Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Neuroimage ; 296: 120682, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38866195

RESUMO

Accurate resection cavity segmentation on MRI is important for neuroimaging research involving epilepsy surgical outcomes. Manual segmentation, the gold standard, is highly labour intensive. Automated pipelines are an efficient potential solution; however, most have been developed for use following temporal epilepsy surgery. Our aim was to compare the accuracy of four automated segmentation pipelines following surgical resection in a mixed cohort of subjects following temporal or extra temporal epilepsy surgery. We identified 4 open-source automated segmentation pipelines. Epic-CHOP and ResectVol utilise SPM-12 within MATLAB, while Resseg and Deep Resection utilise 3D U-net convolutional neural networks. We manually segmented the resection cavity of 50 consecutive subjects who underwent epilepsy surgery (30 temporal, 20 extratemporal). We calculated Dice similarity coefficient (DSC) for each algorithm compared to the manual segmentation. No algorithm identified all resection cavities. ResectVol (n = 44, 88 %) and Epic-CHOP (n = 42, 84 %) were able to detect more resection cavities than Resseg (n = 22, 44 %, P < 0.001) and Deep Resection (n = 23, 46 %, P < 0.001). The SPM-based pipelines (Epic-CHOP and ResectVol) performed better than the deep learning-based pipelines in the overall and extratemporal surgery cohorts. In the temporal cohort, the SPM-based pipelines had higher detection rates, however there was no difference in the accuracy between methods. These pipelines could be applied to machine learning studies of outcome prediction to improve efficiency in pre-processing data, however human quality control is still required.


Assuntos
Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Adulto , Feminino , Masculino , Epilepsia/cirurgia , Epilepsia/diagnóstico por imagem , Adulto Jovem , Processamento de Imagem Assistida por Computador/métodos , Pessoa de Meia-Idade , Adolescente , Algoritmos , Procedimentos Neurocirúrgicos/métodos , Neuroimagem/métodos
2.
BMC Cancer ; 23(1): 709, 2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516835

RESUMO

BACKGROUND: The brain is a common site for cancer metastases. In case of large and/or symptomatic brain metastases, neurosurgical resection is performed. Adjuvant radiotherapy is a standard procedure to minimize the risk of local recurrence and is increasingly performed as local stereotactic radiotherapy to the resection cavity. Both hypofractionated stereotactic radiotherapy (HFSRT) and single fraction stereotactic radiosurgery (SRS) can be applied in this case. Although adjuvant stereotactic radiotherapy to the resection cavity is widely used in clinical routine and recommended in international guidelines, the optimal fractionation scheme still remains unclear. The SATURNUS trial prospectively compares adjuvant HFSRT with SRS and seeks to detect the superiority of HFSRT over SRS in terms of local tumor control. METHODS: In this single center two-armed randomized phase III trial, adjuvant radiotherapy to the resection cavity of brain metastases with HFSRT (6 - 7 × 5 Gy prescribed to the surrounding isodose) is compared to SRS (1 × 12-20 Gy prescribed to the surrounding isodose). Patients are randomized 1:1 into the two different treatment arms. The primary endpoint of the trial is local control at the resected site at 12 months. The trial is based on the hypothesis that HFSRT is superior to SRS in terms of local tumor control. DISCUSSION: Although adjuvant stereotactic radiotherapy after resection of brain metastases is considered standard of care treatment, there is a need for further prospective research to determine the optimal fractionation scheme. To the best of our knowledge, the SATURNUS study is the only randomized phase III study comparing different regimes of postoperative stereotactic radiotherapy to the resection cavity adequately powered to detect the superiority of HFSRT regarding local control. TRIAL REGISTRATION: The study was retrospectively registered with ClinicalTrials.gov, number NCT05160818, on December 16, 2021. The trial registry record is available on  https://clinicaltrials.gov/study/NCT05160818 . The presented protocol refers to version V1.3 from March 21, 2021.


Assuntos
Neoplasias Encefálicas , Radiocirurgia , Humanos , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirurgia , Hipofracionamento da Dose de Radiação , Encéfalo , Fracionamento da Dose de Radiação , Adjuvantes Imunológicos , Ensaios Clínicos Controlados Aleatórios como Assunto , Ensaios Clínicos Fase III como Assunto
3.
J Neurooncol ; 165(3): 479-486, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38095775

RESUMO

BACKGROUND AND PURPOSE: Brain tumors are in general treated with a maximal safe resection followed by radiotherapy of remaining tumor including the resection cavity (RC) and chemotherapy. Anatomical changes of the RC during radiotherapy can have impact on the coverage of the target volume. The aim of the current study was to quantify the potential changes of the RC and to identify risk factors for RC changes. MATERIALS AND METHODS: Sixteen patients treated with pencil beam scanning proton therapy between October 2019 and April 2020 were retrospectively analyzed. The RC was delineated on pre-treatment computed tomography (CT) and magnetic resonance imaging, and weekly CT-scans during treatment. Isotropic expansions were applied to the pre-treatment RC (1-5 mm). The percentage of volume of the RC during treatment within the expanded pre-treatment volumes was quantified. Potential risk factors (volume of RC, time interval surgery-radiotherapy and relationship of RC to the ventricles) were evaluated using Spearman's rank correlation coefficient. RESULTS: The average variation in relative RC volume during treatment was 26.1% (SD 34.6%). An expansion of 4 mm was required to cover > 95% of the RC volume in > 90% of patients. There was a significant relationship between the absolute volume of the pre-treatment RC and the volume changes during treatment (Spearman's ρ = - 0.644; p = 0.007). CONCLUSION: RCs are dynamic after surgery. Potentially, an additional margin in brain cancer patients with an RC should be considered, to avoid insufficient target coverage. Future research on local recurrence patterns is recommended.


Assuntos
Neoplasias Encefálicas , Radioterapia de Intensidade Modulada , Humanos , Estudos Retrospectivos , Terapia Combinada , Tomografia Computadorizada por Raios X , Planejamento da Radioterapia Assistida por Computador , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirurgia , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Dosagem Radioterapêutica
4.
J Appl Clin Med Phys ; 24(11): e14088, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37415385

RESUMO

PURPOSE: The purpose of this study is to investigate inter-planner plan quality variability using a manual forward planning (MFP)- or fast inverse planning (FIP, Lightning)-approach for single brain lesions treated with the Gamma Knife® (GK) Icon™. METHODS: Thirty patients who were previously treated with GK stereotactic radiosurgery or radiotherapy were selected and divided into three groups (post-operative resection cavity, intact brain metastasis, and vestibular schwannoma [10 patients per group]). Clinical plans for the 30 patients were generated by multiple planners using FIP only (1), a combination of FIP and MFP (12), and MFP only (17). Three planners (Senior, Junior, and Novice) with varying experience levels re-planned the 30 patients using MFP and FIP (two plans per patient) with planning time limit of 60 min. Statistical analysis was performed to compare plan quality metrics (Paddick conformity index, gradient index, number of shots, prescription isodose line, target coverage, beam-on-time (BOT), and organs-at-risk doses) of MFP or FIP plans among three planners and to compare plan quality metrics between each planner's MFP/FIP plans and clinical plans. Variability in FIP parameter settings (BOT, low dose, and target max dose) and in planning time among the planners was also evaluated. RESULTS: Variations in plan quality metrics of FIP plans among three planners were smaller than those of MFP plans for all three groups. Junior's MFP plans were the most comparable to the clinical plans, whereas Senior's and Novice's MFP plans were superior and inferior, respectively. All three planners' FIP plans were comparable or superior to the clinical plans. Differences in FIP parameter settings among the planners were observed. Planning time was shorter and variations in planning time among the planners were smaller for FIP plans in all three groups. CONCLUSIONS: The FIP approach is less planner dependent and more time-honored than the MFP approach.


Assuntos
Neoplasias Encefálicas , Raio , Radiocirurgia , Humanos , Planejamento da Radioterapia Assistida por Computador , Dosagem Radioterapêutica , Neoplasias Encefálicas/secundário , Encéfalo
5.
Acta Neurochir Suppl ; 128: 85-100, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34191064

RESUMO

Over the past 15-20 years, stereotactic radiosurgery (SRS) has become the dominant method for treating patients with brain metastases (BM). The role of surgery for management of large tumors also remains important. Combining these two treatment modalities may well achieve the best local control, safety, and symptomatic relief in cases of neoplasms for which resection is desirable. After 10 years of retrospective studies that suggested patients might do better if surgery were followed by early adjuvant SRS, a prospective, randomized, controlled trial was conducted to compare such treatment with postoperative observation after tumor removal, and it showed significantly better local control in the former cohort, especially in smaller lesions, but no difference in overall survival. On the other hand, in the past 5 years, some groups have argued that neoadjuvant SRS before resection of BM might be superior to adjuvant SRS, while no clinical trial has yet been concluded that compares these two treatment strategies. For now, adjuvant and neoadjuvant SRS show evidence of utility in achieving better local control after surgical removal of BM in comparison with surgery alone, but no specific guidelines exist favoring one method over the other, and both should be considered beneficial in clinical care.


Assuntos
Neoplasias Encefálicas , Radiocirurgia , Neoplasias Encefálicas/cirurgia , Humanos , Terapia Neoadjuvante , Recidiva Local de Neoplasia/prevenção & controle , Estudos Prospectivos , Estudos Retrospectivos , Resultado do Tratamento
6.
Strahlenther Onkol ; 195(3): 207-217, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30386864

RESUMO

PURPOSE: For a large or symptomatic brain metastasis, resection and adjuvant radiotherapy are recommended. Hypofractionated stereotactic radiotherapy (HFSRT) is increasingly applied in patients with a limited number of lesions. Exact target volume definition is critical given the small safety margins. Whilst technical advances have minimized inaccuracy due to patient positioning and radiation targeting, little is known about changes in target volume. This study sought to evaluate potential changes in the resection cavity of a brain metastasis. METHODS: In all, 57 patients treated with HFSRT after surgical resection of one brain metastasis between 2008 and 2015 in our institution were included in this study. Gross tumor volume (GTV) of the initial metastasis and the volume of the resection cavity in the post-operative, planning, and follow-up MRIs were measured and compared. RESULTS: The mean cavity size decreased after surgery with the greatest change of -23.4% (±41.5%) occurring between post-operative MRI and planning MRI (p < 0.01). During this time period, the cavity volume decreased, remained stable, and increased in 79.1, 3.5, and 17.4%, respectively. A further decrease of -20.7% (±58.1%) was perceived between planning MRI and first follow-up (p < 0.01). No significant difference in pattern of change could be observed depending on the volume of initial GTV, size of the post-operative resection cavity, initial or post-resection FLAIR (fluid-attenuated inversion recovery) hyper-intensity, postsurgical ischemia, or primary tumor. The resection cavities of patients with post-operative ischemia were significantly larger than resection cavities of patients without ischemia. CONCLUSION: The resection cavity seems to be very dynamic after surgery. Hence, it remains necessary to use very recent scans for treatment planning.


Assuntos
Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundário , Encéfalo/efeitos da radiação , Hipofracionamento da Dose de Radiação , Radiocirurgia/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Encéfalo/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Terapia Combinada , Feminino , Seguimentos , Alemanha , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Planejamento da Radioterapia Assistida por Computador
7.
Stereotact Funct Neurosurg ; 97(1): 24-30, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30763944

RESUMO

BACKGROUND: Significant heterogeneity exists in target volumes for postoperative stereotactic radiosurgery (SRS) for brain metastases. A set of contouring guidelines was recently published, and we investigated the impact of deviations. METHODS: Patients (n = 41) undergoing single-fraction Gamma Knife SRS following surgical resection of brain metastases from 2011 to 2017 were retrospectively reviewed. SRS included the entire contrast-enhancing cavity with heterogeneity in inclusion of the surgical tract and no routine margin along the dura or clinical target volume margin. Follow-up MR imaging was fused with SRS plans to assess patterns of failure. RESULTS: The median follow-up was 11.1 months with a median prescription of 18 Gy. There were 5 local failures: infield (n = 3, 60%), surgical tract (n = 1, 20%), and marginal > 5 mm from the resection cavity (n = 1, 20%). No marginal failures < 5 mm or dural margin failures were noted. For deep lesions (n = 13), 62% (n = 8) had the entire tract covered. The only tract recurrence was in a deep lesion without coverage of the surgical tract (n = 1/5). CONCLUSION: In this small preliminary experience, despite no routine inclusion of the dural tract or bone flap, no failures were noted in these locations. Omission of the surgical tract in deep lesions may increase failure rates.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Margens de Excisão , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/cirurgia , Radiocirurgia/tendências , Adulto , Idoso , Neoplasias Encefálicas/secundário , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Radiocirurgia/métodos , Estudos Retrospectivos
8.
J Neurooncol ; 140(2): 413-420, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30094718

RESUMO

BACKGROUND AND PURPOSE: Post-operative SRS (stereotactic radiosurgery) for large brain metastases is challenged by risks of radiation necrosis that limit SRS dose. Intraoperative radiotherapy (IORT) is a potential alternative, however standard dose recommendations are lacking. METHODS AND MATERIALS: Twenty consecutive brain metastases treated with post-operative SRS were retrospectively compared to IORT plans generated for 10-30 Gy in 1 fraction to 0-5 mm by estimating the applicator size and distance from critical organs using pre-operative and post-operative MRI. Additionally, 7 consecutive patients treated with IORT 30 Gy to surface were compared to retrospectively generated SRS plans using the post-operative MRI to 15-20 Gy and 30 Gy in 1 fraction marginal dose. RESULTS: For the 20 resection cavities treated with SRS and retrospectively compared to IORT, IORT from 10 to 30Gy resulted in lower or not significantly different doses to the optic apparatus and brainstem. Comparatively for the 7 patients treated with IORT 30 Gy to retrospective SRS plans to standard 15-20 Gy and 30 Gy marginal dose, IORT resulted in significantly lower doses to the optic apparatus and brainstem. At a median follow-up of 6.2 months, 86% of patients treated with surgery and IORT achieved local control and 0% developed radiographic or symptomatic radiation necrosis. CONCLUSIONS: Critical organ dosimetry for IORT remains generally lower than that achieved with single fraction SRS following resection of large brain metastases. We recommend 30 Gy to surface as the preferred prescription, consistent with the dose recommendation for IORT in glioblastoma used in the ongoing INTRAGO-II phase-III trial. Early clinical outcomes appear promising for surgery and IORT.


Assuntos
Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/terapia , Radioterapia/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos da radiação , Encéfalo/cirurgia , Neoplasias Encefálicas/diagnóstico por imagem , Terapia Combinada/métodos , Estudos de Viabilidade , Seguimentos , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Procedimentos Neurocirúrgicos , Cuidados Pós-Operatórios , Estudos Retrospectivos
9.
J Neurooncol ; 132(3): 455-462, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28260130

RESUMO

To investigate local control and radiation-induced brain necrosis in patients with melanoma brain metastases who received complete resection plus fractionated stereotactic radiosurgery (fSRS, 3 × 9 Gy) or fSRS alone. Factors associated with the clinical outcomes and the development of brain necrosis have been assessed. One hundred and twenty consecutive patients with 137 melanoma brain metastases who received surgery plus fSRS (S + fSRS) or fSRS alone were analyzed. All lesions evaluated in the study were treated with a dose of 27 Gy given in 3 fractions over three consecutive days. Cumulative incidence analysis was used to compare local failure (LF), distant brain failure (DBF), and radiation-induced brain necrosis (RN) between groups from the time of SRS. At a median follow-up of 13 months, median OS times and 1-year survival rates were comparable: S + fSRS, 14 months and 85%; fSRS, 12 months and 85% (p = 0.2). Median DBF did not differ significantly by group, being 14 months for both groups. Nine patients who received S + fSRS and 20 patients treated with fSRS recurred locally (p = 0.03). Six-month and 1-year LF rates were 5 and 12% in S + fSRS group and 17 and 28% in fSRS group (p = 0.02). RN occurred in 21 patients (S + fSRS, n = 14; fSRS, n = 7; p = 0.1). The cumulative 1-year incidence of RN was 13% after S + fSRS and 8% after fSRS (p = 0.15). In conclusion, postoperative SRS (3 × 9 Gy) to the resection cavity is an effective treatment modality for melanoma brain metastases associated with better local control as compared with fSRS alone.


Assuntos
Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/cirurgia , Melanoma/secundário , Melanoma/cirurgia , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/mortalidade , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Melanoma/mortalidade , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/mortalidade , Procedimentos Neurocirúrgicos , Radiocirurgia , Estudos Retrospectivos , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/cirurgia , Resultado do Tratamento
10.
Acta Biomater ; 173: 261-282, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37866725

RESUMO

In view of inevitable recurrences despite resection, glioblastoma (GB) is still an unmet clinical need. Dealing with the stromal-cell derived factor 1-alpha (SDF-1α)/CXCR4 axis as a hallmark of infiltrative GB tumors and with the resection cavity situation, the present study described the effects and relevance of a new engineered micro-nanostructured SF-HA-Hep aerogel sponges, made of silk fibroin (SF), hyaluronic acid (HA) and heparin (Hep) and loaded with SDF-1α, to interfere with the GB ecosystem and residual GB cells, attracting and confining them in a controlled area before elimination. 70 µm-pore sponges were designed as an implantable scaffold to trap GB cells. They presented shape memory and fit brain cavities. Histological results after implantation in brain immunocompetent Fischer rats revealed that SF-HA-Hep sponges are well tolerated for more than 3 months while moderately and reversibly colonized by immuno-inflammatory cells. The use of human U87MG GB cells overexpressing the CXCR4 receptor (U87MG-CXCR4+) and responding to SDF-1α allowed demonstrating directional GB cell attraction and colonization of the device in vitro and in vivo in orthotopic resection cavities in Nude rats. Not modifying global survival, aerogel sponge implantation strongly shaped U87MG-CXCR4+ tumors in cavities in contrast to random infiltrative growth in controls. Overall, those results support the interest of SF-HA-Hep sponges as modifiers of the GB ecosystem dynamics acting as "cell meeting rooms" and biocompatible niches whose properties deserve to be considered toward the development of new clinical procedures. STATEMENT OF SIGNIFICANCE: Brain tumor glioblastoma (GB) is one of the worst unmet clinical needs. To prevent the relapse in the resection cavity situation, new implantable biopolymer aerogel sponges loaded with a chemoattractant molecule were designed and preclinically tested as a prototype targeting the interaction between the initial tumor location and its attraction by the peritumoral environment. While not modifying global survival, biocompatible SDF1-loaded hyaluronic acid and silk fibroin sponges induce directional GB cell attraction and colonization in vitro and in rats in vivo. Interestingly, they strongly shaped GB tumors in contrast to random infiltrative growth in controls. These results provide original findings on application of exogenous engineered niches that shape tumors and serve as cell meeting rooms for further clinical developments.


Assuntos
Neoplasias Encefálicas , Fibroínas , Glioblastoma , Ratos , Humanos , Animais , Quimiocina CXCL12/farmacologia , Fibroínas/farmacologia , Ácido Hialurônico/farmacologia , Ecossistema , Recidiva Local de Neoplasia , Neoplasias Encefálicas/cirurgia , Receptores CXCR4
12.
Clin Transl Radiat Oncol ; 46: 100782, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38694237

RESUMO

Background and Purpose: After surgical resection of brain metastases (BM), radiotherapy (RT) is indicated. Postoperative stereotactic radiosurgery (SRS) reduces the risk of local progression and neurocognitive decline compared to whole brain radiotherapy (WBRT). Aside from the optimal dose and fractionation, little is known about the combination of systemic therapy and postoperative fractionated stereotactic radiotherapy (fSRT), especially regarding tumour control and toxicity. Methods: In this study, 105 patients receiving postoperative fSRT with 35 Gy in 7 fractions performed with Cyberknife were retrospectively reviewed. Overall survival (OS), local control (LC) and total intracranial brain control (TIBC) were analysed via Kaplan-Meier method. Cox proportional hazards models were used to identify prognostic factors. Results: Median follow-up was 20.8 months. One-year TIBC was 61.6% and one-year LC was 98.6%. Median OS was 28.7 (95%-CI: 16.9-40.5) months. In total, local progression (median time not reached) occurred in 2.0% and in 20.4% radiation-induced contrast enhancements (RICE) of the cavity (after median of 14.3 months) were diagnosed. Absence of extracranial metastases was identified as an independent prognostic factor for superior OS (p = <0.001) in multivariate analyses, while a higher Karnofsky performance score (KPS) was predictive for longer OS in univariate analysis (p = 0.041). Leptomeningeal disease (LMD) developed in 13% of patients. Conclusion: FSRT after surgical resection of BM is an effective and safe treatment approach with excellent local control and acceptable toxicity. Further prospective randomized trials are needed to establish standardized therapeutic guidelines.

13.
Ann Biomed Eng ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39210157

RESUMO

Glioblastoma (GBM) is the most common and malignant type of primary brain tumor. Even after surgery and chemoradiotherapy, residual GBM cells can infiltrate the healthy brain parenchyma to form secondary tumors. To mitigate GBM recurrence, we recently developed an injectable hydrogel that can be crosslinked in the resection cavity to attract, collect, and ablate residual GBM cells. We previously optimized a thiol-Michael addition hydrogel for physical, chemical, and biological compatibility with the GBM microenvironment and demonstrated CXCL12-mediated chemotaxis can attract and entrap GBM cells into this hydrogel. In this study, we synthesize hydrogels under conditions mimicking GBM resection cavities and assess feasibility of histotripsy to ablate hydrogel-encapsulated cells. The results showed the hydrogel synthesis was bio-orthogonal, not shear-thinning, and can be scaled up for injection into GBM resection mimics in vitro. Experiments also demonstrated ultrasound imaging can distinguish the synthetic hydrogel from healthy porcine brain tissue. Finally, a 500 kHz transducer applied focused ultrasound treatment to the synthetic hydrogels, with results demonstrating precise histotripsy bubble clouds could be sustained in order to uniformly ablate red blood cells encapsulated by the hydrogel for homogeneous, mechanical fractionation of the entrapped cells. Overall, this hydrogel is a promising platform for biomaterials-based GBM treatment.

14.
Cancers (Basel) ; 15(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36900346

RESUMO

During radiation therapy (RT) of glioblastoma, daily MRI with combination MRI-linear accelerator (MRI-Linac) systems has demonstrated significant anatomic changes, including evolving post-surgical cavity shrinkage. Cognitive function RT for brain tumors is correlated with radiation doses to healthy brain structures, especially the hippocampi. Therefore, this study investigates whether adaptive planning to the shrinking target could reduce normal brain RT dose with the goal of improving post-RT function. We evaluated 10 glioblastoma patients previously treated on a 0.35T MRI-Linac with a prescription of 60 Gy delivered in 30 fractions over six weeks without adaptation ("static plan") with concurrent temozolomide chemotherapy. Six weekly plans were created per patient. Reductions in the radiation dose to uninvolved hippocampi (maximum and mean) and brain (mean) were observed for weekly adaptive plans. The dose (Gy) to the hippocampi for static vs. weekly adaptive plans were, respectively: max 21 ± 13.7 vs. 15.2 ± 8.2 (p = 0.003) and mean 12.5 ± 6.7 vs. 8.4 ± 4.0 (p = 0.036). The mean brain dose was 20.6 ± 6.0 for static planning vs. 18.7 ± 6.8 for weekly adaptive planning (p = 0.005). Weekly adaptive re-planning has the potential to spare the brain and hippocampi from high-dose radiation, possibly reducing the neurocognitive side effects of RT for eligible patients.

15.
Neuroimage Clin ; 36: 103154, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35988342

RESUMO

Accurate segmentation of surgical resection sites is critical for clinical assessments and neuroimaging research applications, including resection extent determination, predictive modeling of surgery outcome, and masking image processing near resection sites. In this study, an automated resection cavity segmentation algorithm is developed for analyzing postoperative MRI of epilepsy patients and deployed in an easy-to-use graphical user interface (GUI) that estimates remnant brain volumes, including postsurgical hippocampal remnant tissue. This retrospective study included postoperative T1-weighted MRI from 62 temporal lobe epilepsy (TLE) patients who underwent resective surgery. The resection site was manually segmented and reviewed by a neuroradiologist (JMS). A majority vote ensemble algorithm was used to segment surgical resections, using 3 U-Net convolutional neural networks trained on axial, coronal, and sagittal slices, respectively. The algorithm was trained using 5-fold cross validation, with data partitioned into training (N = 27) testing (N = 9), and validation (N = 9) sets, and evaluated on a separate held-out test set (N = 17). Algorithm performance was assessed using Dice-Sørensen coefficient (DSC), Hausdorff distance, and volume estimates. Additionally, we deploy a fully-automated, GUI-based pipeline that compares resection segmentations with preoperative imaging and reports estimates of resected brain structures. The cross-validation and held-out test median DSCs were 0.84 ± 0.08 and 0.74 ± 0.22 (median ± interquartile range) respectively, which approach inter-rater reliability between radiologists (0.84-0.86) as reported in the literature. Median 95 % Hausdorff distances were 3.6 mm and 4.0 mm respectively, indicating high segmentation boundary confidence. Automated and manual resection volume estimates were highly correlated for both cross-validation (r = 0.94, p < 0.0001) and held-out test subjects (r = 0.87, p < 0.0001). Automated and manual segmentations overlapped in all 62 subjects, indicating a low false negative rate. In control subjects (N = 40), the classifier segmented no voxels (N = 33), <50 voxels (N = 5), or a small volumes<0.5 cm3 (N = 2), indicating a low false positive rate that can be controlled via thresholding. There was strong agreement between postoperative hippocampal remnant volumes determined using automated and manual resection segmentations (r = 0.90, p < 0.0001, mean absolute error = 6.3 %), indicating that automated resection segmentations can permit quantification of postoperative brain volumes after epilepsy surgery. Applications include quantification of postoperative remnant brain volumes, correction of deformable registration, and localization of removed brain regions for network modeling.


Assuntos
Aprendizado Profundo , Epilepsia , Humanos , Estudos Retrospectivos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Epilepsia/diagnóstico por imagem , Epilepsia/cirurgia
16.
Radiat Oncol ; 16(1): 73, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33858474

RESUMO

Despite complete surgical resection brain metastases are at significant risk of local recurrence without additional radiation therapy. Traditionally, the addition of postoperative whole brain radiotherapy (WBRT) has been considered the standard of care on the basis of randomized studies demonstrating its efficacy in reducing the risk of recurrence in the surgical bed as well as the incidence of new distant metastases. More recently, postoperative stereotactic radiosurgery (SRS) to the surgical bed has emerged as an effective and safe treatment option for resected brain metastases. Published randomized trials have demonstrated that postoperative SRS to the resection cavity provides superior local control compared to surgery alone, and significantly decreases the risk of neurocognitive decline compared to WBRT, without detrimental effects on survival. While studies support the use of postoperative SRS to the resection cavity as the standard of care after surgery, there are several issues that need to be investigated further with the aim of improving local control and reducing the risk of leptomeningeal disease and radiation necrosis, including the optimal dose prescription/fractionation, the timing of postoperative SRS treatment, and surgical cavity target delineation. We provide a clinical overview on current status and recent advances in resection cavity irradiation of brain metastases, focusing on relevant strategies that can improve local control and minimize the risk of radiation-induced toxicity.


Assuntos
Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/cirurgia , Encéfalo/efeitos da radiação , Necrose/etiologia , Radiocirurgia/métodos , Irradiação Craniana , Progressão da Doença , Fracionamento da Dose de Radiação , Humanos , Metástase Neoplásica , Recidiva Local de Neoplasia/mortalidade , Radioterapia , Radioterapia Adjuvante , Risco , Resultado do Tratamento
17.
Int J Comput Assist Radiol Surg ; 15(12): 1963-1974, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33029677

RESUMO

PURPOSE: Neurosurgeons can have a better understanding of surgical procedures by comparing ultrasound images obtained at different phases of the tumor resection. However, establishing a direct mapping between subsequent acquisitions is challenging due to the anatomical changes happening during surgery. We propose here a method to improve the registration of ultrasound volumes, by excluding the resection cavity from the registration process. METHODS: The first step of our approach includes the automatic segmentation of the resection cavities in ultrasound volumes, acquired during and after resection. We used a convolution neural network inspired by the 3D U-Net. Then, subsequent ultrasound volumes are registered by excluding the contribution of resection cavity. RESULTS: Regarding the segmentation of the resection cavity, the proposed method achieved a mean DICE index of 0.84 on 27 volumes. Concerning the registration of the subsequent ultrasound acquisitions, we reduced the mTRE of the volumes acquired before and during resection from 3.49 to 1.22 mm. For the set of volumes acquired before and after removal, the mTRE improved from 3.55 to 1.21 mm. CONCLUSIONS: We proposed an innovative registration algorithm to compensate the brain shift affecting ultrasound volumes obtained at subsequent phases of neurosurgical procedures. To the best of our knowledge, our method is the first to exclude automatically segmented resection cavities in the registration of ultrasound volumes in neurosurgery.


Assuntos
Imageamento Tridimensional/métodos , Procedimentos Neurocirúrgicos/métodos , Ultrassonografia/métodos , Algoritmos , Humanos , Redes Neurais de Computação , Cirurgia Assistida por Computador/métodos
18.
Front Oncol ; 10: 693, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477942

RESUMO

Introduction: Following the resection of brain metastases (BM), whole-brain radiotherapy (WBRT) is a long-established standard of care. Its position was recently challenged by the less toxic single-session radiosurgery (SRS) or fractionated stereotactic radiotherapy (FSRT) of the resection cavity, reducing dose exposure of the healthy brain. Patients and Methods: We analyzed 101 patients treated with either SRS/FSRT (n = 50) or WBRT (n = 51) following BM resection over a 5-year period. Propensity score adjustment was done for age, total number of BM, timepoint of BM diagnosis, controlled primary and extracranial metastases. A Cox Proportional Hazards model with univariate and multivariate analysis was fitted for overall survival (OS), local control (LC) and distant brain control (DBC). Results: Median patient age was 61 (interquartile range, IQR: 56-67) years and the most common histology was non-small cell lung cancer, followed by breast cancer. 38% of the patients had additional unresected BM. Twenty-four patients received SRS, 26 patients received FSRT and 51 patients received WBRT. Median OS in the SRS/FSRT subgroup was not reached (IQR NA-16.7 months) vs. 12.6 months (IQR 21.3-4.4) in the WBRT subgroup (hazard ratio, HR 3.3, 95%-CI: [1.5; 7.2] p < 0.002). Twelve-months LC-probability was 94.9% (95%-CI: [88.3; 100.0]) in the SRS subgroup vs. 81.7% (95%-CI: [66.6; 100.0]) in the WBRT subgroup (HR 0.2, 95%-CI: [0.01; 0.9] p = 0.037). Twelve-months DBC-probabilities were 65.0% (95%-CI: [50.8; 83.0]) and 58.8% (95%-CI: [42.9; 80.7]), respectively (HR 1.4, 95%-CI: [0.7; 2.7] p = 0.401). In propensity score-adjusted multivariate analysis, incomplete resection negatively impacted OS (HR 3.9, 95%-CI: [2.0;7.4], p < 0.001) and LC (HR 5.4, 95%-CI: [1.3; 21.9], p = 0.018). Excellent clinical performance (HR 0.4, 95%-CI: [0.2; 0.9], p = 0.030) and better graded prognostic assessment (GPA) score (HR 0.4, 95%-CI: [0.2; 1.0], p = 0.040) were prognostic of superior OS. A higher number of BM was associated with a greater risk of developing new distant BM (HR 5.6, 95%-CI: [1.0; 30.4], p = 0.048). In subgroup analysis, larger cavity volume (HR 1.1, 95%-CI: [1.0; 1.3], p = 0.033) and incomplete resection (HR 12.0, 95%-CI: [1.2; 118.3], p = 0.033) were associated with inferior LC following SRS/FSRT. Conclusion: This is the first propensity score-adjusted direct comparison of SRS/FSRT and WBRT following the resection of BM. Patients receiving SRS/FSRT showed longer OS and LC compared to WBRT. Future analyses will address the optimal choice of safety margin, dose and fractionation for postoperative stereotactic RT of the resection cavity.

19.
Lung Cancer ; 132: 119-125, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31097084

RESUMO

PURPOSE: to investigate clinical outcomes in patients with large brain metastases from non-small-cell lung cancer (NSCLC) who received surgical resection and postoperative stereotactic radiosurgery or SRS alone. PATIENTS AND METHODS: Two hundred and twenty-two patients with 241 large brain metastases (2-4 cm in size) who received surgery and multi-fraction SRS (mfSRS) to the resection cavity or mfSRS alone were analyzed. For all lesions the delivered dose was 3 x 9 Gy over three consecutive days. Primary endpoint of the study was local control (LC). Secondary endpoints included early improvement of neurological deficits, changes in performance status, treatment-related toxicity, radiation-induced brain necrosis (RN), distant brain failure (DBF), and overall survival (OS). Kaplan-Meier analysis and cumulative incidence function were used for comparing the probability of failure. RESULTS: At a median follow-up of 13 months, median OS times and 1-year survival rates were comparable: 13.5 months and 59% for patients receiving surgery and postoperative mfSRS to the resection cavity and 15.2 months and 68% for those treated with mfSRS alone (p = 0.2). Median DBF did not differ significantly between groups (surgery and mfSRS,12 months; mfSRS,14 months). Eighteen patients receiving surgery and mfSRS and 17 patients treated with mfSRS alone recurred locally (p = 0.2); respective 6-month and 12-month LC rates were 87% and 83% and 96% and 91% (p = 0.15). The 1-year cumulative incidence rates of RN were 15% and 7% after postoperative mfSRS and mfSRS alone (p = 0.03), respectively. CONCLUSIONS: In conclusion, mfSRS is an effective treatment for patients with large brain metastases from NSCLC resulting in equivalent LC and lower RN and risk of leptomeningeal spread compared to surgery and mf-SRS to the resection cavity. Surgery is an effective treatment option for patients with large symptomatic brain metastases who require rapid relief of neurological symptoms caused by tumor mass effect.


Assuntos
Neoplasias Encefálicas/terapia , Encéfalo/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Neoplasias Pulmonares/terapia , Radiocirurgia/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Encéfalo/cirurgia , Neoplasias Encefálicas/secundário , Carcinoma Pulmonar de Células não Pequenas/secundário , Fracionamento da Dose de Radiação , Feminino , Seguimentos , Humanos , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Masculino , Carcinomatose Meníngea , Pessoa de Meia-Idade , Procedimentos Neurocirúrgicos , Estudos Retrospectivos , Risco , Análise de Sobrevida , Resultado do Tratamento
20.
Cancer Med ; 7(6): 2350-2359, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29745035

RESUMO

In patients undergoing surgical resection of brain metastases, the risk of local recurrence remains high. Adjuvant whole brain radiation therapy (WBRT) can reduce the risk of local relapse but fails to improve overall survival. At two tertiary care centers in Germany, a retrospective study was performed to evaluate the role of hypofractionated stereotactic radiotherapy (HFSRT) in patients with brain metastases after surgical resection. In particular, need for salvage treatment, for example, WBRT, surgery, or stereotactic radiosurgery (SRS), was evaluated. Both intracranial local (LF) and locoregional (LRF) failures were analyzed. A total of 181 patients were treated with HFSRT of the surgical cavity. In addition to the assessment of local control and distant intracranial control, we analyzed treatment modalities for tumor recurrence including surgical strategies and reirradiation. Imaging follow-up for the evaluation of LF and LRF was available in 159 of 181 (88%) patients. A total of 100 of 159 (63%) patients showed intracranial progression after HFSRT. A total of 81 of 100 (81%) patients received salvage therapy. Fourteen of 81 patients underwent repeat surgery, and 78 of 81 patients received radiotherapy as a salvage treatment (53% WBRT). Patients with single or few metastases distant from the initial site or with WBRT in the past were retreated by HFSRT (14%) or SRS, 33%. Some patients developed up to four metachronous recurrences, which could be salvaged successfully. Eight (4%) patients experienced radionecrosis. No other severe side effects (CTCAE≥3) were observed. Postoperative HFSRT to the resection cavity resulted in a crude rate for local control of 80.5%. Salvage therapy for intracranial progression was commonly needed, typically at distant sites. Salvage therapy was performed with WBRT, SRS, and surgery or repeated HFSRT of the resection cavity depending on the tumor spread and underlying histology. Prospective studies are warranted to clarify whether or not the sequence of these therapies is important in terms of quality of life, risk of radiation necrosis, and likelihood of neurological cause of death.


Assuntos
Neoplasias Encefálicas/cirurgia , Radiocirurgia/métodos , Terapia de Salvação/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/secundário , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Hipofracionamento da Dose de Radiação , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa