Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 665: 178-186, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37163938

RESUMO

Cisplatin resistance is the main cause of postoperative recurrence and difficulty in the treatment of ovarian cancer. It is urgently needed to identify therapeutic drugs with unique functions to overcome the current challenges in the treatment of ovarian cancer. In this study, we found that TG promoted the accumulation of ROS and MDA in A2780/DDP cells and downregulated the expression of key antioxidant molecules. In vivo, the survival rate of tumor-bearing nude mice was prolonged by TG without significant hepatotoxic reaction. The expression of key antioxidant molecules in tumor tissues was consistent with that in vitro. These findings revealed that TG disrupted homeostasis of redox reactions and induced ferroptosis in A2780/DDP cells, thereby enhancing cisplatin chemosensitivity of ovarian cancer. Overall, TG may be a novel potential therapeutic option for reversing resistance to cisplatin chemotherapy.


Assuntos
Antineoplásicos , Ferroptose , Neoplasias Ovarianas , Animais , Camundongos , Humanos , Feminino , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Neoplasias Ovarianas/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Tripterygium , Carcinoma Epitelial do Ovário/tratamento farmacológico , Linhagem Celular Tumoral , Camundongos Nus , Antioxidantes/farmacologia , Resistencia a Medicamentos Antineoplásicos
2.
Proc Biol Sci ; 284(1863)2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28954914

RESUMO

Resistance spreads rapidly in pathogen or pest populations exposed to biocides, such as fungicides and antibiotics, and in many cases new biocides are in short supply. How can resistance be reversed in order to prolong the effectiveness of available treatments? Some key parameters affecting reversion of resistance are well known, such as the fitness cost of resistance. However, the population biological processes that actually cause resistance to persist or decline remain poorly characterized, and consequently our ability to manage reversion of resistance is limited. Where do susceptible genotypes that replace resistant lineages come from? What is the epidemiological scale of reversion? What information do we need to predict the mechanisms or likelihood of reversion? Here, we define some of the population biological processes that can drive reversion, using examples from a wide range of taxa and biocides. These processes differ primarily in the origin of revertant genotypes, but also in their sensitivity to factors such as coselection and compensatory evolution that can alter the rate of reversion, and the likelihood that resistance will re-emerge upon re-exposure to biocides. We therefore argue that discriminating among different types of reversion allows for better prediction of where resistance is most likely to persist.


Assuntos
Desinfetantes/farmacologia , Resistência Microbiana a Medicamentos/genética , Evolução Molecular , Genética Populacional , Aptidão Genética , Genótipo
3.
mSphere ; 8(5): e0023423, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37747188

RESUMO

The emergence and rapid spread of multi-drug-resistant (MDR) bacteria pose a serious threat to global healthcare. Although the synergistic effect of rafoxanide and colistin was reported, little is known regarding the potential mechanism of this synergy, particularly against chromosomal-mediated colistin-resistant Klebsiella pneumoniae. In the present study, we elucidated the synergistic effect of rafoxanide and colistin against chromosomal-mediated colistin-resistant Klebsiella pneumoniae isolates from human (KP-9) and swine (KP-1) infections. Treatment with 1 mg/L rafoxanide overtly reversed the MIC max to 512-fold. Time-kill assays indicated that rafoxanide acted synergistically with colistin against the growth of KP-1 and KP-9. Mechanistically, we unexpectedly found that the combination destroys the inner-membrane integrity, and ATP synthesis was also quenched, albeit, not via F1F0-ATPase; thereby also inhibiting the activity of efflux pumps. Excessive production of reactive oxygen species (ROS) was also an underlying factor contributing to the bacterial-killing effect of the combination. Transcriptomic analysis unraveled overt heterogeneous expression as treated with both administrations compared with monotherapy. Functional analysis of these differentially expressed genes (DEGs) targeted to the plasma membrane and ATP-binding corroborated phenotypic screening results. These novel findings highlight the synergistic mechanism of rafoxanide in combination with colistin which effectively eradicates chromosomal-mediated colistin-resistant Klebsiella pneumoniae. IMPORTANCE The antimicrobial resistance of Klebsiella pneumoniae caused by the abuse of colistin has increased the difficulty of clinical treatment. A promising combination (i.e., rafoxanide+ colistin) has successfully rescued the antibacterial effect of colistin. However, we still failed to know the potential effect of this combination on chromosome-mediated Klebsiella pneumoniae. Through a series of in vitro experiments, as well as transcriptomic profiling, we confirmed that the MIC of colistin was reduced by rafoxanide by destroying the inner-membrane integrity, quenching ATP synthesis, inhibiting the activity of the efflux pump, and increasing the production of reactive oxygen species. In turn, the expression of relevant colistin resistance genes was down-regulated. Collectively, our study revealed rafoxanide as a promising colistin adjuvant against chromosome-mediated Klebsiella pneumoniae.


Assuntos
Colistina , Rafoxanida , Humanos , Animais , Suínos , Colistina/farmacologia , Rafoxanida/farmacologia , Klebsiella pneumoniae , Espécies Reativas de Oxigênio , Cromossomos , Trifosfato de Adenosina
4.
Antibiotics (Basel) ; 9(12)2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-33291418

RESUMO

The bacterial cell division protein, FtsZ, has been identified as a target for antimicrobial development. Derivatives of 3-methoxybenzamide have shown promising activities as FtsZ inhibitors in Gram-positive bacteria. We sought to characterise the activity of five difluorobenzamide derivatives with non-heterocyclic substituents attached through the 3-oxygen. These compounds exhibited antimicrobial activity against methicillin resistant Staphylococcus aureus (MRSA), with an isopentyloxy-substituted compound showing modest activity against vancomycin resistant Enterococcus faecium (VRE). The compounds were able to reverse resistance to oxacillin in highly resistant clinical MRSA strains at concentrations far below their MICs. Three of the compounds inhibited an Escherichia coli strain lacking the AcrAB components of a drug efflux pump, which suggests the lack of Gram-negative activity can partly be attributed to efflux. The compounds inhibited cell division by targeting S. aureus FtsZ, producing a dose-dependent increase in GTPase rate which increased the rate of FtsZ polymerization and stabilized the FtsZ polymers. These compounds did not affect the polymerization of mammalian tubulin and did not display haemolytic activity or cytotoxicity. These derivatives are therefore promising compounds for further development as antimicrobial agents or as resistance breakers to re-sensitive MRSA to beta-lactam antibiotics.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa