Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 531
Filtrar
1.
Small ; 20(4): e2303157, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37752780

RESUMO

The importance of an adequate linking moiety design that allows controlled drug(s) release at the desired site of action is extensively studied for polymer-drug conjugates (PDCs). Redox-responsive self-immolative linkers bearing disulfide moieties (SS-SIL) represent a powerful strategy for intracellular drug delivery; however, the influence of drug structural features and linker-associated spacers on release kinetics remains relatively unexplored. The influence of drug/spacer chemical structure and the chemical group available for conjugation on drug release and the biological effect of resultant PDCs is evaluated. A "design of experiments" tool is implemented to develop a liquid chromatography-mass spectrometry method to perform the comprehensive characterization required for this systematic study. The obtained fit-for-purpose analytical protocol enables the quantification of low drug concentrations in drug release studies and the elucidation of metabolite presence. and provides the first data that clarifies how drug structural features influence the drug release from SS-SIL and demonstrates the non-universal nature of the SS-SIL. The importance of rigorous linker characterization in understanding structure-function correlations between linkers, drug chemical functionalities, and in vitro release kinetics from a rationally-designed polymer-drug nanoconjugate, a critical strategic crafting methodology that should remain under consideration when using a reductive environment as an endogenous drug release trigger.


Assuntos
Sistemas de Liberação de Medicamentos , Polímeros , Polímeros/química , Preparações Farmacêuticas , Liberação Controlada de Fármacos , Sistemas de Liberação de Medicamentos/métodos , Nanoconjugados
2.
Chem Pharm Bull (Tokyo) ; 72(5): 454-470, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38644216

RESUMO

This study investigates the efficacy of modified Albizia procera gum as a release-retardant polymer in Diltiazem hydrochloride (DIL) matrix tablets. Carboxymethylated Albizia procera gum (CAP) and ionically crosslinked carboxymethylated Albizia procera gum (Ca-CAP) were utilized, with Ca-CAP synthesized via crosslinking CAP with calcium ions (Ca2+) using calcium chloride (CaCl2). Fourier Transform (FT) IR analysis affirmed polymer compatibility, while differential scanning calorimetry (DSC) and X-ray diffraction (XRD) assessed thermal behavior and crystallinity, respectively. Zeta potential analysis explored surface charge and electrostatic interactions, while rheology examined flow and viscoelastic properties. Swelling and erosion kinetics provided insights into water penetration and stability. CAP's carboxymethyl groups (-CH2-COO-) heightened divalent cation reactivity, and crosslinking with CaCl2 produced Ca-CAP through -CH2-COO- and Ca2+ interactions. Structural similarities between the polymers were revealed by FTIR, with slight differences. DSC indicated modified thermal behavior in Ca-CAP, while Zeta potential analysis showcased negative charges, with Ca-CAP exhibiting lower negativity. XRD highlighted increased crystallinity in Ca-CAP due to calcium crosslinking. Minimal impact on RBC properties was observed with both polymers compared to the positive control as water for injection (WFI). Ca-CAP exhibited improved viscosity, strength, controlled swelling, and erosion, allowing prolonged drug release compared to CAP. Stability studies confirmed consistent six-month drug release, emphasizing Ca-CAP's potential as a stable, sustained drug delivery system over CAP. Robustness and accelerated stability tests supported these findings, underscoring the promise of Ca-CAP in controlled drug release applications.


Assuntos
Diltiazem , Gomas Vegetais , Comprimidos , Diltiazem/química , Gomas Vegetais/química , Comprimidos/química , Albizzia/química , Liberação Controlada de Fármacos , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/síntese química
3.
Int J Mol Sci ; 25(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39126104

RESUMO

Melatonin regulates vital physiological processes in animals, such as the circadian cycle, sleep, locomotion, body temperature, food intake, and sexual and immune responses. In plants, melatonin modulates seed germination, longevity, circadian cycle, photoperiodicity, flowering, leaf senescence, postharvest fruit storage, and resistance against biotic and abiotic stresses. In plants, the effect of melatonin is mediated by various regulatory elements of the redox network, including RNS and ROS. Similarly, the radical gas NO mediates various physiological processes, like seed germination, flowering, leaf senescence, and stress responses. The biosynthesis of both melatonin and NO takes place in mitochondria and chloroplasts. Hence, both melatonin and nitric oxide are key signaling molecules governing their biological pathways independently. However, there are instances when these pathways cross each other and the two molecules interact with each other, resulting in the formation of N-nitrosomelatonin or NOMela, which is a nitrosated form of melatonin, discovered recently and with promising roles in plant development. The interaction between NO and melatonin is highly complex, and, although a handful of studies reporting these interactions have been published, the exact molecular mechanisms governing them and the prospects of NOMela as a NO donor have just started to be unraveled. Here, we review NO and melatonin production as well as RNS-melatonin interaction under normal and stressful conditions. Furthermore, for the first time, we provide highly sensitive, ozone-chemiluminescence-based comparative measurements of the nitric oxide content, as well as NO-release kinetics between NOMela and the commonly used NO donors CySNO and GSNO.


Assuntos
Melatonina , Óxido Nítrico , Plantas , Melatonina/metabolismo , Óxido Nítrico/metabolismo , Plantas/metabolismo , Doadores de Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Transdução de Sinais , Fenômenos Fisiológicos Vegetais
4.
Pharm Dev Technol ; 29(5): 517-529, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38721970

RESUMO

The present study aims to investigate the potential of the 3D printing technique to design gastroretentive floating tablets (GFTs) for modifying the drug release profile of an immediate-release tablet. A 3D-printed floating shell enclosing a captopril tablet was designed having varying number of drug-release windows. The impact of geometrical changes in the design of delivery system and thermal cross-linking of polymers were evaluated to observe the influence on floating ability and drug release. Water uptake, water insolubilization, Differential Scanning Calorimetry (DSC), and Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR) were performed to assess the degree of thermal cross-linking of polyvinyl alcohol (PVA) filament. The 3D-printed GFT9 was considered the optimized gastric floating tablet that exhibited >12 h of total floating time with zero floating lag time and successfully accomplished modified-drug release by exhibiting >80% of drug release in 8 h. The zero-order release model, with an r2 value of 0.9923, best fitted the drug release kinetic data of the GFT9, which followed a super case II drug transport mechanism with an n value of 0.95. The optimized gastric floating device (GFT9) also exhibited the highest MDT values (238.55), representing slow drug release from the system due to thermal crosslinking and the presence of a single drug-releasing window in the device.


Assuntos
Captopril , Liberação Controlada de Fármacos , Impressão Tridimensional , Comprimidos , Captopril/química , Captopril/administração & dosagem , Captopril/farmacocinética , Polímeros/química , Solubilidade , Álcool de Polivinil/química , Preparações de Ação Retardada/química , Sistemas de Liberação de Medicamentos/métodos , Varredura Diferencial de Calorimetria
5.
AAPS PharmSciTech ; 25(6): 157, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982006

RESUMO

Azithromycin traditional formulations possesses poor oral bioavailability which necessitates development of new formulation with enhanced bioavailability of the drug. The objective of current research was to explore the kinetics and safety profile of the newly developed azithromycin lipid-based nanoformulation (AZM-NF). In the in-vitro study of kinetics profiling, azithromycin (AZM) release was assessed using dialysis membrane enclosing equal quantity of either AZM-NF, oral suspension of azithromycin commercial product (AZM-CP), or azithromycin pure drug (AZM-PD) in simulated intestinal fluid. The ex-vivo study was performed using rabbit intestinal segments in physiological salts solution in a tissue bath. The in-vivo study was investigated by oral administration of AZM to rabbits while taking blood samples at predetermined time-intervals, followed by HPLC analysis. The toxicity study was conducted in rats to observe histopathological changes in rat's internal organs. In the in-vitro study, maximum release was 95.38 ± 4.58% for AZM-NF, 72.79 ± 8.85% for AZM-CP, and 46.13 ± 8.19% for AZM-PD (p < 0.0001). The ex-vivo investigation revealed maximum permeation of 85.68 ± 5.87 for AZM-NF and 64.88 ± 5.87% for AZM-CP (p < 0.001). The in-vivo kinetics showed Cmax 0.738 ± 0.038, and 0.599 ± 0.082 µg/ml with Tmax of 4 and 2 h for AZM-NF and AZM-CP respectively (p < 0.01). Histopathological examination revealed compromised myocardial fibers integrity by AZM-CP only, liver and kidney showed mild aberrations by both formulations, with no remarkable changes in the rest of studied organs. The results showed that AZM-NF exhibited significantly enhanced bioavailability with comparative safer profile to AZM-CP investigated.


Assuntos
Azitromicina , Disponibilidade Biológica , Lipídeos , Nanopartículas , Animais , Azitromicina/farmacocinética , Azitromicina/administração & dosagem , Azitromicina/química , Coelhos , Ratos , Lipídeos/química , Administração Oral , Masculino , Nanopartículas/química , Química Farmacêutica/métodos , Antibacterianos/farmacocinética , Antibacterianos/administração & dosagem , Portadores de Fármacos/química , Liberação Controlada de Fármacos
6.
AAPS PharmSciTech ; 25(7): 208, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237678

RESUMO

Mathematical modeling of drug release from drug delivery systems is crucial for understanding and optimizing formulations. This research provides a comparative mathematical analysis of drug release from lipid-based nanoparticles. Drug release profiles from various types of lipid nanoparticles, including liposomes, nanostructured lipid carriers (NLCs), solid lipid nanoparticles (SLNs), and nano/micro-emulsions (NEMs/MEMs), were extracted from the literature and used to assess the suitability of eight conventional mathematical release models. For each dataset, several metrics were calculated, including the coefficient of determination (R2), adjusted R2, the number of errors below certain thresholds (5%, 10%, 12%, and 20%), Akaike information criterion (AIC), regression sum square (RSS), regression mean square (RMS), residual sum of square (rSS), and residual mean square (rMS). The Korsmeyer-Peppas model ranked highest among the evaluated models, with the highest adjusted R2 values of 0.95 for NLCs and 0.93 for other liposomal drug delivery systems. The Weibull model ranked second, with adjusted R2 values of 0.92 for liposomal systems, 0.94 for SLNs, and 0.82 for NEMs/MEMs. Thus, these two models appear to be more effective in forecasting and characterizing the release of lipid nanoparticle drugs, potentially making them more suitable for upcoming research endeavors.


Assuntos
Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Lipídeos , Lipossomos , Nanopartículas , Nanopartículas/química , Lipídeos/química , Lipossomos/química , Sistemas de Liberação de Medicamentos/métodos , Modelos Teóricos , Portadores de Fármacos/química , Emulsões/química , Química Farmacêutica/métodos
7.
Angew Chem Int Ed Engl ; : e202419087, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39446074

RESUMO

Semipermeable polymersomes, a class of polymeric vesicles that allow molecular passage across their membranes, offer significant potential for controlled drug delivery. These vesicles can be designed for inherent or selective permeability through the choice of suitable copolymers or the incorporation of protein nanopores, respectively. In this study, we explore a novel approach using oxygen-producing enzymatic reactions within biodegradable poly(ethylene glycol)-poly(caprolactone-gradient-trimethylene carbonate) (PEG-p(CL-g-TMC)) polymersomes to modulate drug release. These polymersomes were found to enhance the release of hydrophobic drugs while retaining hydrophilic drugs. The enzymatic generation of oxygen within the polymersomes increased membrane hydrophobicity, influencing drug release kinetics. The findings highlight the importance of understanding drug release kinetics in designing effective drug delivery systems, as the release rate and mechanism critically impact therapeutic efficacy and patient outcomes.

8.
Drug Chem Toxicol ; : 1-11, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37501612

RESUMO

The study is the first to formulate and investigate potential of papaya seed chloroform extract based solid lipid nanoparticles (PSCEN) as antifertility agents on male Bandicota bengalensis. The prepared nanoparticles were spherical of size 300-600 nm. The release kinetics showed a controlled release of the drug with major release over 48 h. To assess the antifertility effects of PSCEN, adult male rats were fed a diet containing two different concentrations of PSCEN (5% and 10%) for 15 days under bi-choice conditions. The mean total active ingredient ingestion of the rats in the two treated groups ranged from 2.13-3.31 and 3.92-5.87 g/100g body weight, respectively. No adverse effects of treatment on body weight were observed. Also, no mortality of rats was observed. The treatment had a significant effect on the weight of the testis and the epididymis, but not on the other organs. Sperm motility (%), sperm viability (%), sperm count (millions/ml), sperm mitochondrial activity (%), sperm nuclear chromatin de-condensation (%) and sperm hypo-osmotic swelling (%) were significantly decreased, and sperm abnormality (%) significantly increased compared to the vehicle control group. The reproductive success rates of male rats treated with 5% and 10% PSCEN and mated with untreated female rats were 20.00-66.67% and 16.67%, respectively, while in untreated female rats mated with male rats of vehicle control group, reproductive success rate was 33.33 to 80%. The study found a maximal antifertility effect of the 10% PSCEN containing bait, which was irreversible up to 105 days after stopping treatment, suggesting long-term efficacy.

9.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36675025

RESUMO

Intra-articular injections of autologous platelet concentrates are considered capable to enhance the healing of cartilage lesions, alleviate joint inflammation, and relieve other musculoskeletal pathological conditions. The aim of this study was to analyze the soluble fractions obtained from platelet-rich plasma (pure- and leukocyte-PRP) to compare time- and preparation-dependent modifications of growth factor concentrations and the supporting activity of the two preparations on synovial fibroblast growth and hyaluronic acid (HA) production in vitro. The release kinetics of FGF-2, SDF-1, VEGF, HGF, EGF, PD GF-AB/BB, IGF-1, VCAM-1, and TGF-ß isoforms were followed up to 168 h after PRP activation, and their amounts were determined by multiplex-beads immunoassay. Synovial cell growth and supernatant HA production were respectively analyzed by Alamar Blue assay and ELISA. Time-dependent modifications grouped molecules in three peculiar patterns: one reaching the highest concentrations within 18 h and decreasing afterwards, another progressively increasing up to 168 h, and the last peaking at the central time points. Synovial fibroblast growth in response to L-PRP and P-PRP revealed differences over time and among added concentrations. Both preparations displayed a preserved supporting capacity of HA synthesis.


Assuntos
Ortopedia , Plasma Rico em Plaquetas , Medicina Regenerativa , Peptídeos e Proteínas de Sinalização Intercelular , Leucócitos , Ácido Hialurônico , Fibroblastos
10.
Int J Mol Sci ; 24(12)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37373418

RESUMO

Tendon injuries can result in two major drawbacks. Adhesions to the surrounding tissue may limit the range of motion, while fibrovascular scar formation can lead to poor biomechanical outcomes. Prosthetic devices may help to mitigate those problems. Emulsion electrospinning was used to develop a novel three-layer tube based on the polymer DegraPol (DP), with incorporated insulin-like growth factor-1 (IGF-1) in the middle layer. Scanning electron microscopy was utilized to assess the fiber diameter in IGF-1 containing pure DP meshes. Further characterization was performed with Fourier Transformed Infrared Spectroscopy, Differential Scanning Calorimetry, and water contact angle, as well as through the assessment of mechanical properties and release kinetics from ELISA, and the bioactivity of IGF-1 by qPCR of collagen I, ki67, and tenomodulin in rabbit Achilles tenocytes. The IGF-1-containing tubes exhibited a sustained release of the growth factor up to 4 days and showed bioactivity by significantly upregulated ki67 and tenomodulin gene expression. Moreover, they proved to be mechanically superior to pure DP tubes (significantly higher fracture strain, failure stress, and elastic modulus). The novel three-layer tubes intended to be applied over conventionally sutured tendons after a rupture may help accelerate the healing process. The release of IGF-1 stimulates proliferation and matrix synthesis of cells at the repair site. In addition, adhesion formation to surrounding tissue can be reduced due to the physical barrier.


Assuntos
Tendão do Calcâneo , Traumatismos dos Tendões , Animais , Coelhos , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/farmacologia , Fator de Crescimento Insulin-Like I/metabolismo , Emulsões/metabolismo , Antígeno Ki-67/metabolismo , Traumatismos dos Tendões/tratamento farmacológico , Traumatismos dos Tendões/metabolismo , Tendão do Calcâneo/metabolismo
11.
J Sci Food Agric ; 103(3): 1115-1126, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35781812

RESUMO

BACKGROUND: Poly(lactic acid) (PLA) has limited uses for moist and acidic foods due to its barrier properties, which are fairly poor, and its sensitivity to moisture. RESULTS: Deposition of thin coatings based on natural biopolymers (gelatin) incorporating bioactive agents has allowed the development of active packaging materials while maintaining their biodegradability and their food contact material ability. Gelatin coatings containing two phenolic acids (tannic and gallic) have been tested. These coated PLA films displayed a reduction of the moisture permeability and a slight modification of the thermal properties of PLA. The antioxidant properties of the films and their release kinetics in a simulant medium have been studied and modelled. CONCLUSIONS: Incorporation of phenolic acids induced interactions with the gelatin that modified the structure of the network and positively affected the retention, diffusivity, and transfer rate of the bioactive compounds when coated PLA films were in contact with the liquid simulant. © 2022 Society of Chemical Industry.


Assuntos
Antioxidantes , Polifenóis , Antioxidantes/química , Gelatina/química , Embalagem de Alimentos , Poliésteres/química
12.
Beilstein J Org Chem ; 19: 139-157, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814451

RESUMO

Colorectal cancer (CRC) is the third most diagnosed cancer type globally and ranks second in cancer-related deaths. With the current treatment possibilities, a definitive, safe, and effective treatment approach for CRC has not been presented yet. However, new drug delivery systems show promise in this field. Amphiphilic cyclodextrin-based nanocarriers are innovative and interesting formulation approaches for targeting the colon through oral administration. In our previous studies, oral chemotherapy for colon tumors was aimed and promising results were obtained with formulation development studies, mucin interaction, mucus penetration, cytotoxicity, and permeability in 2D cell culture, and furthermore in vivo antitumoral and antimetastatic efficacy in early and late-stage colon cancer models and biodistribution after single dose oral administration. This study was carried out to further elucidate oral camptothecin (CPT)-loaded amphiphilic cyclodextrin nanoparticles for the local treatment of colorectal tumors in terms of their drug release behavior and efficacy in 3-dimensional tumor models to predict the in vivo efficacy of different nanocarriers. The main objective was to build a bridge between formulation development and in vitro phase and animal studies. In this context, CPT-loaded polycationic-ß-cyclodextrin nanoparticles caused reduced cell viability in CT26 and HT29 colon carcinoma spheroid tumors of mice and human origin, respectively. In addition, the release profile, which is one of the critical quality parameters in new drug delivery systems, was investigated mathematically by release kinetic modeling for the first time. The overall findings indicated that the strategy of orally targeting anticancer drugs such as CPT with positively charged poly-ß-CD-C6 nanoparticles to colon tumors for local and/or systemic efficacy is a promising approach.

13.
Pharm Res ; 39(2): 341-352, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35088236

RESUMO

PURPOSE: Hydrogen sulphide (H2S) is an important signalling molecule involved in the regulation of several physiological and pathophysiological processes. The objective of this study was to investigate the feasibility of transdermal delivery of ADT-OH, a H2S donor, by investigating the transdermal flux of aqueous gels loaded with penetration enhancers or liposomes. Furthermore, we explored the ability of permeated ADT-OH to promote angiogenesis and mitochondrial bioenergetics in HUVEC cells. METHODS: Aqueous hypromellose gels (5% w/v) were prepared with up to 10% v/v propylene glycol (PG) or deformable liposomes with 0.025% w/w ADT-OH. ADT-OH permeation from formulations across excised murine skin into PBS was quantified over 24 h using HPLC-UV detection. Media was collected and applied to HUVEC cells to evidence ADT-OH functionality following permeation. Tube formation assays were performed as indicative of angiogenesis and mitochondrial oxygen consumption was evaluated using a Seahorse XF24. RESULTS: Increasing the loading of PG caused an increase in ADT-OH permeation rate across skin and a decrease in dermal drug retention whereas liposomal gels produced a slow-release profile. Treatment of HUVEC's using conditioned media collected from the ADT-OH loaded permeation studies enhanced tube formation and the basal oxygen consumption rates after 30 min of treatment. CONCLUSIONS: These findings demonstrate that transdermal delivery of ADT-OH may provide a promising approach in the treatment of impaired vascular function. Gels prepared with 10% v/v PG have the potential for use in conditions requiring rapid H2S release whereas liposomal loaded gels for treatment requiring sustained H2S release.


Assuntos
Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Sulfeto de Hidrogênio/administração & dosagem , Absorção Cutânea , Tionas/administração & dosagem , Administração Cutânea , Animais , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Composição de Medicamentos , Metabolismo Energético/efeitos dos fármacos , Feminino , Géis , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Sulfeto de Hidrogênio/química , Sulfeto de Hidrogênio/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Tionas/química , Tionas/metabolismo
14.
Int J Mol Sci ; 23(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35269665

RESUMO

Recent findings have proved the benefits of Pioglitazone (PGZ) against atherosclerosis and type 2 diabetes. Since the systematic and controllable release of this drug is of significant importance, encapsulation of this drug in nanoparticles (NPs) can minimize uncontrolled issues. In this context, drug delivery approaches based on several poly(lactic-co-glycolic acid) (PLGA) nanoparticles have been rising in popularity due to their promising capabilities. However, a fully reliable and reproducible synthetic methodology is still lacking. In this work, we present a rational optimization of the most critical formulation parameters for the production of PGZ-loaded PLGA NPs by the single emulsification-solvent evaporation or nanoprecipitation methods. We examined the influence of several variables (e.g., component concentrations, phases ratio, injection flux rate) on the synthesis of the PGZ-NPs. In addition, a comparison of these synthetic methodologies in terms of nanoparticle size, polydispersity index (PDI), zeta potential (ζp), drug loading (DL%), entrapment efficiency (EE%), and stability is offered. According to the higher entrapment efficiency content, enhanced storage time and suitable particle size, the nanoprecipitation approach appears to be the simplest, most rapid and most reliable synthetic pathway for these drug nanocarriers, and we demonstrated a very slow drug release in PBS for the best formulation obtained by this synthesis.


Assuntos
Diabetes Mellitus Tipo 2 , Nanopartículas , Portadores de Fármacos , Humanos , Tamanho da Partícula , Pioglitazona , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
15.
J Environ Manage ; 318: 115559, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35753129

RESUMO

It is imperative to find suitable strategies to utilize the native soil phosphorus (P), as natural rock phosphate deposits are at a verge of depletion. We explored two such cost-effective and eco-friendly strategies for native soil P solubilization: silicon (Si)-rich agro-wastes (as Si source) and phosphate solubilizing microorganism (PSM). An incubation study was conducted in a sub-tropical Alfisol for 90 days at 25 °C under field capacity moisture. A factorial completely randomized design with 3 factors, namely: Si sources (three levels: sugarcane bagasse ash, rice husk ash, and corn cob ash), PSM (two levels: without PSM, and with PSM); and Si doses [three levels: no Si (Si0), 125 (Si125) and 250 (Si250) mg Si kg-1 soil] was followed. The PSM increased solution P and soluble Si level by ∼22.2 and 1.88%, respectively, over no PSM; whereas, Si125 and Si250 increased solution P by ∼60.4 and 77.1%, as well as soluble Si by ∼41.5 and 55.5%, respectively, over Si0. Also, interaction of PSM × Si doses was found significant (P<0.05). Activities of soil enzymes (dehydrogenase, acid phosphatase) and microbial biomass P also increased significantly both with PSM and Si application. Overall, PSM solubilized ∼4.18 mg kg-1 of inorganic P and mineralized ∼5.92 mg kg-1 of organic P; whereas, Si125 and Si250 solubilized ∼3.85 and 5.72 mg kg-1 of inorganic P, and mineralized ∼4.15 and 5.37 mg kg-1 of organic P, respectively. Path analysis revealed that inorganic P majorly contributed to total P solubilization; whereas, soluble and loosely bound, iron bound and aluminium bound P significantly influenced the inorganic P solubilization. Thus, utilization of such wastes as Si sources will not only complement the costly P fertilizers, but also address the waste disposal issue in a sustainable manner.


Assuntos
Saccharum , Solo , Celulose , Fosfatos/metabolismo , Fósforo/metabolismo , Saccharum/metabolismo , Silício , Microbiologia do Solo
16.
Medicina (Kaunas) ; 58(11)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36422227

RESUMO

Background and Objectives: Curcumin (Cc) as an active substance is known for its anti-inflammatory, anticoagulant, antioxidant, and anti-carcinogenic effects, together with its role in cholesterol regulation, and its use in different gastrointestinal derangements. On the other hand, curcumin can be used for its properties as an inactive substance, with Cc particles being more often tested in pharmaceutical formulations for drug delivery, with promising safety records and kinetics. The aim of this research was to obtain and characterize polyurethane microparticles that can be used as a carrier with a controlled Cc release. Materials and Methods: The in vitro samples were characterized by the Zetasizer procedure, and UV-Vis spectroscopy, while the in-vivo measurements on human subjects were performed by non-invasive skin assays (trans-epidermal water loss, erythema, and skin hydration). A total of 16 patients with oropharyngeal cancer stages II and III in equal proportions were recruited for participation. Results: The experimental values of sample characteristics using the Zetasizer identified a mean structural size of 215 nm in the polyester-urethane preparate (PU), compared to 271 nm in the curcumin-based PU. Although the size was statistically significantly different, the IPDI and Zeta potential did not differ significantly (22.91 mV vs. 23.74 mV). The average age during the study period was 57.6 years for patients in the PU group, respectively, and 55.1 years in those who received the curcumin preparations. The majority of oropharyngeal cancers were of HPV-related etiology. There were no significant side effects; 75.0% of patients in the PU group reporting no side effects, compared to 87.5% in the Cc group. The 48 h TEWL measurement at the end of the experiment found a statistically significant difference between the PU and the Cc group (2.2 g/h/m2 vs. 2.6 g/h/m2). The erythema assessment showed a starting measurement point for both research groups with a 5.1-unit difference. After 48 h, the difference between PU and PU_Cc was just 1.7 units (p-value = 0.576). The overall difference compared to the reference group with sodium lauryl sulfate (SLS) was statistically significant at a 95% significance level. Conclusions: Our findings indicate the obtaining of almost homogeneous particles with a medium tendency to form agglomerations, with a good capacity of encapsulation (around 60%), a medium release rate, and a non-irritative potential. Therefore, this polyester-urethane with Cc microparticles can be tested in other clinical evaluations.


Assuntos
Curcumina , Neoplasias Orofaríngeas , Humanos , Pessoa de Meia-Idade , Curcumina/uso terapêutico , Poliésteres , Sistemas de Liberação de Medicamentos , Poliuretanos/química
17.
J Food Sci Technol ; 59(4): 1326-1340, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35250058

RESUMO

Curcumin, the major bioactive component of turmeric (Curcuma longa), was microencapsulated by spray drying in the matrix of HI-CAP 100 (resistant starch)/ maltodextrin and whey protein isolate to improve its oral bioavailability and solubility. Taguchi orthogonal array design (L18) was used to optimize the spray drying conditions. The optimal conditions for microencapsulation were inlet drying air temperature of 185 °C, feed rate of 6 mL/min and HI-CAP 100 as wall material. The moisture content, encapsulation efficiency and bulk density at these conditions were 4.65%, 82.42% and 358.40 kg/m3, respectively. The spray-dried microcapsules were spherical-shaped with folds and vacuoles. The yellowness index and a* value of curcumin decreased after microencapsulation. FTIR spectroscopy indicated that the curcumin after microencapsulation presumably retained its chemical structure. DSC thermograms confirmed that the microcapsules were heat stable up to 200 °C. The microcapsules had better heat stability and sustained in-vitro release as compared to that of pure curcumin. The DPPH free radical scavenging activity of curcumin was 61.43%, which was largely unaffected after microencapsulation. Fortification of milk with HI-CAP 100-based microcapsules at the selected dose had no adverse effect on organoleptic properties as compared to normal milk. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13197-021-05142-0.

18.
Mol Pharm ; 18(1): 18-32, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33331774

RESUMO

Poly(lactic-co-glycolic acid) (PLGA) has been used for long-acting injectable drug delivery systems for more than 30 years. The factors affecting the properties of PLGA formulations are still not clearly understood. The drug release kinetics of PLGA microparticles are influenced by many parameters associated with the formulation composition, manufacturing process, and post-treatments. Since the drug release kinetics have not been explainable using the measurable properties, formulating PLGA microparticles with desired drug release kinetics has been extremely difficult. Of the various properties, the glass transition temperature, Tg, of PLGA formulations is able to explain various aspects of drug release kinetics. This allows examination of parameters that affect the Tg of PLGA formulations, and thus, affecting the drug release kinetics. The impacts of the terminal sterilization on the Tg and drug release kinetics were also examined. The analysis of drug release kinetics in relation to the Tg of PLGA formulations provides a basis for further understanding of the factors controlling drug release.


Assuntos
Vidro/química , Microplásticos/química , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Cinética , Tamanho da Partícula , Temperatura de Transição
19.
Ecotoxicol Environ Saf ; 208: 111626, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396146

RESUMO

Soil application of biochars has been shown to effectively immobilize potentially toxic elements (PTEs). Soil water regime can also affect PTE availability. No previous studies have examined the interactive effect of biochars and soil water regime on Pb availability. Therefore, this study investigated the effect of high and low temperature (300 and 600°C) biochars derived from cow manure (CB), municipal compost (MB) and licorice root pulp (LB) applied at 3 wt%, under two soil moisture regimes (field capacity (FC) and saturation (ST)) on Pb release kinetics and chemical fractions in a Pb-contaminated calcareous soil. Results showed that CB and MB treatments significantly enhanced Pb stabilization compared to LB, attributed to their favorable chemical properties (high P, ash, carbonate, oxidizable C content and high pH) which could promote Pb conversion into stable chemical fractions. Immobilization of Pb was enhanced under saturated conditions compared to FC by the treatments, which is attributed to increased soil pH, reduction of metal oxides and possible formation of sulfides. The most significantly effective treatments were the CB300, CB600 and MB600 treatments under ST, as indicated by significant decrease in soil Pb mobility factor from 29.1% (CL+FC) to 21.2-22.9%, and 11.7-16.3% increase in non-EDTA-extractable Pb. Results of this study demonstrate that combined application of high ash biochars and soil water saturation significantly enhances Pb immobilization in calcareous soil.


Assuntos
Carvão Vegetal/química , Recuperação e Remediação Ambiental/métodos , Chumbo/química , Poluentes do Solo/química , Poluição Ambiental , Esterco , Óxidos , Solo/química , Poluentes do Solo/análise
20.
Drug Dev Ind Pharm ; 47(10): 1624-1632, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35107404

RESUMO

OBJECTIVE: The purpose of the present study was to evaluate the prospect of use of mercaptopropyl modified silica as a platform for development of new oral formulation of antiviral drug acyclovir (ACV) which is able to control release of the drug irrespective of release medium pH. METHODS: The composites of ACV with mercaptopropyl modified silica were synthesized using sol-gel technology under different conditions (synthesis pH, drug loading). The composites were characterized using scanning electron microscopy, dynamic light scattering and differential scanning calorimetry methods. The effects of the synthesis conditions on physicochemical properties of the prepared composites and their release properties were studied. RESULTS: The sol-gel synthesis conditions and release medium pH influence significantly release properties of the composites. The influence was explained by contributions of different factors, such as the drug-silica interactions in the composites, structure of the silica matrix and its stability in release media, hydrophobic nature of ACV, its pH-dependent solubility. It was found that all the synthesized composites followed the zero-order kinetics which is controlled by anomalous diffusion. CONCLUSION: The studies showed that the composites exhibited controlled release of ACV up to 80 h. However, the release properties of the drug depend significantly on pH of release medium, i.e. the release properties (the release rate, the amount of released ACV) will change during transition of the composites through various segments of GIT. Therefore, the synthesized composites are not a promising basis for development of new oral dosage form of ACV.


Assuntos
Aciclovir , Dióxido de Silício , Antivirais , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa