Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(20): e2316271121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38709929

RESUMO

Random mutagenesis, including when it leads to loss of gene function, is a key mechanism enabling microorganisms' long-term adaptation to new environments. However, loss-of-function mutations are often deleterious, triggering, in turn, cellular stress and complex homeostatic stress responses, called "allostasis," to promote cell survival. Here, we characterize the differential impacts of 65 nonlethal, deleterious single-gene deletions on Escherichia coli growth in three different growth environments. Further assessments of select mutants, namely, those bearing single adenosine triphosphate (ATP) synthase subunit deletions, reveal that mutants display reorganized transcriptome profiles that reflect both the environment and the specific gene deletion. We also find that ATP synthase α-subunit deleted (ΔatpA) cells exhibit elevated metabolic rates while having slower growth compared to wild-type (wt) E. coli cells. At the single-cell level, compared to wt cells, individual ΔatpA cells display near normal proliferation profiles but enter a postreplicative state earlier and exhibit a distinct senescence phenotype. These results highlight the complex interplay between genomic diversity, adaptation, and stress response and uncover an "aging cost" to individual bacterial cells for maintaining population-level resilience to environmental and genetic stress; they also suggest potential bacteriostatic antibiotic targets and -as select human genetic diseases display highly similar phenotypes, - a bacterial origin of some human diseases.


Assuntos
Escherichia coli , Estresse Fisiológico , Escherichia coli/genética , Escherichia coli/metabolismo , Estresse Fisiológico/genética , Mutação , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Deleção de Genes , Transcriptoma , Regulação Bacteriana da Expressão Gênica , Adaptação Fisiológica/genética , Mutação com Perda de Função
2.
J Biol Chem ; 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33402426

RESUMO

In Saccharomyces cerevisiae, replicative lifespan (RLS) is primarily affected by the stability of ribosomal DNA (rDNA). The stability of the highly repetitive rDNA array is maintained through transcriptional silencing by the NAD+-dependent histone deacetylase Sir2. Recently, the loss of Smi1, a protein of unknown molecular function that has been proposed to be involved in cell wall synthesis, has been demonstrated to extend RLS in S. cerevisiae, but the mechanism by which Smi1 regulates RLS has not been elucidated. In this study, we determined that the loss of Smi1 extends RLS in a Sir2-dependent manner. We observed that the smi1D mutation enhances transcriptional silencing at the rDNA locus and promotes rDNA stability. In the absence of Smi1, the stress-responsive transcription factor Msn2 translocates from the cytoplasm to the nucleus, and nuclear-accumulated Msn2 stimulates the expression of nicotinamidase Pnc1, which serves as an activator of Sir2. In addition, we observed that the MAP kinase Hog1 is activated in smi1D cells and that the activation of Hog1 induces the translocation of Msn2 into the nucleus. Taken together, our findings suggest that the loss of Smi1 leads to the nuclear accumulation of Msn2 and stimulates the expression of Pnc1, thereby enhancing Sir2-mediated rDNA stability and extending RLS in S. cerevisiae.

3.
J Nanobiotechnology ; 20(1): 171, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35361237

RESUMO

BACKGROUND: Budding yeast, Saccharomyces cerevisiae, has been extensively favored as a model organism in aging and age-related studies, thanks to versatile microfluidic chips for cell dynamics assay and replicative lifespan (RLS) determination at single-cell resolution. However, previous microfluidic structures aiming to immobilize haploid yeast may impose excessive spatial constraint and mechanical stress on cells, especially for larger diploid cells that sprout in a bipolar pattern. RESULTS: We developed a high-throughput microfluidic chip for diploid yeast long-term culturing (DYLC), optical inspection and cell-aging analysis. The DYLC chip features 1100 "leaky bowl"-shaped traps formatted in an array to dock single cells under laminar-perfused medium and effectively remove daughter cells by hydraulic shear forces. The delicate microstructures of cell traps enable hydrodynamic rotation of newborn buds, so as to ensure bud reorientation towards downstream and concerted daughter dissection thereafter. The traps provide sufficient space for cell-volume enlargement during aging, and thus properly alleviate structural compression and external stress on budding yeast. Trapping efficiency and long-term maintenance of single cells were optimized according to computational fluid dynamics simulations and experimental characterization in terms of critical parameters of the trap and array geometries. Owing to the self-filling of daughter cells dissected from traps upstream, an initial trapping efficiency of about 70% can rapidly reach a high value of over 92% after 4-hour cell culturing. During yeast proliferation and aging, cellular processes of growth, budding and daughter dissection were continuously tracked for over 60 h by time-lapse imaging. Yeast RLS and budding time interval (BTI) were directly calculated by the sequential two-digit codes indicating the budding status in images. With the employed diploid yeast strain, we obtained an RLS of 24.29 ± 3.65 generations, and verified the extension of BTI in the first couple of generations after birth and the last several generations approaching death, as well as cell de-synchronization along diploid yeast aging. CONCLUSIONS: The DYLC chip offers a promising platform for reliable capture and culturing of diploid yeast cells and for life-long tracking of cell dynamics and replicative aging processes so that grasping comprehensive insights of aging mechanism in complex eukaryotic cells.


Assuntos
Microfluídica , Saccharomyces cerevisiae , Divisão Celular , Diploide , Humanos , Recém-Nascido , Longevidade , Microfluídica/métodos
4.
Proc Natl Acad Sci U S A ; 116(8): 3062-3071, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30718408

RESUMO

Mutations accumulate within somatic cells and have been proposed to contribute to aging. It is unclear what level of mutation burden may be required to consistently reduce cellular lifespan. Human cancers driven by a mutator phenotype represent an intriguing model to test this hypothesis, since they carry the highest mutation burdens of any human cell. However, it remains technically challenging to measure the replicative lifespan of individual mammalian cells. Here, we modeled the consequences of cancer-related mutator phenotypes on lifespan using yeast defective for mismatch repair (MMR) and/or leading strand (Polε) or lagging strand (Polδ) DNA polymerase proofreading. Only haploid mutator cells with significant lifetime mutation accumulation (MA) exhibited shorter lifespans. Diploid strains, derived by mating haploids of various genotypes, carried variable numbers of fixed mutations and a range of mutator phenotypes. Some diploid strains with fewer than two mutations per megabase displayed a 25% decrease in lifespan, suggesting that moderate numbers of random heterozygous mutations can increase mortality rate. As mutation rates and burdens climbed, lifespan steadily eroded. Strong diploid mutator phenotypes produced a form of genetic anticipation with regard to aging, where the longer a lineage persisted, the shorter lived cells became. Using MA lines, we established a relationship between mutation burden and lifespan, as well as population doubling time. Our observations define a threshold of random mutation burden that consistently decreases cellular longevity in diploid yeast cells. Many human cancers carry comparable mutation burdens, suggesting that while cancers appear immortal, individual cancer cells may suffer diminished lifespan due to accrued mutation burden.


Assuntos
Envelhecimento/genética , Reparo do DNA/genética , Longevidade/genética , Neoplasias/genética , Envelhecimento/patologia , Reparo de Erro de Pareamento de DNA/genética , Replicação do DNA/genética , Genótipo , Humanos , Mutação/genética , Acúmulo de Mutações , Taxa de Mutação , Neoplasias/patologia , Fenótipo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Sequenciamento Completo do Genoma
5.
Int J Mol Sci ; 23(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35216480

RESUMO

An asymmetry in cytosolic pH between mother and daughter cells was reported to underlie cellular aging in the budding yeast Saccharomyces cerevisiae; however, the underlying mechanism remains unknown. Preferential accumulation of Pma1p, which pumps cytoplasmic protons out of cells, at the plasma membrane of mother cells, but not of their newly-formed daughter cells, is believed to be responsible for the pH increase in mother cells by reducing the level of cytoplasmic protons. This, in turn, decreases the acidity of vacuoles, which is well correlated with aging of yeast cells. In this study, to identify genes that regulate the preferential accumulation of Pma1p in mother cells, we performed a genome-wide screen using a collection of single gene deletion yeast strains. A subset of genes involved in the endocytic pathway, such as VPS8, VPS9, and VPS21, was important for Pma1p accumulation. Unexpectedly, however, there was little correlation between deletion of each of these genes and the replicative lifespan of yeast, suggesting that Pma1p accumulation in mother cells is not the key determinant that underlies aging of mother cells.


Assuntos
Divisão Celular , Senescência Celular , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , ATPases Translocadoras de Prótons/fisiologia , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia
6.
Curr Genet ; 67(2): 231-235, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33247310

RESUMO

Cell aging is the result of deteriorating competence in maintaining cellular homeostasis and quality control. Certain cell types are able to rejuvenate through asymmetric cell division by excluding aging factors, including damaged cellular compartments and extrachromosomal rDNA circles, from entering the daughter cell. Recent findings from the budding yeast S. cerevisiae have shown that gametogenesis represents another type of cellular rejuvenation. Gametes, whether produced by an old or a young mother cell, are granted a renewed replicative lifespan through the formation of a fifth nuclear compartment that sequesters the harmful senescence factors accumulated by the mother. Here, we describe the importance and mechanism of cellular remodeling at the nuclear envelope mediated by ESCRT-III and the LEM-domain proteins, with a focus on nuclear pore biogenesis and chromatin interaction during gamete rejuvenation.


Assuntos
Senescência Celular/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Gametogênese/genética , Meiose/genética , DNA Ribossômico/genética , Herança Extracromossômica/genética , Homeostase/genética , Membrana Nuclear/genética , Rejuvenescimento/fisiologia , Saccharomyces cerevisiae/genética
7.
Biogerontology ; 22(5): 547-563, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34524607

RESUMO

YPK9/YOR291W of Saccharomyces cerevisiae encodes a vacuolar membrane protein. Previous research has suggested that Ypk9p is similar to the yeast P5-type ATPase Spf1p and that it plays a role in the sequestration of heavy metals. In addition, bioinformatics analysis has suggested that Ypk9p is a homolog of human ATP13A2, which encodes a protein of the subfamily of P5 ATPases. However, no specific function of Ypk9p has been described to date. In this study, we found, for the first time, that YPK9 is involved in the oxidative stress response and modulation of the replicative lifespan (RLS). We found that YPK9 deficiency confers sensitivity to the oxidative stress inducer hydrogen peroxide accompanied by increased intracellular ROS levels, decreased mitochondrial membrane potential, abnormal mitochondrial function, and increased incidence of early apoptosis in budding yeast. More importantly, YPK9 deficiency can lead to a shortened RLS. In addition, we found that overexpression of the catalase-encoding gene CTA1 can reverse the phenotypic abnormalities of the ypk9Δ yeast strain. Collectively, these findings highlight the involvement of Ypk9p in the oxidative stress response and modulation of RLS.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Peróxido de Hidrogênio , Longevidade , Estresse Oxidativo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo
8.
Proteomics ; 20(5-6): e1800420, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31385433

RESUMO

All organisms age, but the extent to which all organisms age the same way remains a fundamental unanswered question in biology. Across species, it is now clear that at least some aspects of aging are highly conserved and are perhaps universal, but other mechanisms of aging are private to individual species or sets of closely related species. Within the same species, however, it has generally been assumed that the molecular mechanisms of aging are largely invariant from one individual to the next. With the development of new tools for studying aging at the individual cell level in budding yeast, recent data has called this assumption into question. There is emerging evidence that individual yeast mother cells may undergo fundamentally different trajectories of aging. Individual trajectories of aging are difficult to study by traditional population level assays, but through the application of systems biology approaches combined with novel microfluidic technologies, it is now possible to observe and study these phenomena in real time. Understanding the spectrum of mechanisms that determine how different individuals age is a necessary step toward the goal of personalized geroscience, where healthy longevity is optimized for each individual.


Assuntos
Envelhecimento , Senescência Celular , Saccharomyces cerevisiae/citologia , Biologia de Sistemas/métodos , Animais , Humanos , Longevidade , Técnicas Analíticas Microfluídicas/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Análise de Célula Única/métodos , Especificidade da Espécie
9.
J Cell Sci ; 131(3)2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29361529

RESUMO

Here, we used fluorescence microscopy and a peroxisome-targeted tandem fluorescent protein timer to determine the relative age of peroxisomes in yeast. Our data indicate that yeast cells contain a heterogeneous population of relatively old and young peroxisomes. During budding, the peroxisome retention factor inheritance of peroxisomes protein 1 (Inp1) selectively associates to the older organelles, which are retained in the mother cells. Inp2, a protein required for transport of peroxisomes to the bud, preferentially associates to younger organelles. Using a microfluidics device, we demonstrate that the selective segregation of younger peroxisomes to the buds is carefully maintained during multiple budding events. The replicative lifespan of mother cells increased upon deletion of INP2, which resulted in the retention of all organelles in mother cells. These data suggest that, in wild-type yeast, transport of aged and deteriorated peroxisomes to the bud is prevented, whereas the young and vital organelles are preferably transported to the newly forming buds.


Assuntos
Divisão Celular Assimétrica , Peroxissomos/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Replicação do DNA , Deleção de Genes , Padrões de Herança/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Curr Genet ; 66(1): 15-41, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31535186

RESUMO

Organelles are dynamic structures of a eukaryotic cell that compartmentalize various essential functions and regulate optimum functioning. On the other hand, ageing is an inevitable phenomenon that leads to irreversible cellular damage and affects optimum functioning of cells. Recent research shows compelling evidence that connects organelle dysfunction to ageing-related diseases/disorders. Studies in several model systems including yeast have led to seminal contributions to the field of ageing in uncovering novel pathways, proteins and their functions, identification of pro- and anti-ageing factors and so on. In this review, we present a comprehensive overview of findings that highlight the role of organelles in ageing and ageing-associated functions/pathways in yeast.


Assuntos
Longevidade , Modelos Biológicos , Organelas/fisiologia , Leveduras/fisiologia , Envelhecimento/fisiologia , Metabolismo Energético , Regulação Fúngica da Expressão Gênica , Processamento de Proteína Pós-Traducional , Transdução de Sinais
11.
Curr Genet ; 66(4): 813-822, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32232569

RESUMO

Slowing down aging-associated accumulation of molecular damage or its prevention represents a promising therapeutic paradigm to combat aging-related disease and death. While several chemical compounds extend lifespan in model organisms, their mechanism of action is often unknown, reducing their therapeutic potential. Using a systematic approach, here we characterize the impact of the GMP pathway on yeast lifespan and elucidate GMP synthesis inhibition as a lifespan extension mechanism. We further discover that proteasome activation extends lifespan in part through the GMP pathway. GMP synthesis inhibition exerts its lifespan extension effect independently of the canonical nutrient-sensing pathway regulating lifespan. Exposing longitudinally aging yeast cells to GMP pathway inhibition in an age-dependent manner, we demonstrate that the lifespan extension is facilitated by slowing, rather than reversing, the aging process in cells. Using a GUK1 mutant with lower GMP-to-GDP conversion activity, we observe lifespan extension, suggesting that reduced GDP level by itself can also extend yeast lifespan. These findings elucidate the involvement of nucleotide metabolism in the aging process. The existence of clinically-approved GMP pathway inhibitors elicits the potential of a new class of therapeutics for aging-related disorders.


Assuntos
Guanosina Difosfato/biossíntese , Guanosina Monofosfato/biossíntese , Saccharomyces cerevisiae/fisiologia , Replicação do DNA , Guanina/farmacologia , Guanosina Difosfato/antagonistas & inibidores , Guanosina Monofosfato/antagonistas & inibidores , Guanilato Quinases/genética , Guanilato Quinases/metabolismo , Hexoquinase/genética , Hexoquinase/metabolismo , Mutação , Ácido Micofenólico/farmacologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Tempo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
12.
FEMS Yeast Res ; 20(1)2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31816015

RESUMO

There has long been speculation about the role of various stresses in ageing. Some stresses have beneficial effects on ageing-dependent on duration and severity of the stress, others have negative effects and the question arises whether these negative effects are causative of ageing or the result of the ageing process. Cellular responses to many stresses are highly coordinated in a concerted way and hence there is a great deal of cross-talk between different stresses. Here the relevant aspects of the coordination of stress responses and the roles of different stresses on yeast cell ageing are discussed, together with the various functions that are involved. The cellular processes that are involved in alleviating the effects of stress on ageing are considered, together with the possible role of early stress events on subsequent ageing of cells.


Assuntos
Saccharomyces cerevisiae/fisiologia , Estresse Fisiológico , Regulação Fúngica da Expressão Gênica , Modelos Biológicos , Saccharomyces cerevisiae/genética
13.
BMC Bioinformatics ; 20(1): 599, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31747877

RESUMO

BACKGROUND: Cellular aging is best studied in the budding yeast Saccharomyces cerevisiae. As an example of a pleiotropic trait, yeast lifespan is influenced by hundreds of interconnected genes. However, no quantitative methods are currently available to infer system-level changes in gene networks during cellular aging. RESULTS: We propose a parsimonious mathematical model of cellular aging based on stochastic gene interaction networks. This network model is made of only non-aging components: the strength of gene interactions declines with a constant mortality rate. Death of a cell occurs in the model when an essential node loses all of its interactions with other nodes, and is equivalent to the deletion of an essential gene. Stochasticity of gene interactions is modeled using a binomial distribution. We show that the exponential increase of mortality rate over time can emerge from this gene network model during the early stages of aging.We developed a maximal likelihood approach to estimate three lifespan-influencing network parameters from experimental lifespans: t0, the initial virtual age of the network system; n, the average lifespan-influencing interactions per essential node; and R, the initial mortality rate. We applied this model to yeast mutants with known effects on replicative lifespans. We found that deletion of SIR2, FOB1, and HXK2 considerably altered the initial virtual age but not the average lifespan-influencing interactions per essential node, suggesting that these mutations mainly influence the reliability of gene interactions but not the overall configurations of gene networks.We applied this model to investigate replicative lifespans of yeast natural isolates. We estimated that the average number of lifespan-influencing interactions per essential node is 7.0 (6.1-8) and the average estimated initial virtual age is 45.4 (30.6-74) cell divisions in these isolates. We also found that t0 could potentially mediate the observed Strehler-Mildvan correlation in yeast natural isolates. CONCLUSIONS: Our theoretical model provides a parsimonious interpretation of experimental lifespan data from the perspective of gene networks. We hope that our work will stimulate more interest in developing network models to study aging as a pleiotropic trait.


Assuntos
Senescência Celular/genética , Redes Reguladoras de Genes , Modelos Genéticos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Funções Verossimilhança , Mutação/genética , Fenótipo , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/metabolismo , Processos Estocásticos
14.
Biogerontology ; 20(1): 93-107, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30298458

RESUMO

The replicative lifespan of the yeast Saccharomyces cerevisiae models the aging of stem cells. Age asymmetry between the mother and daughter cells is established during each cell division, such that the daughter retains the capacity for self-renewal while this ability is diminished in the mother. The segregation of fully-functional mitochondria to daughter cells is one mechanism that underlies this age asymmetry. In this study, we have examined the role of mitochondrial dynamics in this phenomenon. Mitochondrial dynamics involve the processes of fission and fusion. Out of the three fusion and three fission genes tested, we have found that only FZO1 is required for the segregation of fully-functional mitochondria to daughter cells and in the maintenance of age asymmetry as manifested in the potential of daughters for a full replicative lifespan despite its deterioration in their mothers. The quality of mitochondria is determined by their turnover, and we have also discovered that deletion of FZO1 reduces mitophagy. Mitochondrial dysfunction elicits a compensatory retrograde response that extends replicative lifespan. Typically, the dysfunction that triggers this response encompasses energy production. The disruption of mitochondrial dynamics by deletion of FZO1 also activates the retrograde response to extend replicative lifespan. We call this novel pathway the mitochondrial dynamics-associated retrograde response (MDARR) because it is distinct in the signal proximal to the mitochondrion that initiates it. Furthermore, the MDARR engages the mitophagy receptor Atg32 on the mitochondrial surface, and we propose that this is due to the accumulation of Atg32-Atg11-Dnm1 complexes on the mitochondrion in the absence of Fzo1 activity. MDARR can be masked by the operation of the 'classic' retrograde response.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Longevidade/fisiologia , Proteínas de Membrana/metabolismo , Mitocôndrias/fisiologia , Proteínas Mitocondriais/metabolismo , Mitofagia/fisiologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Senescência Celular/fisiologia , Deleção de Genes , Técnicas Genéticas , Dinâmica Mitocondrial , Membranas Mitocondriais/metabolismo , Saccharomyces cerevisiae , Transdução de Sinais
15.
Molecules ; 24(7)2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30978970

RESUMO

The aim of this study was to investigate anti-aging molecules from Onosma bracteatum Wall, a traditional medicinal plant used in the Unani and Ayurvedic systems of medicine. During bioassay-guided isolation, two known benzoquinones, allomicrophyllone (1) and ehretiquinone (2) along with three novel benzoquinones designated as ehretiquinones B-D (3-5) were isolated from O. bracteatum. Their structures were characterized by spectroscopic analysis through 1D and 2D NMR, by MS spectroscopic analysis and comparing with those reported in the literatures. The anti-aging potential of the isolated benzoquinones was evaluated through a yeast lifespan assay, and the results indicated that 1, 2, 4 and 5 significantly extended the replicative lifespan of K6001 yeast, indicating that these benzoquinones obtained from O. brateatum have the ability to be employed as a potential therapeutic agent against age-related diseases.


Assuntos
Envelhecimento/efeitos dos fármacos , Benzoquinonas/química , Boraginaceae/química , Longevidade/efeitos dos fármacos , Envelhecimento/fisiologia , Benzoquinonas/isolamento & purificação , Humanos , Ayurveda , Estrutura Molecular , Plantas Medicinais/química , Saccharomyces cerevisiae/efeitos dos fármacos
16.
Biochim Biophys Acta Mol Basis Dis ; 1864(9 Pt A): 2690-2696, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29524633

RESUMO

It has been nearly three decades since the budding yeast Saccharomyces cerevisiae became a significant model organism for aging research and it has emerged as both simple and powerful. The replicative aging assay, which interrogates the number of times a "mother" cell can divide and produce "daughters", has been a stalwart in these studies, and genetic approaches have led to the identification of hundreds of genes impacting lifespan. More recently, cell biological and biochemical approaches have been developed to determine how cellular processes become altered with age. Together, the tools are in place to develop a holistic view of aging in this single-celled organism. Here, we summarize the current state of understanding of yeast replicative aging with a focus on the recent studies that shed new light on how aging pathways interact to modulate lifespan in yeast.


Assuntos
Envelhecimento/genética , Envelhecimento/fisiologia , Replicação do DNA , Saccharomyces cerevisiae/genética , Divisão Celular , Cromatina/metabolismo , Instabilidade Genômica , Longevidade/genética , Modelos Biológicos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sirtuína 2/genética , Sirtuína 2/metabolismo
17.
Biochem Biophys Res Commun ; 488(1): 218-223, 2017 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-28495531

RESUMO

In eukaryotes, numerous genetic factors contribute to the lifespan including metabolic enzymes, signal transducers, and transcription factors. As previously reported, the forkhead-like transcription factor (FHL1) gene was required for yeast replicative lifespan and cell proliferation. To determine how Fhl1p regulates the lifespan, we performed a DNA microarray analysis of a heterozygous diploid strain deleted for FHL1. We discovered numerous Fhl1p-target genes, which were then screened for lifespan-regulating activity. We identified the ribonucleotide reductase (RNR) 1 gene (RNR1) as a regulator of replicative lifespan. RNR1 encodes a large subunit of the RNR complex, which consists of two large (Rnr1p/Rnr3p) and two small (Rnr2p/Rnr4p) subunits. Heterozygous deletion of FHL1 reduced transcription of RNR1 and RNR3, but not RNR2 and RNR4. Chromatin immunoprecipitation showed that Fhl1p binds to the promoter regions of RNR1 and RNR3. Cells harboring an RNR1 deletion or an rnr1-C428A mutation, which abolishes RNR catalytic activity, exhibited a short lifespan. In contrast, cells with a deletion of the other RNR genes had a normal lifespan. Overexpression of RNR1, but not RNR3, restored the lifespan of the heterozygous FHL1 mutant to the wild-type (WT) level. The Δfhl1/FHL1 mutant conferred a decrease in dNTP levels and an increase in hydroxyurea (HU) sensitivity. These findings reveal that Fhl1p regulates RNR1 gene transcription to maintain dNTP levels, thus modulating longevity by protection against replication stress.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Ribonucleotídeo Redutases/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Ribonucleotídeo Redutases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
18.
Biosci Biotechnol Biochem ; 81(8): 1586-1590, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28585468

RESUMO

One new (1, SZMT01) and one known (2) anti-aging substances were isolated from Shenzhou honey peach fruit. Their structures were elucidated by spectroscopic methods and chemical derivatization, and the result reveals that these two compounds are sesquiterpene glucosides. SZMT01 possesses a new glycosylation with an ester linkage at one terminal in an acyclic sesquiterpenoid which is the end of a double bond at another terminal. Both compounds extend the replicative lifespan of K6001 yeast strain at doses of 7.5 and 25 µM. Then, to understand the action mechanism involved, we performed an anti-oxidative experiment on SZMT01. The result revealed that treatment with SZMT01 increased the survival rate of yeast under oxidative stress. Moreover, the lifespans of sod1 and sod2 mutant yeast strains with a K6001 background were not affected by SZMT01. These results demonstrate that anti-oxidative stress performs important roles in anti-aging effects of SZMT01.


Assuntos
Antioxidantes/farmacologia , Proliferação de Células/efeitos dos fármacos , Glucosídeos/farmacologia , Prunus persica/química , Saccharomyces cerevisiae/efeitos dos fármacos , Sesquiterpenos/farmacologia , Antioxidantes/isolamento & purificação , Frutas/química , Expressão Gênica , Glucosídeos/isolamento & purificação , Glicosilação , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sesquiterpenos/isolamento & purificação , Superóxido Dismutase/deficiência , Superóxido Dismutase/genética , Superóxido Dismutase-1/deficiência , Superóxido Dismutase-1/genética
19.
Small ; 12(42): 5787-5801, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27717149

RESUMO

The budding yeast Saccharomyces cerevisiae has been a powerful model for the study of aging and has enabled significant contributions to our understanding of basic mechanisms of aging in eukaryotic cells. However, the laborious low-throughput nature of conventional methods of performing aging assays limits the pace of discoveries in this field. Some of the technical challenges of conventional aging assay methods can be overcome by use of microfluidic systems coupled to time-lapse microscopy. One of the major advantages is the ability of a microfluidic system to perform long-term cell culture under well-defined environmental conditions while tracking individual yeast. Here, recent advancements in microfluidic platforms for various yeast-based studies including replicative lifespan assay, long-term culture and imaging, gene expression, and cell signaling are discussed. In addition, emerging problems and limitations of current microfluidic approaches are examined and perspectives on the future development of this dynamic field are presented.

20.
J Biol Chem ; 289(46): 32081-32093, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25294875

RESUMO

Age-related damage accumulates and a variety of biological activities and functions deteriorate in senescent cells. However, little is known about when cellular aging behaviors begin and what cellular aging processes change. Previous research demonstrated age-related mRNA changes in budding yeast by the 18th to 20th generation, which is the average replicative lifespan of yeast (i.e. about half of the population is dead by this time point). Here, we performed transcriptional and metabolic profiling for yeast at early stages of senescence (4th, 7th, and 11th generation), that is, for populations in which most cells are still alive. Transcriptional profiles showed up- and down-regulation for ∼20% of the genes profiled after the first four generations, few further changes by the 7th generation, and an additional 12% of the genes were up- and down-regulated after 11 generations. Pathway analysis revealed that these 11th generation cells had accumulated transcripts coding for enzymes involved in sugar metabolism, the TCA cycle, and amino acid degradation and showed decreased levels of mRNAs coding for enzymes involved in amino acid biosynthetic pathways. These observations were consistent with the metabolomic profiles of aging cells: an accumulation of pyruvic acid and TCA cycle intermediates and depletion of most amino acids, especially branched-chain amino acids. Stationary phase-induced genes were highly expressed after 11 generations even though the growth medium contained adequate levels of nutrients, indicating deterioration of the nutrient sensing and/or signaling pathways by the 11th generation. These changes are presumably early indications of replicative senescence.


Assuntos
Senescência Celular , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Transcrição Gênica , Aminoácidos/química , Aminoácidos de Cadeia Ramificada/química , Ciclo do Ácido Cítrico , Cromatografia Gasosa-Espectrometria de Massas , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Metabolômica , Análise de Sequência com Séries de Oligonucleotídeos , Ácido Pirúvico/química , Saccharomyces cerevisiae/metabolismo , Saccharomycetales , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa