RESUMO
BACKGROUND: Atrial fibrillation (AF) stands as a prevalent and detrimental arrhythmic disorder, characterized by intricate pathophysiological mechanisms. The availability of reliable and reproducible AF models is pivotal in unraveling the underlying mechanisms of this complex condition. Unfortunately, the researchers are still confronted with the absence of consistent in vitro AF models, hindering progress in this crucial area of research. METHODS: Human induced pluripotent stem cells derived atrial myocytes (hiPSC-AMs) were generated based on the GiWi methods and were verified by whole-cell patch clamp, immunofluorescent staining, and flow cytometry. Then hiPSC-AMs were employed to establish the AF model by HS. Whole-cell patch clamp technique and calcium imaging were used to identify the AF model. The stability of 29 reference genes was evaluated using delta-Ct, GeNorm, NormFinder, and BestKeeper algorithms; RESULTS: HiPSC-AMs displayed atrial myocyte action potentials and expressed the atrial-specific protein MLC-2 A and NR2F2, about 70% of the cardiomyocytes were MLC-2 A positive. After HS, hiPSC-AMs showed a significant increase in beating frequency, a shortened action potential duration, and increased calcium transient frequency. Of the 29 candidate genes, the top five most stably ranked genes were ABL1, RPL37A, POP4, RPL30, and EIF2B1. After normalization using ABL1, KCNJ2 was significantly upregulated in the AF model; Conclusions: In the hiPSC-AMs AF model established by HS, ABL1 provides greater normalization efficiency than commonly used GAPDH.
Assuntos
Fibrilação Atrial , Átrios do Coração , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Fibrilação Atrial/genética , Humanos , Miócitos Cardíacos/metabolismo , Perfilação da Expressão Gênica , Padrões de Referência , Diferenciação Celular/genética , Potenciais de AçãoRESUMO
Liquidambar formosana Hance is renowned for its rich leaf color and possesses notable advantages, such as robust adaptability, strong resistance to diseases and pests, and rapid growth, making it a preferred choice for urban greening and carbon sequestration forest initiatives. The completion of whole-genome sequencing of L. formosana has spurred an increased interest in exploring the molecular mechanisms underlying seasonal changes in leaf color, marking a significant focus in L. formosana breeding research. However, there is currently a lack of stable reference genes suitable for analyzing the expression patterns of functional genes in L. formosana exhibiting varying leaf colors. This study selected five L. formosana varieties with significant differences in leaf colors. Through the RT-qPCR analysis, and evaluation using BestKeeper, geNorm, NormFinder, Delta Ct, and RefFinder, the expression stability of 14 candidate reference genes was examined. Consequently, two reference genes (LifEF1-α and LifACT) with stable expression, suitable for RT-qPCR of L. formosana with diverse leaf colors, were identified. The stability of these selected reference genes was further validated by examining the LifbHLH137 gene, which promoted the biosynthesis of anthocyanins. This advancement facilitated molecular biology and genetic breeding investigations of L. formosana, providing essential data for the precise quantification of functional genes associated with leaf color variation.
RESUMO
Paper Mulberry (Broussonetia papyrifera) possesses medicinal, economic, and ecological significance and is extensively used for feed production, papermaking, and ecological restoration due to its ease of propagation, rapid growth rate, and strong stress resistance. The recent completion of the sequencing of the Paper Mulberry genome has prompted further research into the genetic breeding and molecular biology of this important species. A highly stable reference gene is essential to enhance the quantitative analysis of functional genes in Paper Mulberry; however, none has been identified. Accordingly, in this study, the leaves, stems, roots, petioles, young fruits, and mature fruits of Paper Mulberry plants were selected as experimental materials, and nine candidate reference genes, namely, α-TUB1, α-TUB2, ß-TUB, H2A, ACT, DnaJ, UBQ, CDC2, and TIP41, were identified by RT-qPCR. Their stability was assessed using the geNorm, Normfinder, Delta Ct, BestKeeper, and RefFinder algorithms, identifying ACT and UBQ as showing the greatest stability. The expression of BpMYB090, which regulates the production of trichomes, was examined in the leaves of plants of the wild type (which have more trichomes) and mutant (which have fewer trichomes) at various developmental stages to validate the results of this study. As a result, their identification addresses a critical gap in the field of Paper Mulberry research, providing a solid foundation for future research that will concentrate on the characterization of pertinent functional genes in this economically valuable species.
RESUMO
Dracocephalum moldavica is widely used as an ornamental, medicine, and perfume in industry. Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) is widely and accurately utilized for gene expression evaluations. Selecting optimal reference genes is essential for normalizing RT-qPCR results. However, the identification of suitable reference genes in D. moldavica has not been documented. A total of 12 reference genes in D. moldavica were identified by PEG6000 (15%) treatment under hypertonia conditions in different tissues (roots, stem, leaves, flower, seeds and sepal) and during three stages of flower development, then used to validate the expression stability. There were four algorithms (delta Ct, geNorm, NormFinder, and BestKeeper) used to analyze the stability. Finally, the RefFinder program was employed to evaluate the candidate reference genes' stability. The results showed that ACTIN, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and EF1α (elongation factor-1α) were stable reference genes under the PEG6000 treatment. Heat shock protein 70 (HSP70) was the most stable gene across different flower development stages. ADP-ribosylation factor (ARF) was the most stable gene in different tissues and total samples. This study provides reliable gene expression studies for future research in D. moldavica.
RESUMO
BACKGROUND: Kobreisa littledalei, belonging to the Cyperaceae family is the first Kobresia species with a reference genome and the most dominant species in Qinghai-Tibet Plateau alpine meadows. It has several resistance genes which could be used to breed improved crop varieties. Reverse Transcription Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR) is a popular and accurate gene expression analysis method. Its reliability depends on the expression levels of reference genes, which vary by species, tissues and environments. However, K.littledalei lacks a stable and normalized reference gene for RT-qPCR analysis. RESULTS: The stability of 13 potential reference genes was tested and the stable reference genes were selected for RT-qPCR normalization for the expression analysis in the different tissues of K. littledalei under two abiotic stresses (salt and drought) and two hormonal treatments (abscisic acid (ABA) and gibberellin (GA)). Five algorithms were used to assess the stability of putative reference genes. The results showed a variation amongst the methods, and the same reference genes showed tissue expression differences under the same conditions. The stability of combining two reference genes was better than a single one. The expression levels of ACTIN were stable in leaves and stems under normal conditions, in leaves under drought stress and in roots under ABA treatment. The expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression was stable in the roots under the control conditions and salt stress and in stems exposed to drought stress. Expression levels of superoxide dismutase (SOD) were stable in stems of ABA-treated plants and in the roots under drought stress. Moreover, RPL6 expression was stable in the leaves and stems under salt stress and in the stems of the GA-treated plants. EF1-alpha expression was stable in leaves under ABA and GA treatments. The expression levels of 28 S were stable in the roots under GA treatment. In general, ACTIN and GAPDH could be employed as housekeeping genes for K. littledalei under different treatments. CONCLUSION: This study identified the best RT-qPCR reference genes for different K. littledalei tissues under five experimental conditions. ACTIN and GAPDH genes can be employed as the ideal housekeeping genes for expression analysis under different conditions. This is the first study to investigate the stable reference genes for normalized gene expression analysis of K. littledalei under different conditions. The results could aid molecular biology and gene function research on Kobresia and other related species.
Assuntos
Genes de Plantas , Reação em Cadeia da Polimerase em Tempo Real , Plântula , Plântula/genética , Cyperaceae/genética , Padrões de Referência , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Secas , Reprodutibilidade dos Testes , Ácido Abscísico/metabolismo , Giberelinas/metabolismoRESUMO
Taro is a widely utilized starch resource plant. It is essential to quantify the expression levels of functional genes associated with taro growth using real-time quantitative polymerase chain reaction (RT-qPCR). However, to obtain reliable RT-qPCR results, appropriate reference genes (RGs) are required for data normalization. In this study, we screened seven novel candidate RGs using transcriptome datasets from taro, encompassing data from growth corms and various tissues. The expression stability of these seven new RGs, along with the commonly used RGs Actin, EF1-α, and ß-tubulin, was assessed using Delta Ct, BestKeeper, geNorm, and NormFinder algorithms. Furthermore, we conducted a comprehensive analysis using the RefFinder program and validated the results using the target gene, CeAGPL1. The findings revealed that ACY-1 and PIA2 were the optimal multiple RGs for normalization during corm growth, while COX10 and Armc8 were suitable for samples including various types of tissues. Furthermore, we found three RGs, Armc8, COX10 and CCX4L, were the optimal RGs for drought stress. This study assessed the suitability of RGs in taro for the first time. The identified RGs provide valuable resources for studying corm growth, diverse tissues, and drought stress. This study contributes to the advancement of our understanding of the underlying mechanisms that govern the growth of taro.
Assuntos
Colocasia , Secas , Genes de Plantas , Transcriptoma , Colocasia/genética , Perfilação da Expressão Gênica , Reação em Cadeia da Polimerase em Tempo Real , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Padrões de ReferênciaRESUMO
BACKGROUND: The Northern bobwhite (Colinus virginianus) is an economically important, and popular game bird in North America. Northern bobwhites have experiencing declines of > 3.5% annually in recent decades due to several factors. The eyeworm Oxyspirura petrowi is a nematode parasite frequently found in the eyes of bobwhites. Although reported frequently in wild bobwhites, there is no research to understand the host-parasite mechanism. Hence, it is important to investigate mechanisms of eyeworm invasion and immune modulation in bobwhite. Cytokine gene expression using RT-PCR is widely used to identify the innate immune response of a host to an infection. METHODOLOGY: In this study, we evaluated ten reference genes (HMBS, RPL19, RPL32, RPS7, RPS8, TATA, SDHA, YWHAZ, GAPDH, and ACTB) for their stability across three tissues (liver, spleen, and caecal tonsils) of control and O. petrowi infected Northern bobwhites. Primer efficiency and reference genes stability were assessed using GeNorm, NormFinder, and BestKeeper. RESULTS: Expression of these reference genes with respect to O. petrowi infection in bobwhites showed RPL32 and HMBS were the most stable genes in the liver, HMBS and SDHA were the most stable genes in the spleen, and HMBS and YWHAZ were equally stable reference genes in the caecal tonsils. CONCLUSION: Based on the geometric mean of all three analyses, our results indicate that the combination of RPL32 and HMBS for the liver, HMBS and SDHA for the spleen, and YWHAZ and HMBS for caecal tonsils might be used as reference genes for normalization in gene expression investigations on Northern bobwhites.
Assuntos
Doenças das Aves , Colinus , Thelazioidea , Animais , Colinus/genética , Doenças das Aves/parasitologia , Thelazioidea/genética , Olho , CitocinasRESUMO
The reliability of relative quantification RT-qPCR depends upon the gene of interest being normalized to one or more reference genes, with the assumption that the chosen reference genes do not experience altered expression with experimental conditions. The correct choice of stable reference genes is critical when investigating alterations to gene transcript levels following exposure to endocrine and metabolic disrupting chemicals, such as the flame retardant triphenyl phosphate (TPhP). This study assessed the stability of eight reference genes following TPhP exposure in embryonic cells derived from rainbow trout (Oncorhynchus mykiss). The genes ß-actin (actb) and 18s rRNA (18s) were stable, while glyceraldehyde-3-phosphate dehydrogenase (gapdh) relative expression was found to be increased. gapdh is a popular reference gene and has been previously used in the literature for investigating TPhP exposure in teleost fish models. We discuss the implications of gapdh upregulation in the context of TPhP as a metabolic disrupting chemical. Furthermore, we quantified the expression of the tumor suppressor gene p53 following TPhP exposure in relation to different reference genes to use as an example to report on how discrepancies in findings might arise depending on the stability of the chosen reference gene.
RESUMO
Gene expression studies in organisms are often conducted using reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR), and the accuracy of RT-qPCR results relies on the stability of reference genes. We examined ten candidate reference genes in Sclerodermus guani, a parasitoid wasp that is a natural enemy of long-horned beetle pests in forestry, including ACT, EF1α, Hsc70, Hsp70, SRSF7, α-tubulin, RPL7A, 18S, 28S, and SOD1, regarding variable biotic and abiotic factors such as body part, life stage, hormone, diet, and temperature. Data were analysed using four dedicated algorithms (ΔCt, BestKeeper, NormFinder, and geNorm) and one comparative tool (RefFinder). Our results showed that the most stable reference genes were RPL7A and EF1α regarding the body part, SRSF7 and Hsc70 regarding the diet, RPL7A and α-tubulin regarding the hormone, SRSF7 and RPL7A regarding the life stage, and SRSF7 and α-tubulin regarding temperature. To ascertain the applicability of specific reference genes, the expression level of the target gene (ACPase) was estimated regarding the body part using the most stable reference genes, RPL7A and EF1α, and the least stable one, SOD1. The highest expression level of ACPase was observed in the abdomen, and the validity of RPL7A and EF1α was confirmed. This study provides, for the first time, an extensive list of reliable reference genes for molecular biology studies in S. guani.
RESUMO
In recent years, the field of biology has witnessed a surge of interest in genomics research due to the advancements in biotechnology. Gene expression pattern analysis plays a crucial role in this research, as it enables us to understand the regulatory mechanism of gene expression and the associated biological processes. Real-time quantitative polymerase chain reaction (q-PCR) is an efficient method to analyze the gene expression patterns, for which accuracy relies on the standardized analysis of reference genes. However, numerous studies have shown that no reference gene is universal in all conditions, so screening a suitable reference gene under certain conditions is of great importance. Cinnamomum burmannii (C. burmannii) is rich in volatile components and has high medicinal and economic value. However, knowledge of the screening of reference genes for the gene expression analysis of C. burmannii is insufficient. Aiming at this problem, we evaluated and screened the reference genes in C. burmannii under different experimental conditions, including different abiotic stresses (Cold-treated, PEG-treated and Nacl-treated), different tissues, leaves at different developmental stages and different chemical types. In this study, different algorithms (∆Ct, geNorm, NormFinder and BestKeeper) were used to evaluate the stability of the candidate reference genes, and RefFinder further merged the output data to screen out the optimum reference gene under various experimental conditions in C. burmannii. The results showed that the optimal reference gene number for gene standardization was 2 under different experimental conditions. RPL27|RPS15 was the most suitable combination under the Nacl-treated and PEG-treated samples. RPL27|APT was the optimum combination under the Cold-treated samples. The optimal combinations of other samples were EF1α|ACT7 for different tissues, eIF-5A|Gllα for different borneol clones in C. burmannii, RPS15|ACT7 for leaves at different developmental stages and RPS15|TATA for all samples. Additionally, two terpenoid synthesis-related genes (CbWRKY4 and CbDXS2) were standardized to verify the feasibility of the selected reference genes under different experimental conditions. This study will be helpful for the subsequent molecular genetic mechanism study of C. burmannii.
Assuntos
Cinnamomum , Regulação da Expressão Gênica de Plantas , Cloreto de Sódio , Cinnamomum/genética , Perfilação da Expressão Gênica , Reação em Cadeia da Polimerase em Tempo Real/métodos , Padrões de ReferênciaRESUMO
The parasite Trichomonas vaginalis is the etiologic agent of trichomoniasis, the most common non-viral sexually transmitted disease worldwide. This infection often remains asymptomatic and is related to several health complications. The traditional treatment for trichomoniasis is the use of drugs of the 5-nitroimidazole family, such as metronidazole; however, scientific reports indicate an increasing number of drug-resistant strains. Benzimidazole derivatives could offer an alternative in the search for new anti-trichomonas drugs. In this sense, two attractive candidates are the compounds O2N-BZM7 and O2N-BZM9 (1H-benzimidazole derivatives), since, through in vitro tests, they have shown a higher trichomonacide activity. In this study, we determined the effect on the expression level of metabolic genes in T. vaginalis. The results show that genes involved in redox balance (NADHOX, G6PD::6PGL) are overexpressed, as well as the gene that participates in the first reaction of glycolysis (CK); on the other hand, structural genes such as ACT and TUB are decreased in expression in trophozoites treated with the compound O2N-BZM9, which would probably affect its morphology, motility and virulence. These results align with the trichomonacidal activity of the compounds, with benzimidazole O2N-BZM9 being the most potent, with an IC50 value of 4.8 µM. These results are promising for potential future therapeutic applications.
Assuntos
Benzimidazóis , Trichomonas vaginalis , Trichomonas vaginalis/efeitos dos fármacos , Trichomonas vaginalis/genética , Trichomonas vaginalis/metabolismo , Benzimidazóis/farmacologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Antiprotozoários/farmacologia , Antitricômonas/farmacologiaRESUMO
The study of the pathogenesis of febrile seizures and their consequences frequently necessitates gene expression analysis. The primary methodology employed for such analysis is reverse transcription with quantitative polymerase chain reaction (RT-qPCR). To ensure the accuracy of data obtained by RT-qPCR, it is crucial to utilize stably expressed reference genes. The objective of this study was to identify the most suitable reference genes for use in the analysis of mRNA production in various brain regions of rats following prolonged neonatal febrile seizures. The expression stability of eight housekeeping genes was evaluated using the online tool RefFinder in the dorsal and ventral hippocampal regions and in the temporal and medial prefrontal cortex of the brain. The Ppia gene exhibited the greatest stability of expression. Conversely, the genes with the least stable expression levels were Actb and Ywhaz; thus, it is not recommended to use them for normalization in a febrile seizure model. Additionally, the majority of housekeeping genes demonstrate age-related, region-specific fluctuations. Therefore, it is crucial to employ the appropriate housekeeping genes for each brain structure under investigation when examining the expression dynamics of genes of interest in a febrile seizure model.
Assuntos
Modelos Animais de Doenças , Perfilação da Expressão Gênica , Genes Essenciais , Convulsões Febris , Convulsões Febris/genética , Animais , Ratos , Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/normas , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Padrões de Referência , Regulação da Expressão Gênica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Encéfalo/metabolismo , Encéfalo/patologiaRESUMO
A comprehensive gene expression investigation requires high-quality RNA extraction, in sufficient amounts for real-time quantitative polymerase chain reaction and next-generation sequencing. In this work, we compared different RNA extraction methods and evaluated different reference genes for gene expression studies in the fetal human inner ear. We compared the RNA extracted from formalin-fixed paraffin-embedded tissue with fresh tissue stored at -80 °C in RNAlater solution and validated the expression stability of 12 reference genes (from gestational week 11 to 19). The RNA from fresh tissue in RNAlater resulted in higher amounts and a better quality of RNA than that from the paraffin-embedded tissue. The reference gene evaluation exhibited four stably expressed reference genes (B2M, HPRT1, GAPDH and GUSB). The selected reference genes were then used to examine the effect on the expression outcome of target genes (OTOF and TECTA), which are known to be regulated during inner ear development. The selected reference genes displayed no differences in the expression profile of OTOF and TECTA, which was confirmed by immunostaining. The results underline the importance of the choice of the RNA extraction method and reference genes used in gene expression studies.
Assuntos
Perfilação da Expressão Gênica , RNA , Humanos , Perfilação da Expressão Gênica/métodos , Gliceraldeído-3-Fosfato Desidrogenases/genética , Expressão Gênica , Reação em Cadeia da Polimerase em Tempo RealRESUMO
Plants and insects coevolved as an evolutionarily successful and enduring association. The molecular arms race led to evolutionary novelties regarding unique mechanisms of defence and detoxification in plants and insects. While insects adopt mechanisms to conquer host defence, trees develop well-orchestrated and species-specific defence strategies against insect herbivory. However, current knowledge on the molecular underpinnings of fine-tuned tree defence responses against different herbivore insects is still restricted. In the current study, using a multi-omics approach, we unveiled the defence response of Populus tremula against aphids (Chaitophorus populialbae) and spongy moths (Lymantria dispar) herbivory. Comparative differential gene expression (DGE) analyses revealed that around 272 and 1203 transcripts were differentially regulated in P. tremula after moth and aphid herbivory compared to uninfested controls. Interestingly, 5716 transcripts were differentially regulated in P. tremula between aphids and moth infestation. Further investigation showed that defence-related stress hormones and their lipid precursors, transcription factors, and signalling molecules were over-expressed, whereas the growth-related counterparts were suppressed in P. tremula after aphid and moth herbivory. Metabolomics analysis documented that around 37% of all significantly abundant metabolites were associated with biochemical pathways related to tree growth and defence. However, the metabolic profiles of aphid and moth-fed trees were quite distinct, indicating species-specific response optimization. After identifying the suitable reference genes in P. tremula, the omics data were further validated using RT-qPCR. Nevertheless, our findings documented species-specific fine-tuning of the defence response of P. tremula, showing conservation on resource allocation for defence overgrowth under aphid and moth herbivory. Such findings can be exploited to enhance our current understanding of molecular orchestration of tree responses against herbivory and aid in developing insect pest resistance P. tremula varieties.
Assuntos
Afídeos , Regulação da Expressão Gênica de Plantas , Herbivoria , Mariposas , Populus , Transcriptoma , Populus/genética , Populus/parasitologia , Populus/metabolismo , Animais , Afídeos/fisiologia , Mariposas/fisiologia , Mariposas/genética , Metabolômica/métodos , Perfilação da Expressão Gênica , MetabolomaRESUMO
MicroRNAs (miRNA) are involved in the process of carcinogenesis, including the development of endometrial cancer (EC). This study aimed to investigate the association between the expression of three miRNAs (miR-21-5p, miR-205-5p, and miR-222-3p) in endometrial cancer tissues. In addition, the stability of expression of SNORD48 and U6, which were initially planned to be used as reference miRNAs for normalization, was investigated. Endometrial tissue was obtained from 111 patients with EC during hysterectomy and from 19 patients undergoing surgery for uterine fibroids or pelvic organ prolapse as a control group without neoplastic changes. Our study was based on calculations made with a digital PCR method (Qiagen, Hilden, Germany) to measure the absolute expression. In the endometrial cancer tissue, miR-205-5p was upregulated, while miR-222-3p and SNORD48 were downregulated compared to the control group. We detected statistically significant correlation of miR-205-5p, U6, and SNORD48 expression with different histological grades; the expression of miR-205-5p increases with the histopathological grade advancement (intraepithelial neoplasia- EIN = 1590, G1 = 3367.2, G2 = 8067 and G3 = 20,360), while U6 and SNORD expression decreases from EIN to G2 and increases again in the G3 grade (U6: EIN = 19,032, G1 = 16,482.4, G2 = 13,642.4, G3 = 133,008; SNORD48: EIN = 97,088, G1 = 59,520, G2 = 43,544, G3 = 227,200). Our study suggests that upregulation of miR-205-5p and downregulation of miR-222-3p and SNORD48 may influence development of endometrial cancer. Moreover, miR-205-5p, U6, and SNORD48 expression changes may be associated with progression of endometrial cancer. The results also indicate that SNORD48 and U6, commonly used as internal references, may influence endometrial cancer development and progression; therefore, they should not be used as references. However, it is important to note that further research is required to understand their role in endometrial cancer.
Assuntos
Neoplasias do Endométrio , MicroRNAs , Feminino , Humanos , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias do Endométrio/genética , Regulação para Baixo/genética , Reação em Cadeia da PolimeraseRESUMO
Peste des petits ruminants (PPR) is a serious acute, highly contagious disease caused by the peste des petits ruminants virus (PPRV). This study aims to establish a qRT-PCR assay with an internal amplification control for the rapid and accurate detection of PPRV. The primers and probes for PPRV N were based on the national standard of the diagnostic techniques for PPR of China, and a pair of primers and TaqMan probes for the internal reference gene of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was designed. Optimisation of the reaction conditions, specificity, sensitivity and reproducibility tests, and clinical sample detection were conducted. The results showed that the optimal primers and probe concentrations of PPRV were 0.4 µmol/l and 0.4 µmol/l, respectively, and were 0.4 µmol/l and 0.2 µmol/l for the reference gene GAPDH, respectively. The established method has no cross-reaction with other viruses. The minimum detection limit was 6.8 copies/µl for PPRV and 190 copies/µl for GAPDH. The coefficients of variation (CV%) of PPRV and GAPDH were both lower than 2%. The results suggest that the PPRV qRT-PCR method containing internal reference genes has strong specificity, high sensitivity, and good reproducibility. The addition of internal reference genes for the sample quality control improves the accuracy of the detection.
RESUMO
Although many genes may serve as reference genes, they may cause different expression patterns by selecting different reference genes because no single gene is expressed consistently in all tested tissues of an organism under all environmental and developmental conditions. Thus, it is becoming increasingly important and necessary to identify suitable reference genes before performing gene expression analysis. Currently, there are several computational tools available for evaluating the stability of candidate reference genes. These tools are based on different statistical algorithms and may produce different rankings in stability within the same reference gene study. To date, the RefFinder is the only web-based tool available for comparing and evaluating housekeeping genes as candidates to be reference genes. In this tool, we integrated the four currently available computational programs (geNorm, NormFinder, BestKeeper, and the comparative ΔCt method) into a web-based tool for evaluating the stability and reliability of reference genes. According to the gene stability rankings derived from the four programs, we assigned an appropriate weight to each gene and calculated the geometric mean of weights for the final rankings. Aside from the overall ranking, a single program or combination of the four programs can be selected for evaluating the ranking of candidate reference genes. This tool has been widely used and validated by many research laboratories around the world. You may use this tool at http://www.heartcure.com.au/reffinder/ or https://blooge.cn/RefFinder/ . You can also download this algorithm program from https://github.com/fulxie/RefFinder and setup on your own computer. RefFinder is developed by PHP. Users can deploy it to a Php-based server (Apache + PHP) and run it.
Assuntos
Algoritmos , Perfilação da Expressão Gênica , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase em Tempo Real/métodos , Perfilação da Expressão Gênica/métodos , Internet , Padrões de ReferênciaRESUMO
Droplet digital PCR (ddPCR) is being increasingly adopted for gene detection and quantification because of its higher sensitivity and specificity. According to previous observations and our laboratory data, it is essential to use endogenous reference genes (RGs) when investigating gene expression at the mRNA level under salt stress. This study aimed to select and validate suitable RGs for gene expression under salt stress using ddPCR. Six candidate RGs were selected based on the tandem mass tag (TMT)-labeled quantitative proteomics of Alkalicoccus halolimnae at four salinities. The expression stability of these candidate genes was evaluated using statistical algorithms (geNorm, NormFinder, BestKeeper and RefFinder). There was a small fluctuation in the cycle threshold (Ct) value and copy number of the pdp gene. Its expression stability was ranked in the vanguard of all algorithms and was the most suitable RG for quantification of expression by both qPCR and ddPCR of A. halolimnae under salt stress. Single RG pdp and RG combinations were used to normalize the expression of ectA, ectB, ectC and ectD under four salinities. The present study constitutes the first systematic analysis of endogenous RG selection for halophiles responding to salt stress. This work provides a valuable theory and an approach reference of internal control identification for ddPCR-based stress response models.
Assuntos
Algoritmos , Estresse Salino , Reação em Cadeia da Polimerase em Tempo Real , Estresse Salino/genética , Padrões de Referência , Perfilação da Expressão GênicaRESUMO
BACKGROUND: Normalization of the expression profiling of target genes, in a tissue-specific manner and under different experimental conditions, requires stably expressed gene(s) to be used as internal reference(s). However, to study the molecular regulation of oocyte meiosis initiation during ovary development in chicken embryos, stable reference gene(s) still need to be compared and confirmed. METHODS AND RESULTS: Six candidate genes previously used as internal references for the chicken embryo (Actb, Cvh, Dazl, Eef1a, Gapdh and Rpl15) were chosen, and their expression profiles in left ovaries dissected at five chicken embryonic days (E12.5, E15.5, E17.5, E18.5 and E20.5) were evaluated, respectively. Separately, GeNorm, NormFinder, BestKeeper and Comparative ΔCt methods were used to assess the stability of candidate reference genes, and all results were combined to give the final rank by RefFinder. All methods identified that Eef1a and Rpl15 were the two most stable internal reference genes, whereas Cvh is the most unstable one. Moreover, expression levels of three marker genes for chicken oocyte meiosis entry (Stra8, Scp3 and Dmc1) were normalized, based on Eef1a, Rpl15, or their combinations, respectively. CONCLUSION: Our findings provide the most suitable internal reference genes (Eef1a and Rpl15), to investigate further molecular regulation of ovary development and oocyte meiosis initiation in chicken embryos.
Assuntos
Galinhas , Perfilação da Expressão Gênica , Animais , Feminino , Embrião de Galinha , Galinhas/genética , Perfilação da Expressão Gênica/métodos , Ovário , Reação em Cadeia da Polimerase em Tempo Real/métodos , Padrões de ReferênciaRESUMO
BACKGROUND: Rhizoctonia solani (AG1 IA) is an important pathogen of rice (Oryza sativa L.) that causes rice sheath blight (RSB). Since control of RSB by breeding and fungicides have had limited success, novel strategies like biocontrol with plant growth-promoting rhizobacteria (PGPR) can be an effective alternative. METHOD AND RESULTS: Seven commonly used reference genes (RGs), 18SrRNA, ACT1, GAPDH2, UBC5, RPS27, eIF4a and CYP28, were evaluated for their stability in rice-R. solani-PGPR interaction for real-time quantitative PCR (RT-qPCR) analysis. Different algorithms were examined, Delta Ct, geNorm, NormFinder, BestKeeper, and comprehensive ranking by RefFinder, to evaluate RT-qPCR of rice in tissues infected with R. solani and treated with the PGPR strains, Pseudomonas saponiphilia and Pseudomonas protegens, with potassium silicate (KSi) alone or in combination with each PGPR strain. RG stability was affected for each treatment and treatment-specific RG selection was suggested. Validation analysis was done for nonexpressor of PR-1(NPR1) for each treatment. CONCLUSION: Overall, ACT1 was the most stable RG with R. solani infection alone, GAPDH2 with R. solani infection plus KSi, UBC5 with R. solani infection plus P. saponiphilia, and eIF4a with R. solani infection plus P. protegens. Both ACT1 and RPS27 were the most stable with the combination of KSi and P. saponiphilia, while RPS27 was the most stable with the combination of KSi and P. protegens.