Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 431
Filtrar
1.
Mol Cell ; 82(7): 1372-1382.e4, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35240057

RESUMO

Fundamental aspects of DNA replication, such as the anatomy of replication stall sites, how replisomes are influenced by gene transcription, and whether the progression of sister replisomes is coordinated, are poorly understood. Available techniques do not allow the precise mapping of the positions of individual replisomes on chromatin. We have developed a method called Replicon-seq that entails the excision of full-length replicons by controlled nuclease cleavage at replication forks. Replicons are sequenced using Nanopore, which provides a single-molecule readout of long DNA. Using Replicon-seq, we found that sister replisomes function autonomously and yet progress through chromatin with remarkable consistency. Replication forks that encounter obstacles pause for a short duration but rapidly resume synthesis. The helicase Rrm3 plays a critical role both in mitigating the effect of protein barriers and with facilitating efficient termination. Replicon-seq provides a high-resolution means of defining how individual replisomes move across the genome.


Assuntos
DNA Helicases , Replicação do DNA , Cromatina/genética , Cromossomos/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo
2.
Trends Genet ; 38(10): 987-988, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35643778

RESUMO

Claussin et al. introduce Replicon-seq, a new genome-wide DNA sequencing technology that monitors the progression of individual replisomes at high resolution in vivo.


Assuntos
Replicação do DNA , Replicon , DNA , DNA Helicases/metabolismo , Replicon/genética
3.
J Virol ; 98(7): e0050424, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38899934

RESUMO

Animal models of authentic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection require operation in biosafety level 3 (BSL-3) containment. In the present study, we established a mouse model employing a single-cycle infectious virus replicon particle (VRP) system of SARS-CoV-2 that can be safely handled in BSL-2 laboratories. The VRP [ΔS-VRP(G)-Luc] contains a SARS-CoV-2 genome in which the spike gene was replaced by a firefly luciferase (Fluc) reporter gene (Rep-Luci), and incorporates the vesicular stomatitis virus glycoprotein on the surface. Intranasal inoculation of ΔS-VRP(G)-Luc can successfully transduce the Rep-Luci genome into mouse lungs, initiating self-replication of Rep-Luci and, accordingly, inducing acute lung injury mimicking the authentic SARS-CoV-2 pathology. In addition, the reporter Fluc expression can be monitored using a bioluminescence imaging approach, allowing a rapid and convenient determination of viral replication in ΔS-VRP(G)-Luc-infected mouse lungs. Upon treatment with an approved anti-SARS-CoV-2 drug, VV116, the viral replication in infected mouse lungs was significantly reduced, suggesting that the animal model is feasible for antiviral evaluation. In summary, we have developed a BSL-2-compliant mouse model of SARS-CoV-2 infection, providing an advanced approach to study aspects of the viral pathogenesis, viral-host interactions, as well as the efficacy of antiviral therapeutics in the future.IMPORTANCESevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly contagious and pathogenic in humans; thus, research on authentic SARS-CoV-2 has been restricted to biosafety level 3 (BSL-3) laboratories. However, due to the scarcity of BSL-3 facilities and trained personnel, the participation of a broad scientific community in SARS-CoV-2 research had been greatly limited, hindering the advancement of our understanding on the basic virology as well as the urgently necessitated drug development. Previously, our colleagues Jin et al. had generated a SARS-CoV-2 replicon by replacing the essential spike gene in the viral genome with a Fluc reporter (Rep-Luci), which can be safely operated under BSL-2 conditions. By incorporating the Rep-Luci into viral replicon particles carrying vesicular stomatitis virus glycoprotein on their surface, and via intranasal inoculation, we successfully transduced the Rep-Luci into mouse lungs, developing a mouse model mimicking SARS-CoV-2 infection. Our model can serve as a useful platform for SARS-CoV-2 pathological studies and antiviral evaluation under BSL2 containment.


Assuntos
Antivirais , COVID-19 , Modelos Animais de Doenças , Genes Reporter , SARS-CoV-2 , Replicação Viral , Animais , SARS-CoV-2/fisiologia , SARS-CoV-2/genética , Camundongos , COVID-19/virologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Humanos , Pulmão/virologia , Pulmão/patologia , Betacoronavirus/fisiologia , Betacoronavirus/genética , Pneumonia Viral/virologia , Infecções por Coronavirus/virologia , Contenção de Riscos Biológicos , Pandemias , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Feminino , Camundongos Endogâmicos BALB C , Chlorocebus aethiops , Replicon , Células Vero , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo
4.
J Virol ; 98(2): e0121623, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38236006

RESUMO

Feline infectious peritonitis (FIP) is a fatal feline disease, caused by a feline coronavirus (FCoV), namely feline infectious peritonitis virus (FIPV). We produced a baby hamster kidney 21 (BHK) cell line expressing a serotype I FCoV replicon RNA with a green fluorescent protein (GFP) reporter gene (BHK-F-Rep) and used it as an in vitro screening system to test different antiviral compounds. Two inhibitors of the FCoV main protease (Mpro), namely GC376 and Nirmatrelvir, as well as the nucleoside analog Remdesivir proved to be effective in inhibiting the replicon system. Different combinations of these compounds also proved to be potent inhibitors, having an additive effect when combined. Remdesivir, GC376, and Nirmatrelvir all have a 50% cytotoxic concentration (CC50) more than 200 times higher than their half-maximal inhibitory concentrations (IC50), making them important candidates for future in vivo studies as well as clinically implemented drug candidates. In addition, results were acquired with a virus infection system, where Felis catus whole fetus 4 (Fcwf-4) cells were infected with a previously described recombinant GFP-expressing FIPV (based on the laboratory-adapted serotype I FIPV strain Black) and treated with the most promising compounds. Results acquired with the replicon system were comparable to the results acquired with the virus infection system, demonstrating that we successfully implemented the FCoV replicon system for antiviral screening. We expect that this system will greatly facilitate future screens for anti-FIPV compounds and provide a non-infectious system to study and evaluate drug-resistant mutations that may emerge in the FIPV genome.IMPORTANCEFIPV is of great significance in the cat population around the world, causing 0.3%-1.4% of feline deaths in veterinary practices (2). As there are neither effective preventive measures nor approved treatment options available, there is an urgent need to identify antiviral drugs against FIPV. Our FCoV replicon system provides a valuable tool for drug discovery in vitro. Due to the lack of cell culture systems for serotype I FCoVs (the serotype most prevalent in the feline population) (2), a different system is needed to study these viruses. A viral replicon system is a valuable tool for studying FCoVs. Overall, our results demonstrate the utility of the serotype I feline coronavirus replicon system for antiviral screening as well as to study this virus in general. We propose several compounds representing promising candidates for future clinical trials and ultimately with the potential to save cats suffering from FIP.


Assuntos
Antivirais , Coronavirus Felino , Peritonite Infecciosa Felina , Lactamas , Leucina , Ácidos Sulfônicos , Animais , Gatos , Antivirais/farmacologia , Coronavirus Felino/efeitos dos fármacos , Peritonite Infecciosa Felina/tratamento farmacológico , Lactamas/farmacologia , Leucina/análogos & derivados , RNA , Ácidos Sulfônicos/farmacologia
5.
Mol Ther ; 32(8): 2519-2534, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38894543

RESUMO

Self-amplifying mRNA (SAM) vaccines can be rapidly deployed in the event of disease outbreaks. A legitimate safety concern is the potential for recombination between alphavirus-based SAM vaccines and circulating viruses. This theoretical risk needs to be assessed in the regulatory process for SAM vaccine approval. Herein, we undertake extensive in vitro and in vivo assessments to explore recombination between SAM vaccine and a wide selection of alphaviruses and a coronavirus. SAM vaccines were found to effectively limit alphavirus co-infection through superinfection exclusion, although some co-replication was still possible. Using sensitive cell-based assays, replication-competent alphavirus chimeras were generated in vitro as a result of rare, but reproducible, RNA recombination events. The chimeras displayed no increased fitness in cell culture. Viable alphavirus chimeras were not detected in vivo in C57BL/6J, Rag1-/- and Ifnar-/- mice, in which high levels of SAM vaccine and alphavirus co-replicated in the same tissue. Furthermore, recombination between a SAM-spike vaccine and a swine coronavirus was not observed. In conclusion we state that although the ability of SAM vaccines to recombine with alphaviruses might be viewed as an environmental safety concern, several key factors substantially mitigate against in vivo emergence of chimeric viruses from SAM vaccine recipients.


Assuntos
Alphavirus , Recombinação Genética , Vacinas de mRNA , Animais , Camundongos , Alphavirus/genética , Alphavirus/imunologia , Camundongos Endogâmicos C57BL , Humanos , Receptor de Interferon alfa e beta/genética , Replicação Viral , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/imunologia , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/efeitos adversos , Camundongos Knockout , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Vacinas Virais/imunologia , Vacinas Virais/genética , Vacinas Virais/efeitos adversos
6.
J Virol ; 97(11): e0122523, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37877718

RESUMO

IMPORTANCE: Alphavirus replicons are being developed as self-amplifying RNAs aimed at improving the efficacy of mRNA vaccines. These replicons are convenient for genetic manipulations and can express heterologous genetic information more efficiently and for a longer time than standard mRNAs. However, replicons mimic many aspects of viral replication in terms of induction of innate immune response, modification of cellular transcription and translation, and expression of nonstructural viral genes. Moreover, all replicons used in this study demonstrated expression of heterologous genes in cell- and replicon's origin-specific modes. Thus, many aspects of the interactions between replicons and the host remain insufficiently investigated, and further studies are needed to understand the biology of the replicons and their applicability for designing a new generation of mRNA vaccines. On the other hand, our data show that replicons are very flexible expression systems, and additional modifications may have strong positive impacts on protein expression.


Assuntos
Alphavirus , Regulação Viral da Expressão Gênica , Interações entre Hospedeiro e Microrganismos , Replicon , Proteínas Virais , Alphavirus/genética , Alphavirus/metabolismo , Vacinas de mRNA/genética , Replicon/genética , Replicação Viral/genética , RNA Viral/biossíntese , RNA Viral/genética , Interações entre Hospedeiro e Microrganismos/genética , Proteínas Virais/biossíntese , Proteínas Virais/genética
7.
J Med Virol ; 96(3): e29547, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38511574

RESUMO

We have previously developed a bacterial artificial chromosome (BAC)-vectored SARS-CoV-2 replicon, namely BAC-CoV2-Rep, which, upon transfection into host cells, serves as a transcription template for SARS-CoV-2 replicon mRNA to initiate replicon replication and produce nanoluciferase (Nluc) reporter from the subgenomic viral mRNA. However, an inherent issue of such DNA-launched replicon system is that the nascent full-length replicon transcript undergoes process by host RNA splicing machinery, which reduces replicon replication and generates spliced mRNA species expressing NLuc reporter independent of replicon replication. To mitigate this problem, we employed Isoginkgetin, a universal eukaryotic host splicing inhibitor, to treat cells transfected with BAC-CoV2-Rep. Isoginkgetin effectively increased the level of full-length replicon transcripts while concurrently reducing the level of Nluc signal derived from spliced replicon mRNA, making the Nluc reporter signal more correlated with replicon replication, as evidenced by treatment with known SARS-CoV-2 replication inhibitors including Remdesivir, GC376, and EIDD-1931. Thus, our study emphasizes that host RNA splicing is a confounding factor for DNA-launched SARS-CoV-2 replicon systems, which can be mitigated by Isoginkgetin treatment.


Assuntos
Biflavonoides , COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Replicon , RNA Mensageiro , Replicação Viral
8.
J Med Virol ; 96(1): e29376, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38235850

RESUMO

Semliki Forest virus (SFV) viral replicon particles (VRPs) have been frequently used in various animal models and clinical trials. Chimeric replicon particles offer different advantages because of their unique biological properties. We here constructed a novel three-plasmid packaging system for chimeric SFV/SIN VRPs. The capsid and envelope of SIN structural proteins were generated using two-helper plasmids separately, and the SFV replicon contained the SFV replicase gene, packaging signal of SIN, subgenomic promoter followed by the exogenous gene, and 3' UTR of SIN. The chimeric VRPs carried luciferase or eGFP as reporter genes. The fluorescence and electron microscopy results revealed that chimeric VRPs were successfully packaged. The yield of the purified chimeric VRPs was approximately 2.5 times that of the SFV VRPs (1.38 × 107 TU/ml vs. 5.41 × 106 TU/ml) (p < 0.01). Furthermore, chimeric VRPs could be stored stably at 4°C for at least 60 days. Animal experiments revealed that mice immunized with chimeric VRPs (luciferase) had stronger luciferase expression than those immunized with equivalent amount of SFV VRPs (luciferase) (p < 0.01), and successfully expressed luciferase for approximately 12 days. Additionally, the chimeric VRPs expressed the RBD of SARS-CoV-2 efficiently and induced robust RBD-specific antibody responses in mice. In conclusion, the chimeric VRPs constructed here met the requirements of a gene delivery tool for vaccine development and cancer therapy.


Assuntos
Vírus da Floresta de Semliki , Sindbis virus , Camundongos , Animais , Vírus da Floresta de Semliki/genética , Sindbis virus/genética , Plasmídeos/genética , Replicon , Luciferases/genética , Vetores Genéticos
9.
Arch Biochem Biophys ; 759: 110111, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39111614

RESUMO

Chikungunya virus (CHIKV), transmitted by mosquitoes, poses a significant global health threat. Presently, no effective treatment options are available to reduce the disease burden. The lack of approved therapeutics against CHIKV and the complex spectrum of chronic musculoskeletal and neurological manifestations raise significant concerns, and repurposing drugs could offer swift avenues in the development of effective treatment strategies. RNA capping is a crucial step meditated by non-structural protein 1 (nsP1) in CHIKV replication. In this study, FDA-approved antivirals targeting CHIKV nsP1 methyltransferase (MTase) have been identified by structure-based virtual screening. Berbamine Hydrochloride (BH), ABT199/Venetoclax (ABT), and Ponatinib (PT) were the top-hits, which exhibited robust binding energies. Tryptophan fluorescence spectroscopy-based assay confirmed binding of BH-, ABT-, and PT to purified nsP1 with KD values ∼5.45 µM, ∼161.3 µM, and ∼3.83 µM, respectively. In a capillary electrophoresis-based assay, a decrease in CHIKV nsP1 MTase activity was observed in a dose-dependent manner. Treatment with BH, ABT, and PT lead to a dose-dependent reduction in the virus titer with IC50 < 100, ∼6.75, and <3.9 nM, respectively, and reduced viral mRNA levels. The nsP1 MTases are highly conserved among alphaviruses; therefore, BH, ABT, and PT, as expected, inhibited replication machinery in Sindbis virus (SINV) replicon assay with IC50 ∼1.94, ∼0.23, and >1.25 µM, respectively. These results highlight the potential of repurposing drugs as rapid and effective antiviral therapeutics against CHIKV.


Assuntos
Antivirais , Vírus Chikungunya , Metiltransferases , Antivirais/farmacologia , Antivirais/química , Metiltransferases/antagonistas & inibidores , Metiltransferases/metabolismo , Vírus Chikungunya/efeitos dos fármacos , Animais , Sulfonamidas/farmacologia , Sulfonamidas/química , Humanos , Piridazinas/farmacologia , Piridazinas/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/química , Replicação Viral/efeitos dos fármacos , Imidazóis/farmacologia , Imidazóis/química , Benzilisoquinolinas
10.
Mol Pharm ; 21(6): 2727-2739, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38709860

RESUMO

The dramatic effectiveness of recent mRNA (mRNA)-based COVID vaccines delivered in lipid nanoparticles has highlighted the promise of mRNA therapeutics in general. In this report, we extend our earlier work on self-amplifying mRNAs delivered in spherical in vitro reconstituted virus-like particles (VLPs), and on drug delivery using cylindrical virus particles. In particular, we carry out separate in vitro assemblies of a self-amplifying mRNA gene in two different virus-like particles: one spherical, formed with the capsid protein of cowpea chlorotic mottle virus (CCMV), and the other cylindrical, formed from the capsid protein of tobacco mosaic virus (TMV). The mRNA gene is rendered self-amplifying by genetically fusing it to the RNA-dependent RNA polymerase (RdRp) of Nodamura virus, and the relative efficacies of cell uptake and downstream protein expression resulting from their CCMV- and TMV-packaged forms are compared directly. This comparison is carried out by their transfections into cells in culture: expressions of two self-amplifying genes, enhanced yellow fluorescent protein (EYFP) and Renilla luciferase (Luc), packaged alternately in CCMV and TMV VLPs, are quantified by fluorescence and chemiluminescence levels, respectively, and relative numbers of the delivered mRNAs are measured by quantitative real-time PCR. The cellular uptake of both forms of these VLPs is further confirmed by confocal microscopy of transfected cells. Finally, VLP-mediated delivery of the self-amplifying-mRNA in mice following footpad injection is shown by in vivo fluorescence imaging to result in robust expression of EYFP in the draining lymph nodes, suggesting the potential of these plant virus-like particles as a promising mRNA gene and vaccine delivery modality. These results establish that both CCMV and TMV VLPs can deliver their in vitro packaged mRNA genes to immune cells and that their self-amplifying forms significantly enhance in situ expression. Choice of one VLP (CCMV or TMV) over the other will depend on which geometry of nucleocapsid is self-assembled more efficiently for a given length and sequence of RNA, and suggests that these plant VLP gene delivery systems will prove useful in a wide variety of medical applications, both preventive and therapeutic.


Assuntos
Proteínas do Capsídeo , RNA Mensageiro , Vírus do Mosaico do Tabaco , Animais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Camundongos , Vírus do Mosaico do Tabaco/genética , Proteínas do Capsídeo/genética , Bromovirus/genética , Nanopartículas/química , Humanos , Feminino , Vacinas contra COVID-19/administração & dosagem , Vírion/genética , RNA Polimerase Dependente de RNA/metabolismo , RNA Polimerase Dependente de RNA/genética , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Lipossomos
11.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38467395

RESUMO

AIMS: The primary objective of this study was to analyze antimicrobial resistance (AMR), with a particular focus on ß-lactamase genotypes and plasmid replicon types of Shiga toxin-producing Escherichia coli (STEC) strains originating from various animal hosts. METHODS AND RESULTS: A total of 84 STEC strains were isolated from cattle (n = 32), sheep/goats (n = 26), pigeons (n = 20), and wild animals (n = 6) between 2010 and 2018 in various regions of Iran. The Kirby-Bauer susceptibility test and multiple polymerase chain reaction (PCR) panels were employed to elucidate the correlation between AMR and plasmid replicon types in STEC isolates. The predominant replicon types were IncFIC and IncFIB in cattle (46.8%), IncFIC in sheep/goats (46.1%), IncA/C in pigeons (90%), and IncP in wild animals (50%). STEC of serogroups O113, O26, and O111 harbored the IncFIB (100%), IncI1 (80%), and IncFIC + IncA/C (100%) plasmids, respectively. A remarkable AMR association was found between ciprofloxacin (100%), neomycin (68.7%), and tetracycline (61.7%) resistance with IncFIC; amoxicillin + clavulanic acid (88.8%) and tetracycline (61.7%) with IncA/C; ciprofloxacin (100%) with IncFIB; fosfomycin (85.7%) and sulfamethoxazole + trimethoprim (80%) with IncI1. IncI1 appeared in 83.3%, 50%, and 100% of the isolates harboring blaCTX-M, blaTEM, and blaOXA ß-lactamase genes, respectively. CONCLUSIONS: The emergence of O26/IncI1/blaCTX-M STEC in cattle farms poses a potential risk to public health.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Animais , Bovinos , Ovinos , Antibacterianos/farmacologia , beta-Lactamases/genética , Infecções por Escherichia coli/veterinária , Farmacorresistência Bacteriana/genética , Plasmídeos/genética , Resistência beta-Lactâmica , Ciprofloxacina , Genótipo , Cabras , Tetraciclinas , Proteínas de Escherichia coli/genética
12.
Ann Clin Microbiol Antimicrob ; 23(1): 19, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402160

RESUMO

OBJECTIVE: In our study, K. pneumoniae strains (non-susceptible to carbapenem) (n = 60) were obtained from various clinical samples from Rize State Hospital between 2015 and 2017 and it is aimed to identify antibiotic resistance genes and replicon typing. METHODS: Antibiotic susceptibility tests of the strains were performed with Kirby-Bauer disk diffusion test and the Vitek-2 automated system (BioMerieux, France). Antibiotic resistance genes and replicon typing was characterized by PCR method. RESULTS: It was determined that K. pneumaniae isolates were mostly isolated from the samples of the intensive care unit. All of the K. pneumoniae strains examined in this study were found to be ampicillin/sulbactam and ertapenem resistant but colistin susceptible. Amoxacillin/clavulonic acid resistance was detected at 98.14% of strains. The blaOXA-48 gene was mostly detected in isolates. The most common type of plasmid was I1 and 3 different plasmid types were found in five different strains together. CONCLUSION: This study also shows that the distribution of NDM-1 and OXA-48 carbapenemases has increased since the first co-display in Türkiye and that IncHI1 is the first record in our country. This study provides an overview of the major plasmid families occurring in multiple antibiotic-resistant strains of K. pneumoniae. To our knowledge, this study represents the first report of IncHI1 record in Türkiye.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , Humanos , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/genética , Antibacterianos/farmacologia , beta-Lactamases/genética , Carbapenêmicos/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Replicon
13.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34686605

RESUMO

Self-amplifying RNA replicons are promising platforms for vaccine generation. Their defects in one or more essential functions for viral replication, particle assembly, or dissemination make them highly safe as vaccines. We previously showed that the deletion of the envelope (E) gene from the Middle East respiratory syndrome coronavirus (MERS-CoV) produces a replication-competent propagation-defective RNA replicon (MERS-CoV-ΔE). Evaluation of this replicon in mice expressing human dipeptidyl peptidase 4, the virus receptor, showed that the single deletion of the E gene generated an attenuated mutant. The combined deletion of the E gene with accessory open reading frames (ORFs) 3, 4a, 4b, and 5 resulted in a highly attenuated propagation-defective RNA replicon (MERS-CoV-Δ[3,4a,4b,5,E]). This RNA replicon induced sterilizing immunity in mice after challenge with a lethal dose of a virulent MERS-CoV, as no histopathological damage or infectious virus was detected in the lungs of challenged mice. The four mutants lacking the E gene were genetically stable, did not recombine with the E gene provided in trans during their passage in cell culture, and showed a propagation-defective phenotype in vivo. In addition, immunization with MERS-CoV-Δ[3,4a,4b,5,E] induced significant levels of neutralizing antibodies, indicating that MERS-CoV RNA replicons are highly safe and promising vaccine candidates.


Assuntos
Infecções por Coronavirus/prevenção & controle , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , RNA Viral/administração & dosagem , Replicon , Vacinas Virais/administração & dosagem , Animais , Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , Infecções por Coronavirus/genética , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Vírus Defeituosos/genética , Vírus Defeituosos/imunologia , Feminino , Deleção de Genes , Genes env , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , RNA Viral/genética , RNA Viral/imunologia , Vacinas de DNA , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia , Virulência/genética , Virulência/imunologia
14.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33766889

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) research and antiviral discovery are hampered by the lack of a cell-based virus replication system that can be readily adopted without biosafety level 3 (BSL-3) restrictions. Here, the construction of a noninfectious SARS-CoV-2 reporter replicon and its application in deciphering viral replication mechanisms and evaluating SARS-CoV-2 inhibitors are presented. The replicon genome is replication competent but does not produce progeny virions. Its replication can be inhibited by RdRp mutations or by known SARS-CoV-2 antiviral compounds. Using this system, a high-throughput antiviral assay has also been developed. Significant differences in potencies of several SARS-CoV-2 inhibitors in different cell lines were observed, which highlight the challenges of discovering antivirals capable of inhibiting viral replication in vivo and the importance of testing compounds in multiple cell culture models. The generation of a SARS-CoV-2 replicon provides a powerful platform to expand the global research effort to combat COVID-19.


Assuntos
Antivirais/farmacologia , COVID-19/virologia , Ensaios de Triagem em Larga Escala/métodos , Replicon/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Células A549 , Animais , Chlorocebus aethiops , RNA-Polimerase RNA-Dependente de Coronavírus/genética , Células HEK293 , Humanos , Replicon/genética , SARS-CoV-2/genética , Células Vero , Replicação Viral/efeitos dos fármacos
15.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39125914

RESUMO

Multiple drug resistance (MDR) has gained pronounced attention among Enterobacterales. The transfer of multiple antimicrobial resistance genes, frequently carried on conjugative incompatibility F (IncF) plasmids and facilitating interspecies resistance transmission, has been linked to Salmonella spp. and E. coli in broilers. In Egypt, the growing resistance is exacerbated by the limited clinical efficacy of many antimicrobials. In this study, IncF groups were screened and characterized in drug-resistant Salmonella spp. and E. coli isolated from broilers. The antimicrobial resistance profile, PCR-based replicon typing of bacterial isolates pre- and post-plasmid curing, and IncF replicon allele sequence typing were investigated. Five isolates of E. coli (5/31; 16.13%) and Salmonella spp. (5/36; 13.89%) were pan-susceptible to the examined antimicrobial agents, and 85.07% of tested isolates were MDR and extensively drug-resistant (XDR). Twelve MDR and XDR E. coli and Salmonella spp. isolates were examined for the existence of IncF replicons (FII, FIA, and FIB). They shared resistance to ampicillin, ampicillin/sulbactam, amoxicillin/clavulanate, doxycycline, cefotaxime, and colistin. All isolates carried from one to two IncF replicons. The FII-FIA-FIB+ and FII-FIA+FIB- were the predominant replicon patterns. FIB was the most frequently detected replicon after plasmid curing. Three XDR E. coli isolates that were resistant to 12-14 antimicrobials carried a newly FIB replicon allele with four nucleotide substitutions: C99→A, G112→T, C113→T, and G114→A. These findings suggest that broilers are a significant reservoir of IncF replicons with highly divergent IncF-FIB plasmid incompatibility groups circulating among XDR Enterobacterales. Supporting these data with additional comprehensive epidemiological studies involving replicons other than the IncF can provide insights for implementing efficient policies to prevent the spreading of new replicons to humans.


Assuntos
Alelos , Galinhas , Farmacorresistência Bacteriana Múltipla , Infecções por Escherichia coli , Escherichia coli , Plasmídeos , Doenças das Aves Domésticas , Replicon , Animais , Galinhas/microbiologia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Replicon/genética , Farmacorresistência Bacteriana Múltipla/genética , Plasmídeos/genética , Doenças das Aves Domésticas/microbiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Salmonella/genética , Salmonella/efeitos dos fármacos
16.
Int J Mol Sci ; 25(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39063100

RESUMO

The Semliki Forest virus capsid protein (C) is an RNA binding protein which exhibits both specific and unspecific affinities to single-strand nucleic acids. The putative use of the self-amplifying RNAs (saRNAs) of alphaviruses for biotechnological purpose is one of the main studied strategies concerning RNA-based therapies or immunization. In this work, a recombinant C protein from SFV was expressed and purified from bacteria and used to associate in vitro with a saRNA derived from SFV. Results showed that the purified form of C protein can associate with the saRNA even after high temperature treatment. The C protein was associated with a modified saRNA coding for the green fluorescent protein (GFP) and delivered to murine macrophage cells which expressed the GFP, showing that the saRNA was functional after being associated with the recombinant purified C protein.


Assuntos
Proteínas do Capsídeo , Macrófagos , RNA Viral , Proteínas Recombinantes , Vírus da Floresta de Semliki , Vírus da Floresta de Semliki/genética , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Camundongos , Macrófagos/metabolismo , Macrófagos/virologia , Proteínas Recombinantes/genética , RNA Viral/genética , Linhagem Celular , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo
17.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396699

RESUMO

Dengue virus (DENV) causes dengue fever and dengue hemorrhagic fever, and DENV infection kills 20,000 people annually worldwide. Therefore, the development of anti-DENV drugs is urgently needed. Sofosbuvir (SOF) is an effective drug for HCV-related diseases, and its triphosphorylated metabolite inhibits viral RNA synthesis by the RNA-dependent RNA polymerase (RdRp) of HCV. (2'R)-2'-Deoxy-2'-fluoro-2'-methyluridine (FMeU) is the dephosphorylated metabolite produced from SOF. The effects of SOF and FMeU on DENV1 replication were analyzed using two DENV1 replicon-based methods that we previously established. First, a replicon-harboring cell assay showed that DENV1 replicon replication in human hepatic Huh7 cells was decreased by SOF but not by FMeU. Second, a transient replicon assay showed that DENV1 replicon replication in Huh7 cells was decreased by SOF; however, in hamster kidney BHK-21 cells, it was not suppressed by SOF. Additionally, the replicon replication in Huh7 and BHK-21 cells was not affected by FMeU. Moreover, we assessed the effects of SOF on infectious DENV1 production. SOF suppressed infectious DENV1 production in Huh7 cells but not in monkey kidney Vero cells. To examine the substrate recognition of the HCV and DENV1 RdRps, the complex conformation of SOF-containing DENV1 RdRp or HCV RdRp was predicted using AlphaFold 2. These results indicate that SOF may be used as a treatment for DENV1 infection.


Assuntos
Hepatite C , Sofosbuvir , Animais , Cricetinae , Chlorocebus aethiops , Humanos , Sofosbuvir/farmacologia , Antivirais/farmacologia , Células Vero , RNA Polimerase Dependente de RNA , Replicação Viral , Hepacivirus/genética
18.
Plant J ; 112(1): 284-293, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35916236

RESUMO

Gene silencing for functional studies in plants has been largely facilitated by manipulating viral genomes with inserts from host genes to trigger virus-induced gene silencing (VIGS) against the corresponding mRNAs. However, viral genomes encode multiple proteins and can disrupt plant homeostasis by interfering with endogenous cell mechanisms. To try to circumvent this functional limitation, we have developed a silencing method based on the minimal autonomously-infectious nucleic acids currently known: viroids, which lack proven coding capability. The genome of Eggplant latent viroid, an asymptomatic viroid, was manipulated with insertions ranging between 21 and 42 nucleotides. Our results show that, although larger insertions might be tolerated, the maintenance of the secondary structure appears to be critical for viroid genome stability. Remarkably, these modified ELVd molecules are able to induce systemic infection promoting the silencing of target genes in eggplant. Inspired by the design of artificial microRNAs, we have developed a simple and standardized procedure to generate stable insertions into the ELVd genome capable of silencing a specific target gene. Analogously to VIGS, we have termed our approach viroid-induced gene silencing, and demonstrate that it is a promising tool for dissecting gene functions in eggplant.


Assuntos
MicroRNAs , Solanum melongena , Viroides , Inativação Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Nucleotídeos/metabolismo , Doenças das Plantas/genética , Plantas/metabolismo , RNA Circular/genética , RNA Viral/genética , Solanum melongena/genética , Viroides/genética , Viroides/metabolismo
19.
Plant Mol Biol ; 111(1-2): 1-20, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36315306

RESUMO

KEY MESSAGE: We summarise recent advancements to achieve higher homologous recombination based gene targeting efficiency in different animals and plants. The genome editing has revolutionized the agriculture and human therapeutic sectors by its ability to create precise, stable and predictable mutations in the genome. It depends upon targeted double-strand breaks induction by the engineered endonucleases, which then gets repaired by highly conserved endogenous DNA repair mechanisms. The repairing could be done either through non-homologous end joining (NHEJ) or homology-directed repair (HDR) pathways. The HDR-based editing can be applied for precise gene targeting such as insertion of a new gene, gene replacement and altering of the regulatory sequence of a gene to control the existing protein expression. However, HDR-mediated editing is considered challenging because of lower efficiency in higher eukaryotes, thus, preventing its widespread application. This article reviews the recent progress of HDR-mediated editing and discusses novel strategies such as cell cycle synchronization, modulation of DNA damage repair factors, engineering of Cas protein favoring HDR and CRISPR-Cas reagents delivery methods to improve efficiency for generating knock-in events in both plants and animals. Further, multiplexing of described methods may be promising towards achieving higher donor template-assisted homologous recombination efficiency at the target locus.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Humanos , Edição de Genes/métodos , Recombinação Homóloga , Reparo do DNA/genética , Reparo de DNA por Recombinação , Reparo do DNA por Junção de Extremidades
20.
J Gen Virol ; 104(11)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37942835

RESUMO

Hepatitis E virus (HEV) is an emerging pathogen responsible for more than 20 million cases of acute hepatitis globally per annum. Healthy individuals typically have a self-limiting infection, but mortality rates in some populations such as pregnant women can reach 30 %. A detailed understanding of the virus lifecycle is lacking, mainly due to limitations in experimental systems. In this regard, the cyclophilins are an important family of proteins that have peptidyl-prolyl isomerase activity and play roles in the replication of a number of positive-sense RNA viruses, including hepatotropic viruses such as hepatitis C virus (HCV). Cyclophilins A and B (CypA/B) are the two most abundant Cyps in hepatocytes and are therefore potential targets for pan-viral therapeutics. Here, we investigated the importance of CypA and CypB for HEV genome replication using sub-genomic replicons. Using a combination of pharmacological inhibition by cyclosporine A (CsA), and silencing by small hairpin RNA we find that CypA and CypB are not essential for HEV replication. However, we find that silencing of CypB reduces replication of some HEV isolates in some cells. Furthermore, sensitivity to Cyp silencing appears to be partly conferred by the sequence within the hypervariable region of the viral polyprotein. These data suggest HEV is atypical in its requirements for cyclophilin for viral genome replication and that this phenomenon could be genotype- and sequence-specific.


Assuntos
Hepatite C , Vírus da Hepatite E , Gravidez , Feminino , Humanos , Ciclofilinas/genética , Ciclofilinas/metabolismo , Vírus da Hepatite E/genética , Hepacivirus/genética , Ciclosporina/farmacologia , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa