Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.076
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(9): e2317435121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377211

RESUMO

Creating efficient catalysts for simultaneous H2O2 generation and pollutant degradation is vital. Piezocatalytic H2O2 synthesis offers a promising alternative to traditional methods but faces challenges like sacrificial reagents, harsh conditions, and low activity. In this study, we introduce a cobalt-loaded ZnO (CZO) piezocatalyst that efficiently generates H2O2 from H2O and O2 under ultrasonic (US) treatment in ambient aqueous conditions. The catalyst demonstrates exceptional performance with ~50.9% TOC removal of phenol and in situ generation of 1.3 mM H2O2, significantly outperforming pure ZnO. Notably, the CZO piezocatalyst maintains its H2O2 generation capability even after multiple cycles, showing continuous improvement (from 1.3 mM to 1.8 mM). This is attributed to the piezoelectric electrons promoting the generation of dynamic defects under US conditions, which in turn promotes the adsorption and activation of oxygen, thereby facilitating efficient H2O2 production, as confirmed by EPR spectrometry, XPS analysis, and DFT calculations. Moreover, the CZO piezocatalysts maintain outstanding performance in pollutant degradation and H2O2 production even after long periods of inactivity, and the deactivated catalyst due to metal ion dissolution could be rejuvenated by pH adjustment, offering a sustainable solution for wastewater purification.

2.
Proc Natl Acad Sci U S A ; 120(50): e2311564120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38048468

RESUMO

Soils are common sources of metal(loid) contaminant exposure globally. Lead (Pb) and arsenic (As) are of paramount concern due to detrimental neurological and carcinogenic health effects, respectively. Pb and/or As contaminated soils require remediation, typically leading to excavation, a costly and environmentally damaging practice of removing soil to a central location (e.g., hazardous landfill) that may not be a viable option in low-income countries. Chemical remediation techniques may allow for in situ conversion of soil contaminants to phases that are not easily mobilized upon ingestion; however, effective chemical remediation options are limited. Here, we have successfully tested a soil remediation technology using potted soils that relies on converting soil Pb and As into jarosite-group minerals, such as plumbojarosite (PLJ) and beudantite, possessing exceptionally low bioaccessibility [i.e., solubility at gastric pH conditions (pH 1.5 to 3)]. Across all experiments conducted, all new treatment methods successfully promoted PLJ and/or beudantite conversion, resulting in a proportional decrease in Pb and As bioaccessibility. Increasing temperature resulted in increased conversion to jarosite-group minerals, but addition of potassium (K) jarosite was most critical to Pb and As bioaccessibility decreases. Our methods of K-jarosite treatment yielded <10% Pb and As bioaccessibility compared to unamended soil values of approximately 70% and 60%, respectively. The proposed treatment is a rare dual remediation option that effectively treats soil Pb and As such that potential exposure is considerably reduced. Research presented here lays the foundation for ongoing field application.


Assuntos
Arsênio , Poluentes do Solo , Arsênio/análise , Potássio , Solo , Chumbo , Poluentes do Solo/análise , Minerais , Disponibilidade Biológica
3.
Proc Natl Acad Sci U S A ; 120(29): e2305933120, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37428912

RESUMO

Single-atom catalysts (SACs) are a promising area in environmental catalysis. We report on a bimetallic Co-Mo SAC that shows excellent performance in activating peroxymonosulfate (PMS) for sustainable degradation of organic pollutants with high ionization potential (IP > 8.5 eV). Density Functional Theory (DFT) calculations and experimental tests demonstrate that the Mo sites in Mo-Co SACs play a critical role in conducting electrons from organic pollutants to Co sites, leading to a 19.4-fold increase in the degradation rate of phenol compared to the CoCl2-PMS group. The bimetallic SACs exhibit excellent catalytic performance even under extreme conditions and show long-term activation in 10-d experiments, efficiently degrading 600 mg/L of phenol. Moreover, the catalyst has negligible toxicity toward MDA-MB-231, Hela, and MCF-7 cells, making it an environmentally friendly option for sustainable water treatment. Our findings have important implications for the design of efficient SACs for environmental remediation and other applications in biology and medicine.

4.
Proc Natl Acad Sci U S A ; 120(7): e2218813120, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36745798

RESUMO

Efficient H2 harvesting from wastewater instead of pure water can minimize fresh water consumption, which is expected to solve the problem of water shortage in H2 production process and contribute to carbon neutrality in the environmental remediation, but the inevitable electron depletion caused by electron-consuming pollutants will result in an exhausted H2 evolution reaction (HER) performance. In this paper, by coupling piezocatalysis and advanced oxidation processes (AOPs) by a MoS2/Fe0/peroxymonosulfate (PMS) ternary system, extensive types of wastewater achieved considerable H2 generation, which exceeded the yield in pure water with synchronous advanced degradation of organic pollutants. In addition, profiting from the crucial bridging role of PMS, the H2 yield in nitrobenzene wastewater after the introduction of PMS-based AOPs increased 3.37-fold from 267.7 µmol·g-1·h-1 to 901.0 µmol·g-1·h-1 because the presence of PMS both thermodynamically benefited MoS2 piezocatalytic H2 evolution and eliminated the electron depletion caused by organic pollutants. By this way, the original repressed H2 evolution performance in substrate of wastewater not only was regained but even showed a significant enhancement than that in pure water (505.7 µmol·g-1·h-1). Additionally, the cyclonic piezoelectric reactor was preliminarily designed for future industrialization. This strategy provided a valuable path for the recycling of actual wastewater by fuel production and synchronous advanced treatment.

5.
BMC Plant Biol ; 24(1): 192, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491471

RESUMO

Cadmium (Cd), being a heavy metal, tends to accumulate in soils primarily through industrial activities, agricultural practices, and atmospheric deposition. Maize, being a staple crop for many regions, is particularly vulnerable to Cd contamination, leading to compromised growth, reduced yields, and potential health risks for consumers. Biochar (BC), a carbon-rich material derived from the pyrolysis of organic matter has been shown to improve soil structure, nutrient retention and microbial activity. The choice of biochar as an ameliorative agent stems from its well-documented capacity to enhance soil quality and mitigate heavy metal stress. The study aims to contribute to the understanding of the efficacy of biochar in combination with GA3, a plant growth regulator known for its role in promoting various physiological processes, in mitigating the adverse effects of Cd stress. The detailed investigation into morpho-physiological attributes and biochemical responses under controlled laboratory conditions provides valuable insights into the potential benefits of these interventions. The experimental design consisted of three replicates in a complete randomized design (CRD), wherein soil, each containing 10 kg was subjected to varying concentrations of cadmium (0, 8 and 16 mg/kg) and biochar (0.75% w/w base). Twelve different treatment combinations were applied, involving the cultivation of 36 maize plants in soil contaminated with Cd (T1: Control (No Cd stress; T2: Mild Cd stress (8 mg Cd/kg soil); T3: Severe Cd stress (16 mg Cd/kg soil); T4: 10 ppm GA3 (No Cd stress); T5: 10 ppm GA3 + Mild Cd stress; T6: 10 ppm GA3 + Severe Cd stress; T7: 0.75% Biochar (No Cd stress); T8: 0.75% Biochar + Mild Cd stress; T9: 0.75% Biochar + Severe Cd stress; T10: 10 ppm GA3 + 0.75% Biochar (No Cd stress); T11: 10 ppm GA3 + 0.75% Biochar + Mild Cd stress; T12: 10 ppm GA3 + 0.75% Biochar + Severe Cd stress). The combined application of GA3 and BC significantly enhanced multiple parameters including germination (27.83%), root length (59.53%), shoot length (20.49%), leaf protein (121.53%), root protein (99.93%), shoot protein (33.65%), leaf phenolics (47.90%), root phenolics (25.82%), shoot phenolics (25.85%), leaf chlorophyll a (57.03%), leaf chlorophyll b (23.19%), total chlorophyll (43.77%), leaf malondialdehyde (125.07%), root malondialdehyde (78.03%) and shoot malondialdehyde (131.16%) across various Cd levels compared to the control group. The synergistic effect of GA3 and BC manifested in optimal leaf protein and malondialdehyde levels indicating induced tolerance and mitigation of Cd detrimental impact on plant growth. The enriched soils showed resistance to heavy metal toxicity emphasizing the potential of BC and GA3 as viable strategy for enhancing maize growth. The application of biochar and gibberellic acid emerges as an effective means to mitigate cadmium-induced stress in maize, presenting a promising avenue for sustainable agricultural practices.


Assuntos
Cádmio , Giberelinas , Poluentes do Solo , Cádmio/metabolismo , Zea mays/metabolismo , Clorofila A/metabolismo , Poluentes do Solo/metabolismo , Carvão Vegetal/farmacologia , Carvão Vegetal/metabolismo , Solo/química , Malondialdeído/metabolismo
6.
BMC Plant Biol ; 24(1): 357, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38698319

RESUMO

BACKGROUND: Among different adsorbents, natural and inorganic compounds such as diatomite are important and advantageous in terms of high efficiency and cost-effectiveness, and function in stabilizing heavy metals in the environment. Calendula officinalis, a plant known as a high accumulator of heavy metals, was cultivated in soil treated with varying concentrations of modified diatomite to demonstrate the efficiency of modified diatomite in stabilizating of heavy metals in soils, RESULTS: The modification of diatomite aimed to enhance Calendula officinalis adsorptive properties, particularly towards heavy metals such as lead (Pb), Zinc (Zn), Chromium (Cr), Nickle (Ni), and Copper (Cu), common contaminants in industrial soils. The experimental design included both control and treated soil samples, with assessments at regular intervals. Modified diatomite significantly decreased the bioaccumulation of heavy metals in contaminated soils except Zn, evidenced by decreased DTPA extractable heavy metals in soil and also heavy metal concentrations in plant tissues. Using 10% modified diatomite decreased 91% Pb and Cu, 78% Cr, and 79% Ni concentration of plants compared to the control treatment. The highest concentration of Zn in plant tissue was observed in 2.5% modified diatomite treatment. Remarkably, the application of modified diatomite also appeared to improve the nutrient profile of the soil, leading to enhanced uptake of key nutrients like phosphorus (P) 1.18%, and potassium (K) 79.6% in shoots and 82.3% in roots in Calendula officinalis. Consequently, treated plants exhibited improved growth characteristics, including shoots and roots height of 16.98% and 12.8% respectively, and shoots fresh and dry weight of 48.5% and 50.2% respectively., compared to those in untreated, contaminated soil. CONCLUSION: The findings suggest promising implications for using such amendments in ecological restoration and sustainable agriculture, particularly in areas impacted by industrial pollution.


Assuntos
Calendula , Terra de Diatomáceas , Metais Pesados , Poluentes do Solo , Metais Pesados/metabolismo , Poluentes do Solo/metabolismo , Terra de Diatomáceas/metabolismo , Calendula/metabolismo , Calendula/química , Solo/química , Biodegradação Ambiental , Recuperação e Remediação Ambiental/métodos
7.
BMC Plant Biol ; 24(1): 221, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539080

RESUMO

Most vegetable crops are severely affected by the uptake of heavy metals from the soil. Heavy metals in vegetable bodies generate reactive oxygen species (ROS) that unbalance the antioxidant defense system. This study was initiated to determine the physiological and biochemical characteristics of spinach plants grown on soil contaminated with heavy metals and responding to Bacillus cereus and Bacillus aerius were isolated from soil contaminated with heavy metals. Heavy metal contamination led to a significant reduction in seed germination, seedling biomass, protein, and total nitrogen content of spinach plants grown in contaminated soils compared to control soils. In contrast, a significant increase in the content of metallothioneins and antioxidant enzymes was observed. Plants inoculated with B. cereus and B. aerius significantly reduced the oxidative stress induced by heavy metals by improving seed germination (%), seedling growth, nitrogen, and protein content. The content of metallothioneins and the activities of antioxidant enzymes were reduced in spinach plants grown from seeds inoculated with bacterial strains. In addition, plants inoculated with, B. cereus and B. aerius showed greater stomata opening than plants grown on soil contaminated with heavy metals, whose stomata were almost closed. These results suggested that both bacterial strains enhanced plant growth by reducing oxidative stress caused by metals.


Assuntos
Loratadina/análogos & derivados , Metais Pesados , Poluentes do Solo , Spinacia oleracea , Antioxidantes/metabolismo , Metais Pesados/toxicidade , Estresse Oxidativo , Bactérias/metabolismo , Solo/química , Plantas/metabolismo , Nitrogênio/metabolismo , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo
8.
Small ; 20(26): e2306943, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38239086

RESUMO

The growing consumption of drugs of abuse together with the inefficiency of the current wastewater treatment plants toward their presence has resulted in an emergent class of pollutants. Thus, the development of alternative approaches to remediate this environmental threat is urgently needed. Microrobots, combining autonomous motion with great tunability for the development of specific tasks, have turned into promising candidates to take on the challenge. Here, hybrid urchin-like hematite (α-Fe2O3) microparticles carrying magnetite (Fe3O4) nanoparticles and surface functionalization with organic ß-cyclodextrin (CD) molecules are prepared with the aim of on-the-fly encapsulation of illicit drugs into the linked CD cavities of moving microrobots. The resulting mag-CD microrobots are tested against methamphetamine (MA), proving their ability for the removal of this psychoactive substance. A dramatically enhanced capture of MA from water with active magnetically powered microrobots when compared with static passive CD-modified particles is demonstrated. This work shows the advantages of enhanced mass transfer provided by the externally controlled magnetic navigation in microrobots that together with the versatility of their design is an efficient strategy to clean polluted waters.


Assuntos
Ciclodextrinas , Metanfetamina , Poluentes Químicos da Água , Metanfetamina/química , Ciclodextrinas/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Magnetismo , Robótica , Purificação da Água/métodos , Compostos Férricos/química
9.
Small ; 20(10): e2305467, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37875633

RESUMO

Clean water is one of the most important resources of the planet but human-made contamination with diverse pollutants increases continuously. Microplastics (<5 mm diameter) which can have severe impacts on the environment, are present worldwide. Degradation processes lead to nanoplastics (<1 µm), which are potentially even more dangerous due to their increased bioavailability. State-of-the-art wastewater treatment plants show a deficit in effectively eliminating micro- and nanoplastics (MNP) from water, particularly in the case of nanoplastics. In this work, the magnetic removal of three different MNP types across three orders of magnitude in size (100 nm-100 µm) is investigated systematically. Superparamagnetic iron oxide nanoparticles (SPIONs) tend to attract oppositely charged MNPs and form aggregates that can be easily collected by a magnet. It shows that especially the smallest fractions (100-300 nm) can be separated in ordinary high numbers (1013  mg-1 SPION) while the highest mass is removed for MNP between 2.5 and 5 µm. The universal trend for all three types of MNP can be fitted with a derived model, which can make predictions for optimizing SPIONs for specific size ranges in the future.

10.
Chembiochem ; : e202400137, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591336

RESUMO

The biocatalyzed oxidative detoxification of the V-series simulant PhX, by mean of the microperoxidase AcMP11, affords the corresponding phosphonothioate as the prominent product instead of the classical P-S and P-O bond cleavage. While PhX is structurally very close to the live agent VX (the methyl group is replaced by a phenyl), assessment with other surrogates missing the nucleophilic amino function displayed more resistance under the same conditions with no phosphonothioate observed. These encouraging results highlight 1) the efficacy of AcMP11 microperoxidase to efficiently detoxify V-series organophosphorus nerve agents (OPNA), and 2) the necessity to use representative alkyl or aryl phosphonothioates simulants such as PhX bearing the appropriate side chain as well as the P-O and P-S cleavable bond to mimic accurately the V-series OPNA to prevent false positive or false negative results.

11.
Appl Environ Microbiol ; 90(4): e0015724, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38477530

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are highly fluorinated synthetic organic compounds that have been used extensively in various industries owing to their unique properties. The PFAS family encompasses diverse classes, with only a fraction being commercially relevant. These substances are found in the environment, including in water sources, soil, and wildlife, leading to human exposure and fueling concerns about potential human health impacts. Although PFAS degradation is challenging, biodegradation offers a promising, eco-friendly solution. Biodegradation has been effective for a variety of organic contaminants but is yet to be successful for PFAS due to a paucity of identified microbial species capable of transforming these compounds. Recent studies have investigated PFAS biotransformation and fluoride release; however, the number of specific microorganisms and enzymes with demonstrable activity with PFAS remains limited. This review discusses enzymes that could be used in PFAS metabolism, including haloacid dehalogenases, reductive dehalogenases, cytochromes P450, alkane and butane monooxygenases, peroxidases, laccases, desulfonases, and the mechanisms of microbial resistance to intracellular fluoride. Finally, we emphasize the potential of enzyme and microbial engineering to advance PFAS degradation strategies and provide insights for future research in this field.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Humanos , Animais , Fluoretos , Alcanos , Animais Selvagens , Biodegradação Ambiental
12.
Neuropsychol Rev ; 34(1): 232-249, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36853526

RESUMO

In recent years, cognitive control training (CCT) has gained momentum as an intervention to remediate cognitive impairments and decrease depressive symptoms. One promising operationalization to train cognitive control is the adaptive Paced Auditory Serial Addition Task (aPASAT). In this systematic review and meta-analysis of aPASAT training, the efficacy of the intervention and potential moderators were examined. The PsycINFO, MEDLINE, Embase, Web of Science and Cochrane Library electronic databases were searched for studies examining aPASAT training for depressive symptomatology or rumination. Nineteen studies (n = 1255) were included, comprising of depressed patients, remitted depressed patients, at-risk, and healthy participants. We found small significant effects directly after training for both depressive symptomatology and rumination, with similar effect sizes at follow-up. Subgroup analyses suggest a significantly higher mean effect of aPASAT training in non-healthy populations for rumination immediately following training, but not for depressive symptomatology. The amount of training sessions did not moderate effects of CCT. aPASAT has a small but significant effect on depressive symptoms, with direct effects immediately after training, as well as sustained long-term effects. It is currently unclear how many sessions are required for sustained effects due to heterogeneity in training dosage and absence of sufficient trials. Our results suggest that aPASAT training may be most effective for at-risk, remitted- and clinically depressed populations. The effect sizes resulting from this meta-analysis could be used to adequately power future research, which could investigate a dose-response relationship and examine potential treatment gains when combining CCT with other antidepressant interventions.


Assuntos
Disfunção Cognitiva , Transtorno Depressivo Maior , Humanos , Depressão/terapia , Depressão/psicologia , Antidepressivos/uso terapêutico , Projetos de Pesquisa , Transtorno Depressivo Maior/psicologia
13.
Crit Rev Biotechnol ; 44(3): 429-447, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-36851851

RESUMO

Rapidly increasing heavy metal waste has adversely affected the environment and the Earth's health. The lack of appropriate remediation technologies has worsened the issue globally, especially in developing countries. Heavy-metals contaminants have severely impacted the environment and led to devastating conditions owing to their abundance and reactivity. As they are nondegradable, the potential risk increases even at a low concentration. However, heavy-metal remediation has increased with the up-gradation of technologies and integration of new approaches. Also, of all the treatment methodologies, microbial-assisted multifaceted approach for ameliorating heavy metals is a promising strategy for propagating the idea of a green and sustainable environment with minimal waste aggregation. Microbial remediation combined with different biotechniques could aid in unraveling new methods for eradicating heavy metals. Thus, the present review focuses on various microbial remediation approaches and their affecting factors, enabling recapitulation of the interplay between heavy-metals ions and microorganisms. Additionally, heavy-metals remediation mechanisms adapted by microorganisms, the role of genetically modified (GM) microorganisms, life cycle assessment (LCA), techno-economic assessment (TEA) limitations, and prospects of microbial-assisted amelioration of heavy-metals have been elaborated in the current review with focus toward "sustainable and greener future."


Assuntos
Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Poluentes do Solo/análise
14.
Chemistry ; : e202401637, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38837442

RESUMO

We propose silver oxide as a cost-effective and sustainable alternative to noble metals for the catalytic reduction of nitroaromatics. In the present investigation, we adopt a facile and green synthetic route for the synthesis of silver oxide nanostructures. The prepared nanostructures were found to crystallize in the cuprite phase and exhibit absorbance across the entire visible range of the electromagnetic spectrum. The catalytic potential of the silver oxide was evaluated by following the kinetics of nitrophenol reduction under ambient conditions and is observed to follow pseudo-first order kinetics with the apparent rate constant k a p p = 4 . 24 × 10 - 3 ${{k}_{app}=4.24\ \times {10}^{-3}}$ s-1 at minimum concentration of the catalyst. We attribute the observed catalytic activity to the freshly generated catalytic surface featuring a partially reduced form of silver oxide during reaction. The findings highlight the efficacy of silver oxide in mitigating the environmental pollution originating from the recalcitrant nitroarenes.

15.
Chemphyschem ; : e202400347, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861113

RESUMO

The pollution of water resources by pharmaceuticals and agents of personal care products (PPCPs) poses an increasingly pressing issue that has received considerable attention from scientists and government agencies alike. Hydrophobic zeolites can serve as selective adsorbents to remove these contaminants from aqueous solution. So far, the adsorption of PPCPs in zeolites has often been investigated in case studies focusing on a small number of contaminants and one or a few zeolites. We present a computational screening approach to investigate the interaction of 53 PPCPs with 14 all-silica zeolites, aiming at a more comprehensive understanding of factors that are beneficial for a strong host-guest interaction and thus an efficient adsorption. The systems are modelled on the classical force field level of theory, allowing for the efficient computational treatment of a large number of PPCP-zeolite combinations and evaluated in terms of the interaction energy between PPCP and zeolite framework. For selected PPCP-zeolite combinations additional Free Energy Perturbation simulations are employed to compute Free Energies of Transfer between the aqueous phase and the adsorbed state. These results can serve as a starting point for experimental studies of relevant PPCP-zeolite combination or more in-depth theoretical investigations.

16.
Microb Cell Fact ; 23(1): 64, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402158

RESUMO

Phosphate solubilizing fungi Penicillium oxalicum (POX) and Red yeast Rhodotorula mucilaginosa (Rho) have been applied in Pb remediation with the combination of fluorapatite (FAp), respectively. The secretion of oxalic acid by POX and the production of extracellular polymers (EPS) by Rho dominate the Pb remediation. In this study, the potential of Pb remediation by the fungal combined system (POX and Rho) with FAp was investigated. After six days of incubation, the combination of POX and Rho showed the highest Pb remove ratio (99.7%) and the lowest TCLP-Pb concentration (2.9 mg/L). The EPS combined with POX also enhanced Pb remediation, which has a 99.3% Pb removal ratio and 5.5 mg/L TCLP-Pb concentration. Meanwhile, Rho and EPS can also stimulate POX to secrete more oxalic acid, which reached 1510.1 and 1450.6 mg/L in six days, respectively. The secreted oxalic acid can promote FAp dissolution and the formation of lead oxalate and pyromorphite. Meanwhile, the EPS produced by Rho can combine with Pb to form EPS-Pb. In the combined system of POX + Rho and POX + EPS, all of the lead oxalate, pyromorphite, and EPS-Pb were observed. Our findings suggest that the combined application of POX and Rho with FAp is an effective approach for enhancing Pb remediation.


Assuntos
Apatitas , Produtos Biológicos , Minerais , Penicillium , Chumbo , Fosfatos , Ácido Oxálico
17.
AIDS Behav ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38954173

RESUMO

Nearly 40% of people with HIV (PWH) experience HIV-associated Neurocognitive Disorder (HAND). In this 3-group efficacy study, 216 PWH 40 + years with HAND or borderline HAND were randomized to either: (1) 10 h of SOP training (n = 70); (2) 20 h of SOP training (n = 73), or (3) 10 h of Internet navigation training (n = 73; contact control group). Participants were administered a measure of SOP [i.e., the Useful Field of View Test (UFOV®)] at baseline, at posttest immediately after training, and at year 1 and year 2 follow up. Intent-to-treat linear mixed-effect models with subject-specific intercept and slope were fitted to estimate between-group mean differences at the follow-up time-points. At the post-intervention time-point, small beneficial SOP training effects were observed for the 10-h group in UFOV® total (d = 0.28, p = 0.002). Effects were of larger magnitude for the 20-h group in these same outcomes [UFOV® total (d = 0.43, p < 0.001)]. These results indicated better benefit with more training. No intervention effect was observed at year 1. At year 2, beneficial effects of small magnitude were observed again in the 10-h group [UFOV® total (d = 0.22, p = 0.253)] with larger small-to-moderate magnitude in the 20-h group [UFOV® total (d = 0.32, p = 0.104)]. This study suggests that SOP training can improve a key indicator of this cognitive performance and that treatment gains are small-to-moderate over a two-year period. Prior literature suggests slower SOP is predictive of impairment in everyday functioning in older PWH; such an approach could potentially improve everyday functioning in PWH.


Cerca del 40% de las personas viviendo con VIH (PVV) experimentan Trastorno Neurocognitivo Asociado al VIH (HAND, por sus siglas en inglés). En este estudio de eficacia de 3 grupos, se aleatorizó a 216 PVV mayores de 40 años de edad con HAND o HAND límite a: (1) 10 horas de entrenamiento en velocidad de procesamiento (SOP, por sus siglas en inglés) (n = 70); (2) 20 horas de entrenamiento SOP (n = 73), o (3) 10 horas de entrenamiento en navegación por Internet (n = 73; grupo control de contacto). Se administró una medida de SOP a los participantes [la Prueba de Campo de Visión Útil (UFOV®)] al inicio, inmediatamente después del entrenamiento, y en el seguimiento de año 1 y año 2. Los datos se analizaron bajo el principio de intención de tratar, utilizando modelos lineales de efectos mixtos para estimar las diferencias promedio entre grupos en los puntos de seguimiento. En el punto de tiempo de post- entrenamiento, se observaron pequeños efectos beneficiosos del entrenamiento SOP para el grupo de 10 horas en el puntaje total de UFOV® (d = 0.28, p = 0.002). Para esta misma medida, los efectos fueron de mayor magnitud en el grupo de 20 horas [UFOV® total (d = 0.43, p < 0.001)]. Estos resultados indicaron un mayor beneficio con más entrenamiento. No se observó ningún efecto de intervención en el año 1. En el año 2, se observaron efectos beneficiosos de pequeña magnitud nuevamente en el grupo de 10 horas [UFOV® total (d = 0.22, p = 0.253)] y en el grupo de 20 horas [UFOV® total (d = 0.32, p = 0.104)] con una magnitud pequeña a moderada). Este estudio confirma que el entrenamiento SOP puede mejorar un indicador clave de este rendimiento cognitivo y que las ganancias del tratamiento son pequeñas a moderadas durante un período de dos años. La literatura previa sugiere que una SOP más lenta es predictiva de deterioro en el funcionamiento diario en PVV mayores; tal enfoque podría mejorar potencialmente el funcionamiento diario en PVV.

18.
Nanotechnology ; 35(27)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38502954

RESUMO

Developing sustainable and innovative approaches for the efficient reduction of nitrophenols is crucial for environmental remediation, for managing health concerns posed by their widespread presence as hazardous pollutants in industrial effluents and contaminated water. We report the use of 12.9 ± 1 nm (TEM data) sized gold carbon dot nanoconjugates (Au@CDs) for catalytic conversion of o, m, p-nitrophenols to aminophenols by sodium borohydride. A simple approach was followed to synthesize ultra-small and highly stable Au@CDs, using citric acid and PEG as reducing and stabilizing agents. X-ray diffraction analysis verified the formation of nano-crystalline nanoconjugates. These nanoconjugates showed a remarkable catalytic activity in the range of 0.22-0.33 s-1(varying with nanoconjugate concentration) which was much higher compared to conventional chemical methods of reduction. All the catalytic reaction experiments were performed at room temperature (27 ± 2 °C). Furthermore, an increase in rate constant was observed with increasing concentration of nanoconjugates. The catalytic activity of Au@CDs nanoconjugates was observed to be in order of m-nitrophenol > o-nitrophenol > p-nitrophenol with apparent rate constant (kaap) values of 0.068, 0.043 and 0.031, respectively. Comparative analysis with GNPs, CDs and Au@CDs nanoconjugates stated that the nanoconjugates had superior catalytic activity. The research can have significant implications in the development of new strategies for environmental remediation and biomedical applications.

19.
Environ Sci Technol ; 58(15): 6595-6604, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38573735

RESUMO

Meaningful interpretation of U isotope measurements relies on unraveling the impact of reduction mechanisms on the isotopic fractionation. Here, the isotope fractionation of hexavalent U [U(VI)] was investigated during its reductive mineralization by magnetite to intermediate pentavalent U [U(V)] and ultimately tetravalent U [U(IV)]. As the reaction proceeded, the remaining aqueous phase U [containing U(VI) and U(V)] systematically carried light isotopes, whereas in the bicarbonate-extracted solution [containing U(VI) and U(V)], the δ238U values varied, especially when C/C0 approached 0. This variation was interpreted as reflecting the variable relative contribution of unreduced U(VI) (δ238U < 0‰) and bicarbonate-extractable U(V) (δ238U > 0‰). The solid remaining after bicarbonate extraction included unextractable U(V) and U(IV), for which the δ238U values consistently followed the same trend that started at 0.3-0.5‰ and decreased to ∼0‰. The impact of PIPES buffer on isotopic fractionation was attributed to the variable abundance of U(V) in the aqueous phase. A few extremely heavy bicarbonate-extracted δ238U values were due to mass-dependent fractionation resulting from several hypothesized mechanisms. The results suggest the preferential accumulation of the heavy isotope in the reduced species and the significant influence of U(V) on the overall isotopic fractionation, providing insight into the U isotope fractionation behavior during its abiotic reduction process.


Assuntos
Óxido Ferroso-Férrico , Urânio , Bicarbonatos , Isótopos , Fracionamento Químico
20.
Environ Sci Technol ; 58(25): 11193-11202, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38859757

RESUMO

Per- and poly fluoroalkyl substances (PFASs) are often encountered with nonaqueous phase liquid (NAPL) in the groundwater at fire-fighting and military training sites. However, it is unclear how PFASs affect the dechlorination performance of sulfidized nanoscale zerovalent iron (S-nFe0), which is an emerging promising NAPL remediation agent. Here, S-nFe0 synthesized with controllable S speciation (FeS or FeS2) were characterized to assess their interactions with PFASs and their dechlorination performance for trichloroethylene NAPL (TCE-NAPL). Surface-adsorbed PFASs blocked materials' reactive sites and inhibited aqueous TCE dechlorination. In contrast, PFASs-adsorbed particles with improved hydrophobicity tended to enrich at the NAPL-water interface, and the reactive sites were re-exposed after the PFASs accumulation into the NAPL phase to accelerate dechlorination. This PFASs-induced phenomenon allowed the materials to present a higher reactivity (up to 1.8-fold) with a high electron efficiency (up to 99%) for TCE-NAPL dechlorination. Moreover, nFe0-FeS2 with a higher hydrophobicity was more readily enriched at the NAPL-water interface and more reactive and selective than nFe0-FeS, regardless of coexisting PFASs. These results unveil that a small amount of yet previously overlooked coexisting PFASs can favor selective reductions of TCE-NAPL by S-nFe0, highlighting the importance of materials hydrophobicity and transportation induced by S and PFASs for NAPL remediation.


Assuntos
Ferro , Ferro/química , Poluentes Químicos da Água/química , Halogenação , Água Subterrânea/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa