interaction with key brain neurotransmitter systems, rather than administration of AA in excess, should be the target of future brain-based therapies.


Assuntos
Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Neurotransmissores/metabolismo , Animais , Encéfalo/metabolismo , Humanos , Oxirredução , Transmissão Sináptica/fisiologia
3.
Homeopathy ; 102(3): 179-86, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23870377

RESUMO

BACKGROUND: The 2,4-D (2,4-dichlorophenoxyacetic acid) is using as a growth regulator in tissue culture media. Maize seeds have poor ability to maintain germination rate in the long term. OBJECTIVE: To examine the possible restorative effect of homeopathic 2,4-D potencies on maize seedlings originating from seeds damaged by accelerated aging. METHODS: Seeds of four maize lines were subjected to accelerated aging stress treatment. Seed samples were treated with distilled water (control) and a range of potencies of 2,4-D: 3C, 3.75C, 4.5C, 5.25C and 6C. The germination capacity, fresh substance (FS) and length of root and shoot were determined. Hydrolysis and biosynthesis, GSH/GSSG ratio and redox capacity were calculated. RESULTS: Induced seed aging decreased germination rate and growth of seedlings. 2,4-D potencies did not have a statistically significant effect on germination. However, there were statistically significant effects on FS production, root and shoot length and redox capacity. The 3C potency had the largest effect on the FS accumulation, 4.5C increased root and shoot length, compared to control (statistically significant). The GSH/GSSG ratio and the redox capacity were decreased by aging. The 3C and 4.5C potencies tended to reverse the GSH/GSSG ratio (statistically significant) in the root and shoot, (i.e., shifted the redox balance to the reduced state). CONCLUSION: Homeopathic potencies of 2,4-D appear to have a beneficial effect on artificially aged maize seeds: they stimulate growth through better substance conversion from seed rest, and shift the redox capacity towards a reduced environment. Further work is required to determine if this is an useful means of improving maize seed germination and growth.


Assuntos
Ácido 2,4-Diclorofenoxiacético/farmacologia , Plântula/efeitos dos fármacos , Zea mays/efeitos dos fármacos , Germinação/efeitos dos fármacos , Glutationa/análise , Dissulfeto de Glutationa/análise , Oxirredução , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento
4.
Redox Biol ; 63: 102737, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37236143

RESUMO

Cardiovascular diseases (CVD) can cause various conditions, including an increase in reactive oxygen species (ROS) levels that can decrease nitric oxide (NO) availability and promote vasoconstriction, leading to arterial hypertension. Physical exercise (PE) has been found to be protective against CVD by helping to maintain redox homeostasis through a decrease in ROS levels, achieved by increased expression of antioxidant enzymes (AOEs) and modulation of heat shock proteins (HSPs). Extracellular vesicles (EVs) circulating in the body are a major source of regulatory signals, including proteins and nucleic acids. Interestingly, the cardioprotective role of EVs released after PE has not been fully described. The aim of this study was to investigate the role of circulating EVs, obtained through Size Exclusion Chromatography (SEC) of plasma samples from healthy young males (age: 26.95 ± 3.07; estimated maximum oxygen consumption rate (VO2max): 51.22 ± 4.85 (mL/kg/min)) at basal level (Pre_EVs) and immediately after a single bout of endurance exercise (30' treadmill, 70% heart rate (HR) -Post_EVs). Gene ontology (GO) analysis of proteomic data from isolated EVs, revealed enrichment in proteins endowed with catalytic activity in Post_EVs, compare to Pre_EVs, with MAP2K1 being the most significantly upregulated protein. Enzymatic assays on EVs derived from Pre and Post samples showed increment in Glutathione Reductase (GR) and Catalase (CAT) activity in Post_EVs. At functional level, Post_EVs, but not Pre_EVs, enhanced the activity of antioxidant enzymes (AOEs) and reduced oxidative damage accumulation in treated human iPS-derived cardiomyocytes (hCM) at basal level and under stress conditions (Hydrogen Peroxide (H2O2) treatment), resulting in a global cardioprotective effect. In conclusion, our data demonstrated, for the first time, that a single 30-min endurance exercise is able to alter the cargo of circulating EVs, resulting in cardioprotective effect through antioxidant activity.


Assuntos
Doenças Cardiovasculares , Vesículas Extracelulares , Masculino , Humanos , Adulto Jovem , Adulto , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Proteômica , Doenças Cardiovasculares/metabolismo
5.
J Colloid Interface Sci ; 640: 211-219, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36863178

RESUMO

In pursuit of efficient solar energy to chemical energy conversion through band engineering of wide-bandgap photocatalysts such as TiO2, a compromise occurs between a narrow bandgap and high-redox-capacity photo-induced charge carriers, which impairs the potential advantages associated with the widened absorption range. The key to this compromise is an integrative modifier that can simultaneously modulate both the bandgap and band edge positions. Herein, we theoretically and experimentally demonstrate that oxygen vacancies occupied by boron-stabilized hydrogen pairs (OVBH) serve as an integrative band modifier. Compared to hydrogen-occupied oxygen vacancies (OVH), which require the aggregation of nanosized anatase TiO2 particles, oxygen vacancies coupled with boron (OVBH) can be easily introduced into large and highly crystalline TiO2 particles, as shown by density functional theory (DFT) calculations. The coupling with interstitial boron facilitates the introduction of paired hydrogen atoms. The red-colored {001} faceted anatase TiO2 microspheres with OVBH benefit from the narrowed bandgap of 1.84 eV and the down-shifted band position. These microspheres not only absorb long-wavelength visible light up to 674 nm but also enhance visible-light-driven photocatalytic oxygen evolution.

6.
J Mol Model ; 28(1): 1, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34862566

RESUMO

Vitamin C or ascorbic acid is an indispensable micronutrient for human health found principally on citrus species such as lemon and orange fruits and vegetables. It was involved in the production of proteins such as collagen. Its biochemical mechanism is related to its antioxidant capacity; however, its function at the cellular level is still unclear. Several theoretical studies about antioxidant and redox mechanisms for ascorbic acid were suggested; however, no derivative was proposed. Thereby, an electronic study of antioxidant capacity for ascorbic acid derivatives was performed using theoretical chemistry at the DFT/ B3LYP/6-311 + + (2d,2p) level of theory. Simplified derivatives show that enol hydroxyls are more important than any other functional group. The vicinal enolic hydroxyl on ß position is more important for antioxidant capacity of ascorbic than hydroxyl on α position. According to our molecular modifications, the keto-alkene compound showed the best values when compared to ascorbic acid in some molecular characteristics. No lactone derivatives have superior application potential as antioxidant when compared with ascorbic acid. Several structures are possible to be proposed and were related to spin density contributions and the increase of chemical stability. New promising structural derivatives related to ascorbic acid can be developed in the future.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Ácido Ascórbico/química , Ácido Ascórbico/farmacologia , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Humanos , Lactonas/química , Lactonas/metabolismo , Redes e Vias Metabólicas , Estrutura Molecular , Oxirredução
7.
Waste Manag ; 126: 810-820, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33901886

RESUMO

Humic acid (HA) in compost has received widespread attention for its high redox activity, which can mediate the degradation of organic pollution and the passivation of heavy metals in the environment. Hyperthermophilic composting (HTC) can accelerate HA formation. However, few studies have examined whether and how the structures of different organics affect the formation of the HA and HA redox structure at the molecular level in HTC. Detailed molecular information and the redox capacity (electron transfer capacity, ETC) of HA in HTC and thermophilic composting (TC) were characterized using pyrolysis gas chromatography/mass spectrometry and the electrochemical method, respectively. HTC promoted the formation of redox structure, leading to the improvement of the ETC of HA. Aromatics and N-containing compounds were mainly derived from protein components, and the rate at which they were transferred into HA was accelerated in HTC, while the relative abundance of lipids decreased. Partial least squares regression and correlation analysis demonstrated that protein-derived compounds were the key factor determining the HA redox capacity. Finally, partial least squares path modeling suggested that the influence mechanism of protein-derived structures on HA redox capacity might differ in HTC and TC. HTC may promote the relative abundance of N-containing components into the C-skeleton and accelerate the accumulation of the aromatic products, thereby improve the HA redox capacity. These findings provided new insight into how the redox capacity of the HA in compost could be improved and how compost products could be prepared for use in environmental remediation.


Assuntos
Compostagem , Metais Pesados , Archaea , Substâncias Húmicas/análise , Oxirredução , Solo
8.
Environ Sci Pollut Res Int ; 26(6): 6099-6106, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30617881

RESUMO

Hexachlorobenzene (HCB) dechlorination affected by humic acids (HA) was evaluated in terms of HA redox capacity, HA concentrations, and microbial community, as well as the correlation between HA redox capacity values and HCB concentrations. With addition of HA in the initial stage, redox capacity values increased by 2.19 meq/L (80 mg/L of HA addition, HA80), 2.51 meq/L (120 mg/L of HA addition, HA120), and 3.64 meq/L (200 mg/L of HA addition, HA200), respectively. The addition of HA could prominently enhance the HCB degradation rate. However, the concentration and the redox capacity of HA decreased during the anaerobic digestion process. Illumina MiSeq sequencing showed that microbial community affected by HA. Bacillus, Comamonas, and Pseudomonas were the predominant genera during the HCB dechlorination treatment. Moreover, Bacillus and Pseudomonas can improve HA electron transfer capability and promote the dechlorination of HCB.


Assuntos
Hexaclorobenzeno/química , Hexaclorobenzeno/metabolismo , Substâncias Húmicas , Consórcios Microbianos/fisiologia , Gerenciamento de Resíduos/métodos , Anaerobiose , Biodegradação Ambiental , Poluentes Ambientais/química , Poluentes Ambientais/metabolismo , Halogenação , Consórcios Microbianos/genética , Oxirredução
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa