Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Sensors (Basel) ; 24(2)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38257611

RESUMO

Predictive maintenance holds a crucial role in various industries such as the automotive, aviation and factory automation industries when it comes to expensive engine upkeep. Predicting engine maintenance intervals is vital for devising effective business management strategies, enhancing occupational safety and optimising efficiency. To achieve predictive maintenance, engine sensor data are harnessed to assess the wear and tear of engines. In this research, a Long Short-Term Memory (LSTM) architecture was employed to forecast the remaining lifespan of aircraft engines. The LSTM model was evaluated using the NASA Turbofan Engine Corruption Simulation dataset and its performance was benchmarked against alternative methodologies. The results of these applications demonstrated exceptional outcomes, with the LSTM model achieving the highest classification accuracy at 98.916% and the lowest mean average absolute error at 1.284%.

2.
Sensors (Basel) ; 24(17)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39275640

RESUMO

Wind turbine blades bear the maximum cyclic load and varying self-weights in turbulent wind environments, which accelerate the propagation of cracks that ultimately progress from minor faults, resulting in blade failure and significant maintenance and shutdown costs. To address this issue, this paper proposes an adaptive control strategy for the blade's useful life. The control system is divided into the inner control loop and the outer control loop. The outer loop is based on the Paris crack propagation model combined with a particle filtering algorithm and calculates the degradation of the blade life under the crack threshold conditions provided by the operation and maintenance strategy to determine the parameter settings of the inner-loop load-shedding controller. The control strategy we propose can balance the load-shedding capability of the controller with the fatigue load of the pitch actuator while considering the predefined remaining useful blade life in the operation and maintenance strategy, avoiding unplanned downtime and reducing maintenance costs.

3.
Sensors (Basel) ; 24(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38675999

RESUMO

The prediction of the remaining useful life (RUL) is important for the conditions of rotating machinery to maintain reliability and decrease losses. This study proposes an efficient approach based on an adaptive maximum second-order cyclostationarity blind deconvolution (ACYCBD) and a convolutional LSTM autoencoder to achieve the feature extraction, health index analysis, and RUL prediction for rotating machinery. First, the ACYCBD is used to filter noise from the vibration signals. Second, based on the peak value properties, a novel health index (HI) is designed to analyze the health conditions for the denoising signal, showing a high sensitivity for the degradation of bearings. Finally, for better prognostics and health management of the rotating machinery, based on convolutional layers and LSTM, an autoencoder can achieve a transform convolutional LSTM network to develop a convolutional LSTM autoencoder (ALSTM) model that can be applied to forecast the health trend for rotating machinery. Compared with the SVM, CNN, LSTM, GRU, and DTGRU methods, our experiments demonstrate that the proposed approach has the greatest performance for the prediction of the remaining useful life of rotating machinery.

4.
Sensors (Basel) ; 24(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38894245

RESUMO

Remaining useful life (RUL) is a metric of health state for essential equipment. It plays a significant role in health management. However, RUL is often random and unknown. One type of physics-based method builds a mathematical model for RUL using prior principles, but this is a tough task in real-world applications. Another type of method estimates RUL from available information through condition and health monitoring; this is known as the data-driven method. Traditional data-driven methods require significant human effort in designing health features to represent performance degradation, yet the prediction accuracy is limited. With breakthroughs in various application scenarios in recent years, deep learning techniques provide new insights into this problem. Over the past few years, deep-learning-based RUL prediction has attracted increasing attention from the academic community. Therefore, it is necessary to conduct a survey on deep-learning-based RUL prediction. To ensure a comprehensive survey, the literature is reviewed from three dimensions. Firstly, a unified framework is proposed for deep-learning-based RUL prediction and the models and approaches in the literature are reviewed under this framework. Secondly, detailed estimation processes are compared from the perspective of different deep learning models. Thirdly, the literature is examined from the perspective of specific problems, such as scenarios where the collected data consist of limited labeled data. Finally, the main challenges and future directions are summarized.

5.
Sensors (Basel) ; 24(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39000896

RESUMO

Previous studies have primarily focused on predicting the remaining useful life (RUL) of tools as an independent process. However, the RUL of a tool is closely related to its wear stage. In light of this, a multi-task joint learning model based on a transformer encoder and customized gate control (TECGC) is proposed for simultaneous prediction of tool RUL and tool wear stages. Specifically, the transformer encoder is employed as the backbone of the TECGC model for extracting shared features from the original data. The customized gate control (CGC) is utilized to extract task-specific features relevant to tool RUL prediction and tool wear stage and shared features. Finally, by integrating these components, the tool RUL and the tool wear stage can be predicted simultaneously by the TECGC model. In addition, a dynamic adaptive multi-task learning loss function is proposed for the model's training to enhance its calculation efficiency. This approach avoids unsatisfactory prediction performance of the model caused by unreasonable selection of trade-off parameters of the loss function. The effectiveness of the TECGC model is evaluated using the PHM2010 dataset. The results demonstrate its capability to accurately predict tool RUL and tool wear stages.

6.
Sensors (Basel) ; 24(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000911

RESUMO

In the context of Industry 4.0, bearings, as critical components of machinery, play a vital role in ensuring operational reliability. The detection of their health status is thus of paramount importance. Existing predictive models often focus on point predictions of bearing lifespan, lacking the ability to quantify uncertainty and having room for improvement in accuracy. To accurately predict the long-term remaining useful life (RUL) of bearings, a novel time convolutional network model with an attention mechanism-based soft thresholding decision residual structure for quantifying the lifespan interval of bearings, namely TCN-AM-GPR, is proposed. Firstly, a spatio-temporal graph is constructed from the bearing sensor signals as the input to the prediction model. Secondly, a residual structure based on a soft threshold decision with a self-attention mechanism is established to further suppress noise in the collected bearing lifespan signals. Thirdly, the extracted features pass through an interval quantization layer to obtain the RUL and its confidence interval of the bearings. The proposed methodology has been verified using the PHM2012 bearing dataset, and the comparison of simulation experiment results shows that TCN-AM-GPR achieved the best point prediction evaluation index, with a 2.17% improvement in R2 compared to the second-best performance from TCN-GPR. At the same time, it also has the best interval prediction comprehensive evaluation index, with a relative decrease of 16.73% in MWP compared to the second-best performance from TCN-GPR. The research results indicate that TCN-AM-GPR can ensure the accuracy of point estimates, while having superior advantages and practical significance in describing prediction uncertainty.

7.
Sensors (Basel) ; 24(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38339540

RESUMO

The accurate estimation of the remaining useful life (RUL) for aircraft engines is essential for ensuring safety and uninterrupted operations in the aviation industry. Numerous investigations have leveraged the success of the attention-based Transformer architecture in sequence modeling tasks, particularly in its application to RUL prediction. These studies primarily focus on utilizing onboard sensor readings as input predictors. While various Transformer-based approaches have demonstrated improvement in RUL predictions, their exclusive focus on temporal attention within multivariate time series sensor readings, without considering sensor-wise attention, raises concerns about potential inaccuracies in RUL predictions. To address this concern, our paper proposes a novel solution in the form of a two-stage attention-based hierarchical Transformer (STAR) framework. This approach incorporates a two-stage attention mechanism, systematically addressing both temporal and sensor-wise attentions. Furthermore, we enhance the STAR RUL prediction framework by integrating hierarchical encoder-decoder structures to capture valuable information across different time scales. By conducting extensive numerical experiments with the CMAPSS datasets, we demonstrate that our proposed STAR framework significantly outperforms the current state-of-the-art models for RUL prediction.

8.
Sensors (Basel) ; 24(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38793847

RESUMO

Ensuring precise prediction of the remaining useful life (RUL) for bearings in rolling machinery is crucial for preventing sudden machine failures and optimizing equipment maintenance strategies. Since the significant interference encountered in real industrial environments and the high complexity of the machining process, accurate and robust RUL prediction of rolling bearings is of tremendous research importance. Hence, a novel RUL prediction model called CNN-VAE-MBiLSTM is proposed in this paper by integrating advantages of convolutional neural network (CNN), variational autoencoder (VAE), and multiple bi-directional long short-term memory (MBiLSTM). The proposed approach includes a CNN-VAE model and a MBiLSTM model. The CNN-VAE model performs well for automatically extracting low-dimensional features from time-frequency spectrum of multi-axis signals, which simplifies the construction of features and minimizes the subjective bias of designers. Based on these features, the MBiLSTM model achieves a commendable performance in the prediction of RUL for bearings, which independently captures sequential characteristics of features in each axis and further obtains differences among multi-axis features. The performance of the proposed approach is validated through an industrial case, and the result indicates that it exhibits a higher accuracy and a better anti-noise capacity in RUL predictions than comparable methods.

9.
Sensors (Basel) ; 24(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38894170

RESUMO

We present a novel decision-making framework for accelerated degradation tests and predictive maintenance that exploits prior knowledge and experimental data on the system's state. As a framework for sequential decision making in these areas, dynamic programming and reinforcement learning are considered, along with data-driven degradation learning when necessary. Furthermore, we illustrate both stochastic and machine learning degradation models, which are integrated in the framework, using data-driven methods. These methods are presented as a valuable tool for designing life-testing experiments and for maintaining lithium-ion batteries.

10.
Sensors (Basel) ; 24(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38475022

RESUMO

The critical challenge of estimating the Remaining Useful Life (RUL) of MoSi2 heating elements utilized in pusher kiln processes is to enhance operational efficiency and minimize downtime in industrial applications. MoSi2 heating elements are integral components in high-temperature environments, playing a pivotal role in achieving optimal thermal performance. However, prolonged exposure to extreme conditions leads to degradation, necessitating precise RUL predictions for proactive maintenance strategies. Since insufficient failure experience deals with Predictive Maintenance (PdM) in real-life scenarios, a Generative Adversarial Network (GAN) generates specific training data as failure experiences. The Remaining Useful Life (RUL) is the duration of the equipment's operation before repair or replacement, often measured in days, miles, or cycles. Machine learning models are trained using historical data encompassing various operational scenarios and degradation patterns. The RUL prediction model is determined through training, hyperparameter tuning, and comparisons based on the machine-learning model, such as Long Short-Term Memory (LSTM) or Support Vector Regression (SVR). As a result, SVR reflects the actual resistance variation, achieving the R-Square (R2) of 0.634, better than LSTM. From a safety perspective, SVR offers high prediction accuracy and sufficient time to schedule maintenance plans.

11.
Sensors (Basel) ; 24(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38794070

RESUMO

The production of multivariate time-series data facilitates the continuous monitoring of production assets. The modelling approach of multivariate time series can reveal the ways in which parameters evolve as well as the influences amongst themselves. These data can be used in tandem with artificial intelligence methods to create insight on the condition of production equipment, hence potentially increasing the sustainability of existing manufacturing and production systems, by optimizing resource utilization, waste, and production downtime. In this context, a predictive maintenance method is proposed based on the combination of LSTM-Autoencoders and a Transformer encoder in order to enable the forecasting of asset failures through spatial and temporal time series. These neural networks are implemented into a software prototype. The dataset used for training and testing the models is derived from a metal processing industry case study. Ultimately, the goal is to train a remaining useful life (RUL) estimation model.

12.
Sensors (Basel) ; 24(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732947

RESUMO

The remaining useful life (RUL) prediction of RF circuits is an important tool for circuit reliability. Data-driven-based approaches do not require knowledge of the failure mechanism and reduce the dependence on knowledge of complex circuits, and thus can effectively realize RUL prediction. This manuscript proposes a novel RUL prediction method based on a gated recurrent unit-convolutional neural network (GRU-CNN). Firstly, the data are normalized to improve the efficiency of the algorithm; secondly, the degradation of the circuit is evaluated using the hybrid health score based on the Euclidean and Manhattan distances; then, the life cycle of the RF circuits is segmented based on the hybrid health scores; and finally, an RUL prediction is carried out for the circuits at each stage using the GRU-CNN model. The results show that the RMSE of the GRU-CNN model in the normal operation stage is only 3/5 of that of the GRU and CNN models, while the prediction uncertainty is minimized.

13.
Sensors (Basel) ; 24(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38257466

RESUMO

The problem of remaining useful life estimation (RULE) of hollow worn railway vehicle wheels in terms of remaining mileage via wheel tread depth estimation using on-board vibration signals from a single accelerometer on the bogie frame is presently investigated. This is achieved based on the introduction of a statistical time series method that employs: (i) advanced data-driven stochastic Functionally Pooled models for the modeling of the vehicle dynamics under different wheel tread depths in a range of interest until a critical limit, as well as tread depth estimation through a proper optimization procedure, and (ii) a wheel tread depth evolution function with respect to the vehicle running mileage that interconnects the estimated hollow wear with the remaining useful mileage. The method's RULE performance is investigated via hundreds of Simpack-based Monte Carlo simulations with an Attiko Metro S.A. vehicle and many hollow worn wheels scenarios which are not used for the method's training. The obtained results indicate the accurate estimation of the wheels tread depth with a mean absolute error of ∼0.07 mm that leads to a corresponding small error of ∼3% with respect to the wheels remaining useful mileage. In addition, the comparison with a recently introduced Multiple Model (MM)-based multi-health state classification method for RULE, demonstrates the better performance of the postulated method that achieves 81.17% True Positive Rate (TPR) which is significantly higher than the 45.44% of the MM method.

14.
Sensors (Basel) ; 23(12)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37420825

RESUMO

The milling machine serves an important role in manufacturing because of its versatility in machining. The cutting tool is a critical component of machining because it is responsible for machining accuracy and surface finishing, impacting industrial productivity. Monitoring the cutting tool's life is essential to avoid machining downtime caused due to tool wear. To prevent the unplanned downtime of the machine and to utilize the maximum life of the cutting tool, the accurate prediction of the remaining useful life (RUL) cutting tool is essential. Different artificial intelligence (AI) techniques estimate the RUL of cutting tools in milling operations with improved prediction accuracy. The IEEE NUAA Ideahouse dataset has been used in this paper for the RUL estimation of the milling cutter. The accuracy of the prediction is based on the quality of feature engineering performed on the unprocessed data. Feature extraction is a crucial phase in RUL prediction. In this work, the authors considers the time-frequency domain (TFD) features such as short-time Fourier-transform (STFT) and different wavelet transforms (WT) along with deep learning (DL) models such as long short-term memory (LSTM), different variants of LSTN, convolutional neural network (CNN), and hybrid models that are a combination of CCN with LSTM variants for RUL estimation. The TFD feature extraction with LSTM variants and hybrid models performs well for the milling cutting tool RUL estimation.


Assuntos
Aprendizado Profundo , Comportamento de Utilização de Ferramentas , Inteligência Artificial , Comércio , Engenharia
15.
Sensors (Basel) ; 23(12)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37420841

RESUMO

Informed machine learning (IML), which strengthens machine learning (ML) models by incorporating external knowledge, can get around issues like prediction outputs that do not follow natural laws and models, hitting optimization limits. It is therefore of significant importance to investigate how domain knowledge of equipment degradation or failure can be incorporated into machine learning models to achieve more accurate and more interpretable predictions of the remaining useful life (RUL) of equipment. Based on the informed machine learning process, the model proposed in this paper is divided into the following three steps: (1) determine the sources of the two types of knowledge based on the device domain knowledge, (2) express the two forms of knowledge formally in Piecewise and Weibull, respectively, and (3) select different ways of integrating them into the machine learning pipeline based on the results of the formal expression of the two types of knowledge in the previous step. The experimental results show that the model has a simpler and more general structure than existing machine learning models and that it has higher accuracy and more stable performance in most datasets, particularly those with complex operational conditions, which demonstrates the effectiveness of the method in this paper on the C-MAPSS dataset and assists scholars in properly using domain knowledge to deal with the problem of insufficient training data.

16.
Sensors (Basel) ; 23(19)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37837084

RESUMO

In the existing bearing remaining useful life (RUL)-prediction model based on deep learning, the advantages and disadvantages of the extracted features are evaluated by the prediction accuracy; thus, the analytical ability of the features is poor. At the same time, the change of working conditions has a great influence on prediction accuracy. To overcome these limitations, a prediction method of bearing RUL based on feature evaluation and deep transfer learning is proposed. The proposed model can solve the above problems: (1) a method of feature evaluation and selection for bearing life prediction based on trend consistency index was designed. (2) In this study, a domain adversarial transfer model based on feature condition mapping is proposed to overcome the second limitation. Experimental results show that this method is superior to the existing bearing evaluation and prediction methods.

17.
Sensors (Basel) ; 23(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36904598

RESUMO

The internal gear pump is simple in structure, small in size and light in weight. It is an important basic component that supports the development of hydraulic system with low noise. However, its working environment is harsh and complex, and there are hidden risks related to reliability and exposure of acoustic characteristics over the long term. In order to meet the requirements of reliability and low noise, it is very necessary to make models with strong theoretical value and practical significant to accurately monitor health and predict the remaininglife of the internal gear pump. This paper proposed a multi-channel internal gear pump health status management model based on Robust-ResNet. Robust-ResNet is an optimized ResNet model based on a step factor h in the Eulerian approach to enhance the robustness of the ResNet model. This model was a two-stage deep learning model that classified the current health status of internal gear pumps, and also predicted the remaining useful life (RUL) of internal gear pumps. The model was tested in an internal gear pump dataset collected by the authors. The model was also proven to be useful in the rolling bearing data from Case Western Reserve University (CWRU). The accuracy results of health status classification model were 99.96% and 99.94% in the two datasets. The accuracy of RUL prediction stage in the self-collected dataset was 99.53%. The results demonstrated that the proposed model achieved the best performance compared to other deep learning models and previous studies. The proposed method was also proven to have high inference speed; it could also achieve real-time monitoring of gear health management. This paper provides an extremely effective deep learning model for internal gear pump health management with great application value.

18.
Sensors (Basel) ; 23(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37447779

RESUMO

This study proposes a remaining useful life (RUL) prediction method using limited degradation data with an unknown degradation model for hydraulic pumps with long service lives and no failure data in turbine control systems. The volumetric efficiency is calculated based on real-time monitoring signal data, and it is used as the degradation indicator. The optimal degradation curve is established using the degradation trajectory model, and the optimal probability distribution model is selected via the K-S test. The above process was repeated to optimize the degradation model and update parameters in different performance degradation stages of the hydraulic pump, providing quantification of the prediction uncertainty and enabling accurate online prediction of the hydraulic pump's RUL. Finally, an RUL test bench for hydraulic pumps is built for verification. The results show that the proposed method is convenient, efficient, and has low model complexity. The method enables online accurate prediction of the RUL of hydraulic pumps using only limited degradation data, with a prediction accuracy of over 85%, which meets practical application requirements.


Assuntos
Probabilidade , Incerteza
19.
Sensors (Basel) ; 23(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38139595

RESUMO

Aiming at the problem of the remaining useful life prediction accuracy being too low due to the complex operating conditions of the aviation turbofan engine data set and the original noise of the sensor, a residual useful life prediction method based on spatial-temporal similarity calculation is proposed. The first stage is adaptive sequence matching, which uses the constructed spatial-temporal trajectory sequence to match the sequence to find the optimal matching sample and calculate the similarity between the two spatial-temporal trajectory sequences. In the second stage, the weights of each part are assigned by the two weight allocation algorithms of the weight training module, and then the final similarity is calculated by the similarity calculation formula of the life prediction module, and the final predicted remaining useful life is determined according to the size of the similarity and the corresponding remaining life. Compared with a single model, the proposed method emphasizes the consistency of the test set and the training set, increases the similarity between samples by sequence matching with other spatial-temporal trajectories, and further calculates the final similarity and predicts the remaining use through the weight allocation module and the life prediction module. The experimental results show that compared with other methods, the root mean square error (RMSE) index and the remaining useful life health score (Score) index are reduced by 12.6% and 14.8%, respectively, on the FD004 dataset, and the RMSE index is similar to that in other datasets; the Score index is reduced by about 10%, which improves the prediction accuracy of the remaining useful life and can provide favorable support for the operation and maintenance decision of turbofan engines.

20.
Sensors (Basel) ; 24(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38203026

RESUMO

Recently, the estimation of remaining useful life (RUL) for two-phase nonlinear degrading devices has shown rising momentum for ensuring their safe and reliable operation. The degradation processes of such systems are influenced by the temporal variability, unit-to-unit variability, and measurement variability jointly. However, current studies only consider these three sources of variability partially. To this end, this paper presents a two-phase nonlinear degradation model with three-source variability based on the nonlinear Wiener process. Then, the approximate analytical solution of the RUL with three-source variability is derived under the concept of the first passage time (FPT). For better implementation, the offline model parameter estimation is conducted by the maximum likelihood estimation (MLE), and the Bayesian rule in conjunction with the Kalman filtering (KF) algorithm are utilized for the online model updating. Finally, the effectiveness of the proposed approach is validated through a numerical example and a practical case study of the capacitor degradation data. The results show that it is necessary to incorporate three-source variability simultaneously into the RUL prediction of the two-phase nonlinear degrading systems.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa