Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(24)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339449

RESUMO

Drought is one of the major environmental stresses adversely affecting crop productivity worldwide. Precise characterization of genes involved in drought response is necessary to develop new crop varieties with enhanced drought tolerance. Previously, we identified 66 drought-induced miRNAs in rice plants. For the further functional investigation of the miRNAs, we applied recombinant codon-optimized Cas9 (rCas9) for rice with single-guide RNAs specifically targeting mature miRNA sequences or sites required for the biogenesis of mature miRNA. A total of 458 T0 transgenic plants were analyzed to determine the frequency and type of mutations induced by CRISPR/rCas9 on 13 independent target miRNAs. The average mutation frequency for 13 genes targeted by single guide RNAs (sgRNAs) in T0 generation was 59.4%, including mono-allelic (8.54%), bi-allelic (11.1%), and hetero-allelic combination (39.7%) mutations. The mutation frequency showed a positive correlation with Tm temperature of sgRNAs. For base insertion, one base insertion (99%) was predominantly detected in transgenic plants. Similarly, one base deletion accounted for the highest percentage, but there was also a significant percentage of cases in which more than one base was deleted. The deletion of more than two bases in OsmiR171f and OsmiR818b significantly reduced the level of corresponding mature miRNAs. Further functional analysis using CRISPR/Cas9-mediated mutagenesis confirmed that OsmiR818b is involved in drought response in rice plants. Overall, this study suggests that the CRISPR/rCas9 system is a powerful tool for loss-of-function analysis of miRNA in rice.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , MicroRNAs/genética , Oryza/genética , Melhoramento Vegetal/métodos , Secas , Oryza/fisiologia , Estresse Fisiológico
2.
Methods Mol Biol ; 2653: 3-19, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36995616

RESUMO

Engineered SpCas9 variant, SpRY, has been demonstrated to facilitate protospacer adjacent motif (PAM) unrestricted targeting of genomic DNA in various biological systems. Here we describe fast, efficient, and robust preparation of SpRY-derived genome and base editors that can be easily adapted to target various DNA sequences in plants due to modular Gateway assembly. Presented are detailed protocols for preparing T-DNA vectors for genome and base editors and for assessing genome editing efficiency through transient expression of these reagents in rice protoplasts.


Assuntos
Edição de Genes , Oryza , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Proteína 9 Associada à CRISPR/genética , Genoma de Planta , Oryza/genética , Oryza/metabolismo
3.
Methods Mol Biol ; 2462: 31-43, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35152378

RESUMO

Transient expression of genes in protoplasts has been used widely for purposes ranging from subcellular localization to promoter activity analyses. Here, we describe methods for reconstituting the abscisic acid (ABA) signaling pathway using a transient expression system in rice protoplasts. ABA signaling is monitored via reporter systems consisting of synthetic promoters and luciferase. Thus, the effects of each signaling component as well as complexes involved in ABA signaling can be characterized in rice protoplasts, overcoming many of the limitations that hamper efforts to identify biological functions of effector genes in whole plants. This protoplast-based transient assay system for ABA signaling thus provides valuable tools and knowledge for understanding complicated ABA signaling networks.


Assuntos
Oryza , Protoplastos , Ácido Abscísico/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Protoplastos/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
4.
Curr Protoc ; 2(2): e365, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35157372

RESUMO

CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein)-mediated genome editing has revolutionized fundamental research and plant breeding. Beyond gene editing, CRISPR/Cas systems have been repurposed as a platform for programmable transcriptional regulation. Catalytically inactive Cas variants (dCas), when fused with transcriptional activation domains, allow for specific activation of any target gene in the genome without inducing DNA double-strand breaks. CRISPR activation enables simultaneous activation of multiple genes, holding great promise in the identification of gene regulatory networks and rewiring of metabolic pathways. Here, we describe a simple protocol for constructing a dCas9-mediated multiplexed gene activation system based on the CRISPR-Act3.0 system. The resulting vectors are tested in rice protoplasts. © 2022 Wiley Periodicals LLC. Basic Protocol 1: sgRNA design and construction of CRISPR-Act3.0 vectors for multiplexed gene activation Basic Protocol 2: Determining the activation efficiency of CRISPR-Act3.0 vectors using rice protoplasts.


Assuntos
Edição de Genes , Melhoramento Vegetal , Sistemas CRISPR-Cas/genética , Plantas/genética , Ativação Transcricional
5.
Methods Mol Biol ; 2238: 95-113, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33471327

RESUMO

CRISPR-Cas9 has revolutionized the field of genome engineering. Base editing, a new genome editing strategy, was recently developed to engineer nucleotide substitutions. DNA base editing systems use a catalytically impared Cas nuclease together with a nucleobase deaminase enzyme to specifically introduce point mutations without generating double-stranded breaks, which provide huge potential in crop improvement. Here, we describe fast and efficient preparation of user-friendly C to T base editors, BE3, and Target-AID. Presented are detailed protocols for T-DNA vector preparation with BE3 or modified Target-AID base editor based on Gateway assembly and efficiency assessment of base editing through a rice protoplast transient expression system.


Assuntos
Sistemas CRISPR-Cas , Citidina Desaminase/antagonistas & inibidores , Edição de Genes , Vetores Genéticos/genética , Oryza/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Transformação Genética , Citidina Desaminase/genética , Técnicas de Transferência de Genes , Genoma de Planta , Oryza/genética , Plantas Geneticamente Modificadas/genética , Protoplastos/fisiologia , Transgenes/fisiologia
6.
Front Plant Sci ; 6: 614, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26300907

RESUMO

The core components of ABA-dependent gene expression signaling have been identified in Arabidopsis and rice. This signaling pathway consists of four major components; group A OsbZIPs, SAPKs, subclass A OsPP2Cs and OsPYL/RCARs in rice. These might be able to make thousands of combinations through interaction networks resulting in diverse signaling responses. We tried to characterize those gene functions using transient gene expression for rice protoplasts (TGERP) because it is instantaneous and convenient system. Firstly, in order to monitor the ABA signaling output, we developed reporter system named pRab16A-fLUC which consists of Rab16A promoter of rice and luciferase gene. It responses more rapidly and sensitively to ABA than pABRC3-fLUC that consists of ABRC3 of HVA1 promoter in TGERP. We screened the reporter responses for over-expression of each signaling components from group A OsbZIPs to OsPYL/RCARs with or without ABA in TGERP. OsbZIP46 induced reporter most strongly among OsbZIPs tested in the presence of ABA. SAPKs could activate the OsbZIP46 even in the ABA independence. Subclass A OsPP2C6 and -8 almost completely inhibited the OsbZIP46 activity in the different degree through the SAPK9. Lastly, OsPYL/RCAR2 and -5 rescued the OsbZIP46 activity in the presence of SAPK9 and OsPP2C6 dependent on ABA concentration and expression level. By using TGERP, we could characterize successfully the effects of ABA dependent gene expression signaling components in rice. In conclusion, TGERP represents very useful technology to study systemic functional genomics in rice or other monocots.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa