Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Integr Neurosci ; 23(5): 102, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38812391

RESUMO

BACKGROUND: Repetitive mild traumatic brain injury (rmTBI) often occurs in individuals engaged in contact sports, particularly boxing. This study aimed to elucidate the effects of rmTBI on phase-locking value (PLV)-based graph theory and functional network architecture in individuals with boxing-related injuries in five frequency bands by employing resting-state electroencephalography (EEG). METHODS: Twenty-fore professional boxers and 25 matched healthy controls were recruited to perform a resting-state task, and their noninvasive scalp EEG data were collected simultaneously. Based on the construction of PLV matrices for boxers and controls, phase synchronization and graph-theoretic characteristics were identified in each frequency band. The significance of the calculated functional brain networks between the two populations was analyzed using a network-based statistical (NBS) approach. RESULTS: Compared to controls, boxers exhibited an increasing trend in PLV synchronization and notable differences in the distribution of functional centers, especially in the gamma frequency band. Additionally, attenuated nodal network parameters and decreased small-world measures were observed in the theta, beta, and gamma bands, suggesting that the functional network efficiency and small-world characteristics were significantly weakened in boxers. NBS analysis revealed that boxers exhibited a significant increase in network connectivity strength compared to controls in the theta, beta, and gamma frequency bands. The functional connectivity of the significance subnetworks exhibited an asymmetric distribution between the bilateral hemispheres, indicating that the optimized organization of information integration and segregation for the resting-state networks was imbalanced and disarranged for boxers. CONCLUSIONS: This is the first study to investigate the underlying deficits in PLV-based graph-theoretic characteristics and NBS-based functional networks in patients with rmTBI from the perspective of whole-brain resting-state EEG. Joint analyses of distinctive graph-theoretic representations and asymmetrically hyperconnected subnetworks in specific frequency bands may serve as an effective method to assess the underlying deficiencies in resting-state network processing in patients with sports-related rmTBI.


Assuntos
Boxe , Concussão Encefálica , Eletroencefalografia , Rede Nervosa , Humanos , Masculino , Adulto , Adulto Jovem , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Concussão Encefálica/fisiopatologia , Boxe/fisiologia , Ondas Encefálicas/fisiologia , Feminino , Encéfalo/fisiopatologia
2.
BMC Med ; 21(1): 199, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37254196

RESUMO

BACKGROUND: Contact sports athletes and military personnel who suffered a repetitive mild traumatic brain injury (rmTBI) are at high risk of neurodegenerative diseases such as advanced dementia and chronic traumatic encephalopathy (CTE). However, due to the lack of specific biological indicators in clinical practice, the diagnosis and treatment of rmTBI are quite limited. METHODS: We used 2-methacryloyloxyethyl phosphorylcholine (MPC)-nanocapsules to deliver immunoglobulins (IgG), which can increase the delivery efficiency and specific target of IgG while reducing the effective therapeutic dose of the drug. RESULTS: Our results demonstrated that MPC-capsuled immunoglobulins (MPC-n (IgG)) significantly alleviated cognitive impairment, hippocampal atrophy, p-Tau deposition, and myelin injury in rmTBI mice compared with free IgG. Furthermore, MPC-n (IgG) can also effectively inhibit the activation of microglia and the release of inflammatory factors. CONCLUSIONS: In the present study, we put forward an efficient strategy for the treatment of rmTBI-related cognitive impairment and provide evidence for the administration of low-dose IgG.


Assuntos
Concussão Encefálica , Disfunção Cognitiva , Doenças Neurodegenerativas , Camundongos , Animais , Concussão Encefálica/complicações , Concussão Encefálica/tratamento farmacológico , Concussão Encefálica/psicologia , Modelos Animais de Doenças , Disfunção Cognitiva/tratamento farmacológico , Imunoglobulina G , Encéfalo
3.
Brain ; 145(6): 2049-2063, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34927674

RESUMO

The mechanisms underlying the complications of mild traumatic brain injury, including post-concussion syndrome, post-impact catastrophic death, and delayed neurodegeneration remain poorly understood. This limited pathophysiological understanding has hindered the development of diagnostic and prognostic biomarkers and has prevented the advancement of treatments for the sequelae of mild traumatic brain injury. We aimed to characterize the early electrophysiological and neurovascular alterations following repetitive mild traumatic brain injury and sought to identify new targets for the diagnosis and treatment of individuals at risk of severe post-impact complications. We combined behavioural, electrophysiological, molecular, and neuroimaging techniques in a rodent model of repetitive mild traumatic brain injury. In humans, we used dynamic contrast-enhanced MRI to quantify blood-brain barrier dysfunction after exposure to sport-related concussive mild traumatic brain injury. Rats could clearly be classified based on their susceptibility to neurological complications, including life-threatening outcomes, following repetitive injury. Susceptible animals showed greater neurological complications and had higher levels of blood-brain barrier dysfunction, transforming growth factor ß (TGFß) signalling, and neuroinflammation compared to resilient animals. Cortical spreading depolarizations were the most common electrophysiological events immediately following mild traumatic brain injury and were associated with longer recovery from impact. Triggering cortical spreading depolarizations in mild traumatic brain injured rats (but not in controls) induced blood-brain barrier dysfunction. Treatment with a selective TGFß receptor inhibitor prevented blood-brain barrier opening and reduced injury complications. Consistent with the rodent model, blood-brain barrier dysfunction was found in a subset of human athletes following concussive mild traumatic brain injury. We provide evidence that cortical spreading depolarization, blood-brain barrier dysfunction, and pro-inflammatory TGFß signalling are associated with severe, potentially life-threatening outcomes following repetitive mild traumatic brain injury. Diagnostic-coupled targeting of TGFß signalling may be a novel strategy in treating mild traumatic brain injury.


Assuntos
Concussão Encefálica , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Concussão Encefálica/etiologia , Humanos , Neuroimagem , Ratos , Fator de Crescimento Transformador beta/metabolismo
4.
J Neuroinflammation ; 19(1): 185, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35836233

RESUMO

The incidence of repetitive mild traumatic brain injury (rmTBI), one of the main risk factors for predicting neurodegenerative disorders, is increasing; however, its underlying mechanism remains unclear. As suggested by several studies, ferroptosis is possibly related to TBI pathophysiology, but its effect on rmTBI is rarely studied. Mesenchymal stromal cells (MSCs), the most studied experimental cells in stem cell therapy, exert many beneficial effects on diseases of the central nervous system, yet evidence regarding the role of MSCs in ferroptosis and post-rmTBI neurodegeneration is unavailable. Our study showed that rmTBI resulted in time-dependent alterations in ferroptosis-related biomarker levels, such as abnormal iron metabolism, glutathione peroxidase (GPx) inactivation, decrease in GPx4 levels, and increase in lipid peroxidation. Furthermore, MSC treatment markedly decreased the aforementioned rmTBI-mediated alterations, neuronal damage, pathological protein deposition, and improved cognitive function compared with vehicle control. Similarly, liproxstatin-1, a ferroptosis inhibitor, showed similar effects. Collectively, based on the above observations, MSCs ameliorate cognitive impairment following rmTBI, partially via suppressing ferroptosis, which could be a therapeutic target for rmTBI.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Disfunção Cognitiva , Ferroptose , Células-Tronco Mesenquimais , Concussão Encefálica/patologia , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/terapia , Cognição , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/terapia , Humanos
5.
Brain ; 143(6): 1826-1842, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32464655

RESUMO

Repetitive mild traumatic brain injury in American football players has garnered increasing public attention following reports of chronic traumatic encephalopathy, a progressive tauopathy. While the mechanisms underlying repetitive mild traumatic brain injury-induced neurodegeneration are unknown and antemortem diagnostic tests are not available, neuropathology studies suggest a pathogenic role for microvascular injury, specifically blood-brain barrier dysfunction. Thus, our main objective was to demonstrate the effectiveness of a modified dynamic contrast-enhanced MRI approach we have developed to detect impairments in brain microvascular function. To this end, we scanned 42 adult male amateur American football players and a control group comprising 27 athletes practicing a non-contact sport and 26 non-athletes. MRI scans were also performed in 51 patients with brain pathologies involving the blood-brain barrier, namely malignant brain tumours, ischaemic stroke and haemorrhagic traumatic contusion. Based on data from prolonged scans, we generated maps that visualized the permeability value for each brain voxel. Our permeability maps revealed an increase in slow blood-to-brain transport in a subset of amateur American football players, but not in sex- and age-matched controls. The increase in permeability was region specific (white matter, midbrain peduncles, red nucleus, temporal cortex) and correlated with changes in white matter, which were confirmed by diffusion tensor imaging. Additionally, increased permeability persisted for months, as seen in players who were scanned both on- and off-season. Examination of patients with brain pathologies revealed that slow tracer accumulation characterizes areas surrounding the core of injury, which frequently shows fast blood-to-brain transport. Next, we verified our method in two rodent models: rats and mice subjected to repeated mild closed-head impact injury, and rats with vascular injury inflicted by photothrombosis. In both models, slow blood-to-brain transport was observed, which correlated with neuropathological changes. Lastly, computational simulations and direct imaging of the transport of Evans blue-albumin complex in brains of rats subjected to recurrent seizures or focal cerebrovascular injury suggest that increased cellular transport underlies the observed slow blood-to-brain transport. Taken together, our findings suggest dynamic contrast-enhanced-MRI can be used to diagnose specific microvascular pathology after traumatic brain injury and other brain pathologies.


Assuntos
Concussão Encefálica/diagnóstico por imagem , Concussão Encefálica/patologia , Imageamento por Ressonância Magnética/métodos , Adolescente , Adulto , Animais , Atletas , Barreira Hematoencefálica/metabolismo , Encéfalo/patologia , Isquemia Encefálica/patologia , Encefalopatia Traumática Crônica/patologia , Imagem de Tensor de Difusão , Futebol Americano/lesões , Humanos , Masculino , Microvasos/diagnóstico por imagem , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/patologia , Tauopatias/patologia , Estados Unidos , Substância Branca/patologia , Proteínas tau/metabolismo
6.
Cereb Cortex ; 30(12): 6108-6120, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32676666

RESUMO

Chronic symptoms indicating excess cortical excitability follow mild traumatic brain injury, particularly repetitive mild traumatic brain injury (rmTBI). Yet mechanisms underlying post-traumatic excitation/inhibition (E/I) ratio abnormalities may differ between the early and late post-traumatic phases. We therefore measured seizure threshold and cortical gamma-aminobutyric acid (GABA) and glutamate (Glu) concentrations, 1 and 6 weeks after rmTBI in mice. We also analyzed the structure of parvalbumin-positive interneurons (PVIs), their perineuronal nets (PNNs), and their electroencephalography (EEG) signature (gamma frequency band power). For mechanistic insight, we measured cortical oxidative stress, reflected in the reduced/oxidized glutathione (GSH/GSSG) ratio. We found that seizure susceptibility increased both early and late after rmTBI. However, whereas increased Glu dominated the E/I 1 week after rmTBI, Glu concentration normalized and the E/I was instead characterized by depressed GABA, reduced per-PVI parvalbumin expression, and reduced gamma EEG power at the 6-week post-rmTBI time point. Oxidative stress was increased early after rmTBI, where transient PNN degradation was noted, and progressed throughout the monitoring period. We conclude that GSH depletion, perhaps triggered by early Glu-mediated excitotoxicity, leads to late post-rmTBI loss of PVI-dependent cortical inhibitory tone. We thus propose dampening of Glu signaling, maintenance of redox state, and preservation of PVI inhibitory capacity as therapeutic targets for post-rmTBI treatment.


Assuntos
Concussão Encefálica/complicações , Encéfalo/fisiopatologia , Ácido Glutâmico/metabolismo , Interneurônios/fisiologia , Estresse Oxidativo , Convulsões/fisiopatologia , Ácido gama-Aminobutírico/metabolismo , Animais , Encéfalo/metabolismo , Ritmo Gama , Masculino , Camundongos Endogâmicos C57BL , Parvalbuminas/análise , Convulsões/etiologia , Convulsões/metabolismo
7.
Mol Ther ; 28(2): 503-522, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31843449

RESUMO

Repetitive mild traumatic brain injury (rmTBI) is considered to be an important risk factor for long-term neurodegenerative disorders such as Alzheimer's disease, which is characterized by ß-amyloid abnormalities and impaired cognitive function. Microglial exosomes have been reported to be involved in the transportation, distribution, and clearance of ß-amyloid in Alzheimer's disease. However, their impacts on the development of neurodegeneration after rmTBI are not yet known. The role of miRNAs in microglial exosomes on regulating post-traumatic neurodegeneration was investigated in the present study. We demonstrated that miR-124-3p level in microglial exosomes from injured brain was significantly altered in the acute, sub-acute, and chronic phases after rmTBI. In in vitro experiments, microglial exosomes with upregulated miR-124-3p (EXO-124) alleviated neurodegeneration in repetitive scratch-injured neurons. The effects were exerted by miR-124-3p targeting Rela, an inhibitory transcription factor of ApoE that promotes the ß-amyloid proteolytic breakdown, thereby inhibiting ß-amyloid abnormalities. In mice with rmTBI, the intravenously injected microglial exosomes were taken up by neurons in injured brain. Besides, miR-124-3p in the exosomes was transferred into hippocampal neurons and alleviated neurodegeneration by targeting the Rela/ApoE signaling pathway. Consequently, EXO-124 treatments improved the cognitive outcome after rmTBI, suggesting a promising therapeutic strategy for future clinical translation.


Assuntos
Concussão Encefálica/etiologia , Concussão Encefálica/metabolismo , Cognição , Exossomos/metabolismo , MicroRNAs/genética , Microglia/metabolismo , Doenças Neurodegenerativas/etiologia , Animais , Apolipoproteínas E/metabolismo , Concussão Encefálica/patologia , Concussão Encefálica/reabilitação , Biologia Computacional/métodos , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Masculino , Camundongos , Modelos Biológicos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/reabilitação , Neurônios/metabolismo , Interferência de RNA , Índice de Gravidade de Doença , Transdução de Sinais , Fator de Transcrição RelA/metabolismo
8.
J Neurophysiol ; 120(1): 1-3, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29465327

RESUMO

Chronic traumatic encephalopathy (CTE) is thought to be caused by repetitive head impacts. Consequently, there is a need to develop rodent models to better understand the behavioral and pathophysiological changes of repetitive mild traumatic brain injury (rmTBI) and to determine the link between rmTBI and CTE. This Neuro Forum article reviews recent rodent rmTBI models, comparing the impact methods and outcome measures in terms of translational potential.


Assuntos
Concussão Encefálica/fisiopatologia , Pesquisa Translacional Biomédica/métodos , Animais , Sintomas Comportamentais/fisiopatologia , Concussão Encefálica/terapia , Modelos Animais de Doenças , Humanos , Roedores
9.
Alzheimers Dement ; 14(4): 444-453, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29244999

RESUMO

INTRODUCTION: Exposure to traumatic brain injury is a core risk factor that predisposes an individual to sporadic neurodegenerative diseases. We provide evidence that mechanical stress increases brain levels of hallmark proteins associated with neurodegeneration. METHODS: Wild-type mice were exposed to multiple regimens of repetitive mild traumatic brain injury, generating a range of combinations of impact energies, frequencies, and durations of exposure. Brain concentrations of amyloid ß 1-42 (Aß1-42), total tau, and α-synuclein were measured by sandwich enzyme-linked immunosorbent assay. RESULTS: There was a highly significant main effect of impact energy, frequency, and duration of exposure on Aß1-42, tau, and α-synuclein levels (P < .001), and a significant interaction between impact energy and duration of exposure for Aß1-42 and tau (P < .001), but not for α-synuclein. DISCUSSION: Dose-dependent and cumulative influence of repetitive mild traumatic brain injury-induced mechanical stress may trigger and/or accelerate neurodegeneration by pushing protein concentration over the disease threshold.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Concussão Encefálica/metabolismo , Encéfalo/metabolismo , Fragmentos de Peptídeos/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo , Animais , Fenômenos Biomecânicos , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos BALB C , Distribuição Aleatória , Estresse Mecânico
10.
Biochem Biophys Res Commun ; 483(4): 1137-1142, 2017 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-27492070

RESUMO

Neurodegenerative diseases are characterized by distinctive neuropathological alterations, including the cerebral accumulation of misfolded protein aggregates, neuroinflammation, synaptic dysfunction, and neuronal loss, along with behavioral impairments. Traumatic brain injury (TBI) is believed to be an important risk factor for certain neurodegenerative diseases, such as Alzheimer's disease (AD) and chronic traumatic encephalopathy (CTE). TBI represents a ubiquitous problem in the world and could play a major role in the pathogenesis and etiology of AD or CTE later in life. TBI events appear to trigger and exacerbate some of the pathological processes in these diseases, in particular, the formation and accumulation of misfolded protein aggregates composed of amyloid-beta (Aß) and tau. Here, we describe the relationship between repetitive mild TBI and the development of Aß and tau pathology in patients affected by AD or CTE on the basis of epidemiological and pathological studies in human cases, and a thorough overview of data obtained in experimental animal models. We also discuss the possibility that TBI may contribute to initiate the formation of misfolded oligomeric species that may subsequently spread the pathology through a prion-like process of seeding of protein misfolding.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Lesões Encefálicas Traumáticas/patologia , Doenças Neurodegenerativas/etiologia , Proteínas tau/metabolismo , Animais , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/metabolismo , Humanos , Fatores de Risco
11.
Neurochem Res ; 42(10): 2892-2901, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28620825

RESUMO

Although, there is growing awareness in the progressive neurodegeneration of chronic traumatic encephalopathy, changes of immune reactions remain equivocal at best. Thus, in a clinically relevant rat repetitive mild traumatic brain injury (rmTBI) model, some immunologic cells (T cell subsets, microglia) in the injured brain and peripheral blood were analyzed by flow cytometry and immunofluorescence. In the injured brain, CD3+ T cells showed a bimodal increase during 42 days post-injury (dpi). CD3+CD4+ T cells firstly increased and then decreased, while CD3+CD8+ T cells had reversed tendency. CD86+/CD11b+ M1-like microglia increased at 42 dpi and CD206+/CD11b+ M2-like microglia peaked at 7 dpi. In addition, peripheral immune suppression was implicated in the chronic phase after rmTBI. Taken together, the study provided useful information on long-term dynamic changes of some immune cells after rmTBI in rats.


Assuntos
Concussão Encefálica/metabolismo , Citometria de Fluxo , Microglia/metabolismo , Subpopulações de Linfócitos T/metabolismo , Animais , Modelos Animais de Doenças , Citometria de Fluxo/métodos , Imunofluorescência/métodos , Masculino , Ratos Sprague-Dawley
12.
Brain Inj ; 30(12): 1414-1427, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27834539

RESUMO

PRIMARY OBJECTIVE: To investigate the status of the cerebrovasculature following repetitive mild traumatic brain injury (r-mTBI). RESEARCH DESIGN: TBI is a risk factor for development of various neurodegenerative disorders. A common feature of neurodegenerative disease is cerebrovascular dysfunction which includes alterations in cerebral blood flow (CBF). TBI can result in transient reductions in CBF, with severe injuries often accompanied by varying degrees of vascular pathology post-mortem. However, at this stage, few studies have investigated the cerebrovasculature at chronic time points following repetitive mild brain trauma. METHODS AND PROCEDURES: r-mTBI was delivered to wild-type mice (12 months old) twice per week for 3 months and tested for spatial memory deficits (Barnes Maze task) at 1 and 6 months post-injury. At 7 months post-injury CBF was assessed via Laser Doppler Imaging and, following euthanasia, the brain was probed for markers of cerebrovascular dysfunction and inflammation. MAIN OUTCOMES AND RESULTS: Memory impairment was identified at 1 month post-injury and persisted as late as 6 months post-injury. Furthermore, significant immunopathological insult, reductions in global CBF and down-regulation of cerebrovascular-associated markers were observed. CONCLUSIONS: These results demonstrate impaired cognitive behaviour alongside chronic cerebrovascular dysfunction in a mouse model of repetitive mild brain trauma.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Circulação Cerebrovascular/fisiologia , Transtornos Cerebrovasculares/etiologia , Regulação para Baixo/fisiologia , Actinas/metabolismo , Animais , Barreira Hematoencefálica/fisiopatologia , Proteínas de Ligação ao Cálcio/metabolismo , Transtornos Cognitivos/etiologia , Modelos Animais de Doenças , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Laminina/metabolismo , Masculino , Aprendizagem em Labirinto , Transtornos da Memória/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/sangue
13.
J Neurochem ; 129(6): 916-31, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24673291

RESUMO

Sports-related head impact and injury has become a very highly contentious public health and medico-legal issue. Near-daily news accounts describe the travails of concussed athletes as they struggle with depression, sleep disorders, mood swings, and cognitive problems. Some of these individuals have developed chronic traumatic encephalopathy, a progressive and debilitating neurodegenerative disorder. Animal models have always been an integral part of the study of traumatic brain injury in humans but, historically, they have concentrated on acute, severe brain injuries. This review will describe a small number of new and emerging animal models of sports-related head injury that have the potential to increase our understanding of how multiple mild head impacts, starting in adolescence, can have serious psychiatric, cognitive and histopathological outcomes much later in life. Sports-related head injury (SRHI) has emerged as a significant public health issue as athletes can develop psychiatric and neurodegenerative disorders later in life. Animal models have always been an integral part of the study of human TBI but few existing methods are valid for studying SRHI. In this review, we propose criteria for effective animal models of SRHI. Movement of the head upon impact is judged to be of primary importance in leading to concussion and persistent CNS dysfunction.


Assuntos
Traumatismos em Atletas/patologia , Traumatismos Craniocerebrais/patologia , Animais , Concussão Encefálica/fisiopatologia , Modelos Animais de Doenças , Humanos , Comportamento de Redução do Risco
14.
J Neurotrauma ; 41(15-16): 1853-1870, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38497766

RESUMO

Traumatic brain injuries (TBIs) are a large societal and individual burden. In the first year of life, the vast majority of these injuries are the result of inflicted abusive events by a trusted caregiver. Abusive head trauma (AHT) in infants, formerly known as shaken baby syndrome, is the leading cause of inflicted mortality and morbidity in this population. In this review we address clinical diagnosis, symptoms, prognosis, and neuropathology of AHT, emphasizing the burden of repetitive AHT. Next, we consider existing animal models of AHT, and we evaluate key features of an ideal model, highlighting important developmental milestones in children most vulnerable to AHT. We draw on insights from other injury models, such as repetitive, mild TBIs (RmTBIs), post-traumatic epilepsy (PTE), hypoxic-ischemic injuries, and maternal neglect, to speculate on key knowledge gaps and underline important new opportunities in pre-clinical AHT research. Finally, potential treatment options to facilitate healthy development in children following an AHT are considered. Together, this review aims to drive the field toward optimized, well-characterized animal models of AHT, which will allow for greater insight into the underlying neuropathological and neurobehavioral consequences of AHT.


Assuntos
Maus-Tratos Infantis , Modelos Animais de Doenças , Síndrome do Bebê Sacudido , Humanos , Animais , Lactente , Síndrome do Bebê Sacudido/diagnóstico
15.
Exp Neurol ; 374: 114714, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38325653

RESUMO

Traumatic brain injury (TBI) is a leading cause of disability and increases the risk of developing neurodegenerative diseases. The mechanisms linking TBI to neurodegeneration remain to be defined. It has been proposed that the induction of cellular senescence after injury could amplify neuroinflammation and induce long-term tissue changes. The induction of a senescence response post-injury in the immature brain has yet to be characterised. We carried out two types of brain injury in juvenile CD1 mice: invasive TBI using controlled cortical impact (CCI) and repetitive mild TBI (rmTBI) using weight drop injury. The analysis of senescence-related signals showed an increase in γH2AX-53BP1 nuclear foci, p53, p19ARF, and p16INK4a expression in the CCI group, 5 days post-injury (dpi). At 35 days, the difference was no longer statistically significant. Gene expression showed the activation of different senescence pathways in the ipsilateral and contralateral hemispheres in the injured mice. CCI-injured mice showed a neuroinflammatory early phase after injury (increased Iba1 and GFAP expression), which persisted for GFAP. After CCI, there was an increase at 5 days in p16INK4, whereas in rmTBI, a significant increase was seen at 35 dpi. Both injuries caused a decrease in p21 at 35 dpi. In rmTBI, other markers showed no significant change. The PCR array data predicted the activation of pathways connected to senescence after rmTBI. These results indicate the induction of a complex cellular senescence and glial reaction in the immature mouse brain, with clear differences between an invasive brain injury and a repetitive mild injury.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Lesões Encefálicas , Camundongos , Animais , Concussão Encefálica/complicações , Doenças Neuroinflamatórias , Lesões Encefálicas Traumáticas/complicações , Senescência Celular , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
16.
J Neurotrauma ; 40(15-16): 1762-1778, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36738227

RESUMO

Repetitive mild traumatic brain injury (rmTBI) is a potentially debilitating condition with long-term sequelae. Animal models are used to study rmTBI in a controlled environment, but there is currently no established standard battery of behavioral tests used. Primarily, we aimed to identify the best combination and timing of behavioral tests to distinguish injured from uninjured animals in rmTBI studies, and secondarily, to determine whether combinations of independent experiments have better behavioral outcome prediction accuracy than individual experiments. Data from 1203 mice from 58 rmTBI experiments, some of which have already been published, were used. In total, 11 types of behavioral tests were measured by 37 parameters at 13 time points during the first 6 months after injury. Univariate regression analyses were used to identify optimal combinations of behavioral tests and whether the inclusion of multiple heterogenous experiments improved accuracy. k-means clustering was used to determine whether a combination of multiple tests could distinguish mice with rmTBI from uninjured mice. We found that a combination of behavioral tests outperformed individual tests alone when distinguishing animals with rmTBI from uninjured animals. The best timing for most individual behavioral tests was 3-4 months after first injury. Overall, Morris water maze (MWM; hidden and probe frequency) was the behavioral test with the best capability of detecting injury effects (area under the curve [AUC] = 0.98). Combinations of open field tests and elevated plus mazes also performed well (AUC = 0.92), as did the forced swim test alone (AUC = 0.90). In summary, multiple heterogeneous experiments tended to predict outcome better than individual experiments, and MWM 3-4 months after injury was the optimal test, also several combinations also performed well. In order to design future pre-clinical rmTBI trials, we have included an interactive application available online utilizing the data from the study via the Supplementary URL.


Assuntos
Concussão Encefálica , Camundongos , Animais , Concussão Encefálica/diagnóstico , Concussão Encefálica/complicações , Aprendizagem em Labirinto , Modelos Animais , Comportamento Animal , Modelos Animais de Doenças
17.
Acta Neuropathol Commun ; 11(1): 118, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37464280

RESUMO

Repetitive mild traumatic brain injury (r-mTBI) has increasingly become recognised as a risk factor for the development of neurodegenerative diseases, many of which are characterised by tau pathology, metal dyshomeostasis and behavioural impairments. We aimed to characterise the status of tau and the involvement of iron dyshomeostasis in repetitive controlled cortical impact injury (5 impacts, 48 h apart) in 3-month-old C57Bl6 mice at the chronic (12-month) time point. We performed a battery of behavioural tests, characterised the status of neurodegeneration-associated proteins (tau and tau-regulatory proteins, amyloid precursor protein and iron-regulatory proteins) via western blot; and metal levels using bulk inductively coupled plasma-mass spectrometry (ICP-MS). We report significant changes in various ipsilateral iron-regulatory proteins following five but not a single injury, and significant increases in contralateral iron, zinc and copper levels following five impacts. There was no evidence of tau pathology or changes in tau-regulatory proteins following five impacts, although some changes were observed following a single injury. Five impacts resulted in significant gait deficits, mild anhedonia and mild cognitive deficits at 9-12 months post-injury, effects not seen following a single injury. To the best of our knowledge, we are the first to describe chronic changes in metals and iron-regulatory proteins in a mouse model of r-mTBI, providing a strong indication towards an overall increase in brain iron levels (and other metals) in the chronic phase following r-mTBI. These results bring to question the relevance of tau and highlight the involvement of iron dysregulation in the development and/or progression of neurodegeneration following injury, which may lead to new therapeutic approaches in the future.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Camundongos , Animais , Concussão Encefálica/patologia , Camundongos Transgênicos , Ferro , Proteínas Reguladoras de Ferro , Camundongos Endogâmicos C57BL , Proteínas tau/metabolismo , Fatores de Transcrição , Modelos Animais de Doenças , Lesões Encefálicas Traumáticas/complicações
18.
Neural Regen Res ; 18(12): 2711-2719, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37449635

RESUMO

The cumulative damage caused by repetitive mild traumatic brain injury can cause long-term neurodegeneration leading to cognitive impairment. This cognitive impairment is thought to result specifically from damage to the hippocampus. In this study, we detected cognitive impairment in mice 6 weeks after repetitive mild traumatic brain injury using the novel object recognition test and the Morris water maze test. Immunofluorescence staining showed that p-tau expression was increased in the hippocampus after repetitive mild traumatic brain injury. Golgi staining showed a significant decrease in the total density of neuronal dendritic spines in the hippocampus, as well as in the density of mature dendritic spines. To investigate the specific molecular mechanisms underlying cognitive impairment due to hippocampal damage, we performed proteomic and phosphoproteomic analyses of the hippocampus with and without repetitive mild traumatic brain injury. The differentially expressed proteins were mainly enriched in inflammation, immunity, and coagulation, suggesting that non-neuronal cells are involved in the pathological changes that occur in the hippocampus in the chronic stage after repetitive mild traumatic brain injury. In contrast, differentially expressed phosphorylated proteins were mainly enriched in pathways related to neuronal function and structure, which is more consistent with neurodegeneration. We identified N-methyl-D-aspartate receptor 1 as a hub molecule involved in the response to repetitive mild traumatic brain injury , and western blotting showed that, while N-methyl-D-aspartate receptor 1 expression was not altered in the hippocampus after repetitive mild traumatic brain injury, its phosphorylation level was significantly increased, which is consistent with the omics results. Administration of GRP78608, an N-methyl-D-aspartate receptor 1 antagonist, to the hippocampus markedly improved repetitive mild traumatic brain injury-induced cognitive impairment. In conclusion, our findings suggest that N-methyl-D-aspartate receptor 1 signaling in the hippocampus is involved in cognitive impairment in the chronic stage after repetitive mild traumatic brain injury and may be a potential target for intervention and treatment.

19.
J Neurotrauma ; 39(13-14): 902-922, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35293225

RESUMO

Repetitive mild traumatic brain injury (r-mTBI), commonly experienced by athletes and military personnel, causes changes in multiple intracellular pathways, one of which involves the tau protein. Tau phosphorylation plays a role in several neurodegenerative conditions including chronic traumatic encephalopathy (CTE), a progressive neurodegenerative disorder linked to repeated head trauma. There is now mounting evidence suggesting that tau phosphorylation may be regulated by metal ions (such as iron, zinc and copper), which themselves are implicated in aging and neurodegenerative disorders such as Alzheimer's disease (AD). Recent work has also shown that a single TBI can result in age-dependent and region-specific modulation of metal ions. As such, this review explores the linkage among TBI, CTE, aging, and neurodegeneration, with a specific focus on the involvement of (and interaction between) tau pathology and metal dyshomeostasis. The authors highlight that metal dyshomeostasis has yet to be investigated in the context of repeat head trauma or CTE. Given the evidence that metal dyshomeostasis contributes to the onset and/or progression of neurodegeneration, and that CTE itself is a neurodegenerative condition, this brings to light an uncharted link that should be explored. The development of adequate models of r-mTBI and/or CTE will be crucial in deepening our understanding of the pathological mechanisms that drive the clinical manifestations in these conditions and also in the development of effective therapeutics targeted toward slowing progressive neurodegenerative disorders.


Assuntos
Doença de Alzheimer , Concussão Encefálica , Encefalopatia Traumática Crônica , Traumatismos Craniocerebrais , Doenças Neurodegenerativas , Doença de Alzheimer/complicações , Concussão Encefálica/complicações , Encefalopatia Traumática Crônica/patologia , Traumatismos Craniocerebrais/complicações , Humanos , Doenças Neurodegenerativas/etiologia , Proteínas tau/metabolismo
20.
Metallomics ; 14(12)2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36460052

RESUMO

Metal dyshomeostasis is a well-established consequence of neurodegenerative diseases and traumatic brain injury. While the significance of metals continues to be uncovered in many neurological disorders, their implication in repetitive mild traumatic brain injury remains uncharted. To address this gap, we characterized the spatial distribution of metal levels (iron, zinc, and copper) using laser ablation-inductively coupled plasma-mass spectrometry, the profile of metal-binding proteins via size exclusion chromatography-inductively coupled plasma-mass spectrometry and the expression of the major iron storing protein ferritin via western blotting. Using a mouse model of repetitive mild traumatic brain injury, 3-month-old male and female C57Bl6 mice received one or five impacts (48 h apart). At 1 month following 5× TBI (traumatic brain injury), iron and ferritin levels were significantly elevated in the contralateral cortex. There was a trend toward increased iron levels in the entire contralateral hemisphere and a reduction in contralateral cortical iron-binding proteins following 1× TBI. No major changes in zinc levels were seen in both hemispheres following 5× or 1× TBI, although there was a reduction in ipsilateral zinc-binding proteins following 5× TBI and a contralateral increase in zinc-binding proteins following 1× TBI. Copper levels were significantly increased in both hemispheres following 5× TBI, without changes in copper-binding proteins. This study shows for the first time that repetitive mild TBI (r-mTBI) leads to metal dyshomeostasis, highlighting its potential involvement in promoting neurodegeneration, which provides a rationale for examining the benefit of metal-targeting drugs, which have shown promising results in neurodegenerative conditions and single TBI, but have yet to be tested following r-mTBI.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Metaloproteínas , Doenças Neurodegenerativas , Camundongos , Animais , Masculino , Feminino , Cobre/metabolismo , Metaloproteínas/metabolismo , Camundongos Endogâmicos C57BL , Lesões Encefálicas Traumáticas/metabolismo , Ferro/metabolismo , Zinco/metabolismo , Ferritinas , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa