Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.342
Filtrar
1.
Cell ; 179(6): 1264-1275.e13, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31778653

RESUMO

TLR8 is among the highest-expressed pattern-recognition receptors in the human myeloid compartment, yet its mode of action is poorly understood. TLR8 engages two distinct ligand binding sites to sense RNA degradation products, although it remains unclear how these ligands are formed in cellulo in the context of complex RNA molecule sensing. Here, we identified the lysosomal endoribonuclease RNase T2 as a non-redundant upstream component of TLR8-dependent RNA recognition. RNase T2 activity is required for rendering complex single-stranded, exogenous RNA molecules detectable for TLR8. This is due to RNase T2's preferential cleavage of single-stranded RNA molecules between purine and uridine residues, which critically contributes to the supply of catabolic uridine and the generation of purine-2',3'-cyclophosphate-terminated oligoribonucleotides. Thus-generated molecules constitute agonistic ligands for the first and second binding pocket of TLR8. Together, these results establish the identity and origin of the RNA-derived molecular pattern sensed by TLR8.


Assuntos
Endorribonucleases/metabolismo , Proteólise , Receptor 8 Toll-Like/metabolismo , Motivos de Aminoácidos , Sequência de Bases , Linhagem Celular , Endorribonucleases/deficiência , Humanos , Modelos Moleculares , Monócitos/metabolismo , Células Mieloides/metabolismo , Isótopos de Nitrogênio , Oligonucleotídeos/metabolismo , Purinas/metabolismo , RNA/metabolismo , Staphylococcus aureus/metabolismo , Receptor 7 Toll-Like/metabolismo , Receptor 8 Toll-Like/agonistas , Receptor 8 Toll-Like/química , Uridina/metabolismo
2.
Cell ; 177(4): 865-880.e21, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31031002

RESUMO

Circular RNAs (circRNAs) produced from back-splicing of exons of pre-mRNAs are widely expressed, but current understanding of their functions is limited. These RNAs are stable in general and are thought to have unique structural conformations distinct from their linear RNA cognates. Here, we show that endogenous circRNAs tend to form 16-26 bp imperfect RNA duplexes and act as inhibitors of double-stranded RNA (dsRNA)-activated protein kinase (PKR) related to innate immunity. Upon poly(I:C) stimulation or viral infection, circRNAs are globally degraded by RNase L, a process required for PKR activation in early cellular innate immune responses. Augmented PKR phosphorylation and circRNA reduction are found in peripheral blood mononuclear cells (PBMCs) derived from patients with autoimmune disease systemic lupus erythematosus (SLE). Importantly, overexpression of the dsRNA-containing circRNA in PBMCs or T cells derived from SLE can alleviate the aberrant PKR activation cascade, thus providing a connection between circRNAs and SLE.


Assuntos
RNA Circular/metabolismo , RNA Circular/fisiologia , eIF-2 Quinase/metabolismo , Adolescente , Adulto , Doenças Autoimunes/genética , Linhagem Celular , Endorribonucleases/metabolismo , Feminino , Humanos , Imunidade Inata/genética , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Lúpus Eritematoso Sistêmico/genética , Pessoa de Meia-Idade , Fosforilação , RNA/metabolismo , Splicing de RNA/genética , Estabilidade de RNA/fisiologia , RNA Circular/genética , RNA de Cadeia Dupla/metabolismo , Viroses/metabolismo , eIF-2 Quinase/imunologia
3.
Cell ; 179(2): 448-458.e11, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31564454

RESUMO

Bacteria and archaea possess a striking diversity of CRISPR-Cas systems divided into six types, posing a significant barrier to viral infection. As part of the virus-host arms race, viruses encode protein inhibitors of type I, II, and V CRISPR-Cas systems, but whether there are natural inhibitors of the other, mechanistically distinct CRISPR-Cas types is unknown. Here, we present the discovery of a type III CRISPR-Cas inhibitor, AcrIIIB1, encoded by the Sulfolobus virus SIRV2. AcrIIIB1 exclusively inhibits CRISPR-Cas subtype III-B immunity mediated by the RNase activity of the accessory protein Csx1. AcrIIIB1 does not appear to bind Csx1 but, rather, interacts with two distinct subtype III-B effector complexes-Cmr-α and Cmr-γ-which, in response to protospacer transcript binding, are known to synthesize cyclic oligoadenylates (cOAs) that activate the Csx1 "collateral" RNase. Taken together, we infer that AcrIIIB1 inhibits type III-B CRISPR-Cas immunity by interfering with a Csx1 RNase-related process.


Assuntos
Proteínas Associadas a CRISPR/fisiologia , Sistemas CRISPR-Cas , Interações Hospedeiro-Patógeno , Rudiviridae/metabolismo , Sulfolobus/virologia , Ribonucleases/metabolismo
4.
Immunity ; 57(7): 1482-1496.e8, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38697119

RESUMO

Toll-like receptor 7 (TLR7) is essential for recognition of RNA viruses and initiation of antiviral immunity. TLR7 contains two ligand-binding pockets that recognize different RNA degradation products: pocket 1 recognizes guanosine, while pocket 2 coordinates pyrimidine-rich RNA fragments. We found that the endonuclease RNase T2, along with 5' exonucleases PLD3 and PLD4, collaboratively generate the ligands for TLR7. Specifically, RNase T2 generated guanosine 2',3'-cyclic monophosphate-terminated RNA fragments. PLD exonuclease activity further released the terminal 2',3'-cyclic guanosine monophosphate (2',3'-cGMP) to engage pocket 1 and was also needed to generate RNA fragments for pocket 2. Loss-of-function studies in cell lines and primary cells confirmed the critical requirement for PLD activity. Biochemical and structural studies showed that PLD enzymes form homodimers with two ligand-binding sites important for activity. Previously identified disease-associated PLD mutants failed to form stable dimers. Together, our data provide a mechanistic basis for the detection of RNA fragments by TLR7.


Assuntos
Endorribonucleases , Receptor 7 Toll-Like , Receptor 7 Toll-Like/metabolismo , Receptor 7 Toll-Like/genética , Humanos , Endorribonucleases/metabolismo , Ligantes , Fosfolipase D/metabolismo , Fosfolipase D/genética , RNA/metabolismo , Células HEK293 , Lisossomos/metabolismo , Animais , Exonucleases/metabolismo , Camundongos , Sítios de Ligação
5.
Cell ; 175(5): 1393-1404.e11, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30454648

RESUMO

Ribonuclease (RNase) P is a ubiquitous ribozyme that cleaves the 5' leader from precursor tRNAs. Here, we report cryo-electron microscopy structures of the human nuclear RNase P alone and in complex with tRNAVal. Human RNase P is a large ribonucleoprotein complex that contains 10 protein components and one catalytic RNA. The protein components form an interlocked clamp that stabilizes the RNA in a conformation optimal for substrate binding. Human RNase P recognizes the tRNA using a double-anchor mechanism through both protein-RNA and RNA-RNA interactions. Structural comparison of the apo and tRNA-bound human RNase P reveals that binding of tRNA induces a local conformational change in the catalytic center, transforming the ribozyme into an active state. Our results also provide an evolutionary model depicting how auxiliary RNA elements in bacterial RNase P, essential for substrate binding, and catalysis, were replaced by the much more complex and multifunctional protein components in higher organisms.


Assuntos
Microscopia Crioeletrônica , RNA de Transferência/química , Ribonuclease P/química , Sítios de Ligação , Evolução Molecular , Células HEK293 , Holoenzimas/química , Humanos , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Domínios Proteicos , Estrutura Terciária de Proteína , RNA de Transferência/metabolismo , Ribonuclease P/isolamento & purificação , Ribonuclease P/metabolismo
6.
Cell ; 174(1): 187-201.e12, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29779946

RESUMO

Widespread mRNA decay, an unappreciated feature of apoptosis, enhances cell death and depends on mitochondrial outer membrane permeabilization (MOMP), TUTases, and DIS3L2. Which RNAs are decayed and the decay-initiating event are unknown. Here, we show extensive decay of mRNAs and poly(A) noncoding (nc)RNAs at the 3' end, triggered by the mitochondrial intermembrane space 3'-to-5' exoribonuclease PNPT1, released during MOMP. PNPT1 knockdown inhibits apoptotic RNA decay and reduces apoptosis, while ectopic expression of PNPT1, but not an RNase-deficient mutant, increases RNA decay and cell death. The 3' end of PNPT1 substrates thread through a narrow channel. Many non-poly(A) ncRNAs contain 3'-secondary structures or bind proteins that may block PNPT1 activity. Indeed, mutations that disrupt the 3'-stem-loop of a decay-resistant ncRNA render the transcript susceptible, while adding a 3'-stem-loop to an mRNA prevents its decay. Thus, PNPT1 release from mitochondria during MOMP initiates apoptotic decay of RNAs lacking 3'-structures.


Assuntos
Apoptose , Exorribonucleases/metabolismo , Mitocôndrias/metabolismo , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Citocromos c/metabolismo , Exorribonucleases/antagonistas & inibidores , Exorribonucleases/genética , Células HCT116 , Humanos , Membranas Mitocondriais/metabolismo , Conformação de Ácido Nucleico , Permeabilidade , Proteína I de Ligação a Poli(A)/química , Proteína I de Ligação a Poli(A)/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , Estabilidade de RNA/efeitos dos fármacos , RNA Mensageiro/química , RNA Interferente Pequeno/metabolismo , RNA não Traduzido/química , RNA não Traduzido/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia
7.
Cell ; 170(4): 714-726.e10, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28757251

RESUMO

Cas13a, a type VI-A CRISPR-Cas RNA-guided RNA ribonuclease, degrades invasive RNAs targeted by CRISPR RNA (crRNA) and has potential applications in RNA technology. To understand how Cas13a is activated to cleave RNA, we have determined the crystal structure of Leptotrichia buccalis (Lbu) Cas13a bound to crRNA and its target RNA, as well as the cryo-EM structure of the LbuCas13a-crRNA complex. The crRNA-target RNA duplex binds in a positively charged central channel of the nuclease (NUC) lobe, and Cas13a protein and crRNA undergo a significant conformational change upon target RNA binding. The guide-target RNA duplex formation triggers HEPN1 domain to move toward HEPN2 domain, activating the HEPN catalytic site of Cas13a protein, which subsequently cleaves both single-stranded target and collateral RNAs in a non-specific manner. These findings reveal how Cas13a of type VI CRISPR-Cas systems defend against RNA phages and set the stage for its development as a tool for RNA manipulation.


Assuntos
Proteínas de Bactérias/química , Proteínas Associadas a CRISPR/química , Sistemas CRISPR-Cas , Leptotrichia/imunologia , Proteínas de Bactérias/ultraestrutura , Sequência de Bases , Proteínas Associadas a CRISPR/ultraestrutura , Leptotrichia/química , Leptotrichia/metabolismo , Leptotrichia/virologia , Modelos Moleculares , Processamento Pós-Transcricional do RNA , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/ultraestrutura , RNA Guia de Cinetoplastídeos/química , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/ultraestrutura , RNA Viral/química , Difração de Raios X
8.
Cell ; 170(1): 72-85.e14, 2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28666126

RESUMO

Maintenance of a minimal telomere length is essential to prevent cellular senescence. When critically short telomeres arise in the absence of telomerase, they can be repaired by homology-directed repair (HDR) to prevent premature senescence onset. It is unclear why specifically the shortest telomeres are targeted for HDR. We demonstrate that the non-coding RNA TERRA accumulates as HDR-promoting RNA-DNA hybrids (R-loops) preferentially at very short telomeres. The increased level of TERRA and R-loops, exclusively at short telomeres, is due to a local defect in RNA degradation by the Rat1 and RNase H2 nucleases, respectively. Consequently, the coordination of TERRA degradation with telomere replication is altered at shortened telomeres. R-loop persistence at short telomeres contributes to activation of the DNA damage response (DDR) and promotes recruitment of the Rad51 recombinase. Thus, the telomere length-dependent regulation of TERRA and TERRA R-loops is a critical determinant of the rate of replicative senescence.


Assuntos
Ciclo Celular , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Telômero/metabolismo , Senescência Celular , Dano ao DNA , Exorribonucleases/metabolismo , Hibridização de Ácido Nucleico , Reparo de DNA por Recombinação , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telômero/química , Proteínas de Ligação a Telômeros/metabolismo
9.
Cell ; 170(4): 787-799.e18, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28802046

RESUMO

Replication-transcription collisions shape genomes, influence evolution, and promote genetic diseases. Although unclear why, head-on transcription (lagging strand genes) is especially disruptive to replication and promotes genomic instability. Here, we find that head-on collisions promote R-loop formation in Bacillus subtilis. We show that pervasive R-loop formation at head-on collision regions completely blocks replication, elevates mutagenesis, and inhibits gene expression. Accordingly, the activity of the R-loop processing enzyme RNase HIII at collision regions is crucial for stress survival in B. subtilis, as many stress response genes are head-on to replication. Remarkably, without RNase HIII, the ability of the intracellular pathogen Listeria monocytogenes to infect and replicate in hosts is weakened significantly, most likely because many virulence genes are head-on to replication. We conclude that the detrimental effects of head-on collisions stem primarily from excessive R-loop formation and that the resolution of these structures is critical for bacterial stress survival and pathogenesis.


Assuntos
Bacillus subtilis/fisiologia , Replicação do DNA , Listeria monocytogenes/fisiologia , Transcrição Gênica , Animais , Período de Replicação do DNA , Feminino , Expressão Gênica , Técnicas de Inativação de Genes , Listeria monocytogenes/genética , Listeria monocytogenes/patogenicidade , Listeriose/microbiologia , Camundongos , Estresse Fisiológico , Virulência
10.
Cell ; 167(4): 1001-1013.e7, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27881299

RESUMO

RNA-DNA hybrids are a major internal cause of DNA damage within cells, and their degradation by RNase H enzymes is important for maintaining genomic stability. Here, we identified an unexpected role for RNA-DNA hybrids and RNase H enzymes in DNA repair. Using a site-specific DNA double-strand break (DSB) system in Schizosaccharomyces pombe, we showed that RNA-DNA hybrids form as part of the homologous-recombination (HR)-mediated DSB repair process and that RNase H enzymes are essential for their degradation and efficient completion of DNA repair. Deleting RNase H stabilizes RNA-DNA hybrids around DSB sites and strongly impairs recruitment of the ssDNA-binding RPA complex. In contrast, overexpressing RNase H1 destabilizes these hybrids, leading to excessive strand resection and RPA recruitment and to severe loss of repeat regions around DSBs. Our study challenges the existing model of HR-mediated DSB repair and reveals a surprising role for RNA-DNA hybrids in maintaining genomic stability.


Assuntos
Instabilidade Genômica , Reparo de DNA por Recombinação , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , DNA/metabolismo , Dano ao DNA , Expressão Gênica , RNA/metabolismo , RNA Polimerase II/metabolismo , Ribonuclease H/genética , Ribonuclease H/metabolismo , Schizosaccharomyces/enzimologia
11.
Mol Cell ; 83(7): 1061-1074.e6, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36868227

RESUMO

Nonhomologous end-joining (NHEJ) factors act in replication-fork protection, restart, and repair. Here, we identified a mechanism related to RNA:DNA hybrids to establish the NHEJ factor Ku-mediated barrier to nascent strand degradation in fission yeast. RNase H activities promote nascent strand degradation and replication restart, with a prominent role of RNase H2 in processing RNA:DNA hybrids to overcome the Ku barrier to nascent strand degradation. RNase H2 cooperates with the MRN-Ctp1 axis to sustain cell resistance to replication stress in a Ku-dependent manner. Mechanistically, the need of RNaseH2 in nascent strand degradation requires the primase activity that allows establishing the Ku barrier to Exo1, whereas impairing Okazaki fragment maturation reinforces the Ku barrier. Finally, replication stress induces Ku foci in a primase-dependent manner and favors Ku binding to RNA:DNA hybrids. We propose a function for the RNA:DNA hybrid originating from Okazaki fragments in controlling the Ku barrier specifying nuclease requirement to engage fork resection.


Assuntos
RNA , Schizosaccharomyces , RNA/genética , RNA/metabolismo , DNA Primase/metabolismo , DNA/genética , DNA/metabolismo , Replicação do DNA , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Ribonucleases/genética
12.
Mol Cell ; 82(9): 1768-1777.e3, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35358469

RESUMO

Circular RNAs are garnering increasing interest as potential regulatory RNAs and a format for gene expression. The characterization of circular RNA using analytical techniques commonly employed in the literature, such as gel electrophoresis, can, under differing conditions, yield different results when attempting to distinguish circular RNA from linear RNA of similar molecular weights. Here, we describe circular RNA migration in different conditions, analyzed by gel electrophoresis and high-performance liquid chromatography (HPLC). We characterize key parameters that affect the migration pattern of circular RNA in gel electrophoresis systems, which include gel type, electrophoresis time, sample buffer composition, and voltage. Finally, we demonstrate the utility of orthogonal analytical tests for circular RNA that take advantage of its covalently closed structure to further distinguish circular RNA from linear RNA following in vitro synthesis.


Assuntos
RNA Circular , RNA , Eletroforese em Gel de Ágar/métodos , Peso Molecular , RNA/genética , RNA Circular/genética
13.
Mol Cell ; 82(21): 4049-4063.e6, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36182693

RESUMO

In animals and plants, Dicer enzymes collaborate with double-stranded RNA-binding domain (dsRBD) proteins to convert precursor-microRNAs (pre-miRNAs) into miRNA duplexes. We report six cryo-EM structures of Drosophila Dicer-1 that show how Dicer-1 and its partner Loqs­PB cooperate (1) before binding pre-miRNA, (2) after binding and in a catalytically competent state, (3) after nicking one arm of the pre-miRNA, and (4) following complete dicing and initial product release. Our reconstructions suggest that pre-miRNA binds a rare, open conformation of the Dicer­1⋅Loqs­PB heterodimer. The Dicer-1 dsRBD and three Loqs­PB dsRBDs form a tight belt around the pre-miRNA, distorting the RNA helix to place the scissile phosphodiester bonds in the RNase III active sites. Pre-miRNA cleavage shifts the dsRBDs and partially closes Dicer-1, which may promote product release. Our data suggest a model for how the Dicer­1⋅Loqs­PB complex affects a complete cycle of pre-miRNA recognition, stepwise endonuclease cleavage, and product release.


Assuntos
Proteínas de Drosophila , MicroRNAs , Animais , Ribonuclease III/genética , Ribonuclease III/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Ligação a RNA/metabolismo , Drosophila/genética , MicroRNAs/genética , MicroRNAs/metabolismo
14.
Mol Cell ; 82(16): 2952-2966.e6, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35839782

RESUMO

Cellular homeostasis requires the coordination of several machineries concurrently engaged in the DNA. Wide-spread transcription can interfere with other processes, and transcription-replication conflicts (TRCs) threaten genome stability. The conserved Sen1 helicase not only terminates non-coding transcription but also interacts with the replisome and reportedly resolves genotoxic R-loops. Sen1 prevents genomic instability, but how this relates to its molecular functions remains unclear. We generated high-resolution, genome-wide maps of transcription-dependent conflicts and R-loops using a Sen1 mutant that has lost interaction with the replisome but is termination proficient. We show that, under physiological conditions, Sen1 removes RNA polymerase II at TRCs within genes and the rDNA and at sites of transcription-transcription conflicts, thus qualifying as a "key regulator of conflicts." We demonstrate that genomic stability is affected by Sen1 mutation only when in addition to its role at the replisome, the termination of non-coding transcription or R-loop removal are additionally compromised.


Assuntos
Proteínas de Saccharomyces cerevisiae , DNA Helicases/genética , DNA Helicases/metabolismo , Replicação do DNA/genética , Instabilidade Genômica , RNA Helicases/genética , RNA Helicases/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
15.
Annu Rev Genet ; 55: 161-181, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34416117

RESUMO

CRISPR-Cas adaptive immune systems in bacteria and archaea utilize short CRISPR RNAs (crRNAs) to guide sequence-specific recognition and clearance of foreign genetic material. Multiple crRNAs are stored together in a compact format called a CRISPR array that is transcribed and processed into the individual crRNAs. While the exact processing mechanisms vary widely, some CRISPR-Cas systems, including those encoding the Cas9 nuclease, rely on a trans-activating crRNA (tracrRNA). The tracrRNA was discovered in 2011 and was quickly co-opted to create single-guide RNAs as core components of CRISPR-Cas9 technologies. Since then, further studies have uncovered processes extending beyond the traditional role of tracrRNA in crRNA biogenesis, revealed Cas nucleases besides Cas9 that are dependent on tracrRNAs, and established new applications based on tracrRNA engineering. In this review, we describe the biology of the tracrRNA and how its ongoing characterization has garnered new insights into prokaryotic immune defense and enabled key technological advances.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Cinetoplastídeos , Archaea/genética , Biologia , Sistemas CRISPR-Cas/genética , RNA/genética , RNA Guia de Cinetoplastídeos/genética
16.
Immunity ; 52(4): 591-605.e6, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32294405

RESUMO

Human toll-like receptor 8 (TLR8) activation induces a potent T helper-1 (Th1) cell response critical for defense against intracellular pathogens, including protozoa. The receptor harbors two distinct binding sites, uridine and di- and/or trinucleotides, but the RNases upstream of TLR8 remain poorly characterized. We identified two endolysosomal endoribonucleases, RNase T2 and RNase 2, that act synergistically to release uridine from oligoribonucleotides. RNase T2 cleaves preferentially before, and RNase 2 after, uridines. Live bacteria, P. falciparum-infected red blood cells, purified pathogen RNA, and synthetic oligoribonucleotides all required RNase 2 and T2 processing to activate TLR8. Uridine supplementation restored RNA recognition in RNASE2-/- or RNASET2-/- but not RNASE2-/-RNASET2-/- cells. Primary immune cells from RNase T2-hypomorphic patients lacked a response to bacterial RNA but responded robustly to small-molecule TLR8 ligands. Our data identify an essential function of RNase T2 and RNase 2 upstream of TLR8 and provide insight into TLR8 activation.


Assuntos
Endorribonucleases/metabolismo , Monócitos/imunologia , Neutrófilos/imunologia , RNA Bacteriano/metabolismo , RNA de Protozoário/metabolismo , Receptor 8 Toll-Like/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular , Endorribonucleases/imunologia , Eritrócitos/imunologia , Eritrócitos/parasitologia , Escherichia coli/química , Escherichia coli/imunologia , Edição de Genes/métodos , Humanos , Listeria monocytogenes/química , Listeria monocytogenes/imunologia , Monócitos/microbiologia , Monócitos/parasitologia , Neutrófilos/microbiologia , Neutrófilos/parasitologia , Plasmodium falciparum/química , Plasmodium falciparum/imunologia , Cultura Primária de Células , Estabilidade de RNA , RNA Bacteriano/imunologia , RNA de Protozoário/imunologia , Serratia marcescens/química , Serratia marcescens/imunologia , Staphylococcus aureus/química , Staphylococcus aureus/imunologia , Streptococcus/química , Streptococcus/imunologia , Células THP-1 , Receptor 8 Toll-Like/imunologia
17.
Mol Cell ; 81(14): 2944-2959.e10, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34166609

RESUMO

A number of regulatory factors are recruited to chromatin by specialized RNAs. Whether RNA has a more general role in regulating the interaction of proteins with chromatin has not been determined. We used proteomics methods to measure the global impact of nascent RNA on chromatin in embryonic stem cells. Surprisingly, we found that nascent RNA primarily antagonized the interaction of chromatin modifiers and transcriptional regulators with chromatin. Transcriptional inhibition and RNA degradation induced recruitment of a set of transcriptional regulators, chromatin modifiers, nucleosome remodelers, and regulators of higher-order structure. RNA directly bound to factors, including BAF, NuRD, EHMT1, and INO80 and inhibited their interaction with nucleosomes. The transcriptional elongation factor P-TEFb directly bound pre-mRNA, and its recruitment to chromatin upon Pol II inhibition was regulated by the 7SK ribonucleoprotein complex. We postulate that by antagonizing the interaction of regulatory proteins with chromatin, nascent RNA links transcriptional output with chromatin composition.


Assuntos
Cromatina/metabolismo , RNA/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Masculino , Camundongos , Nucleossomos/metabolismo , Fator B de Elongação Transcricional Positiva/metabolismo , Ligação Proteica/fisiologia , Proteômica/métodos , RNA Polimerase II/metabolismo , Transcrição Gênica/fisiologia , Fatores de Elongação da Transcrição/metabolismo
18.
Mol Cell ; 81(6): 1246-1259.e8, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33548203

RESUMO

The Integrator is a specialized 3' end-processing complex involved in cleavage and transcription termination of a subset of nascent RNA polymerase II transcripts, including small nuclear RNAs (snRNAs). We provide evidence of the modular nature of the Integrator complex by biochemically characterizing its two subcomplexes, INTS5/8 and INTS10/13/14. Using cryoelectron microscopy (cryo-EM), we determined a 3.5-Å-resolution structure of the INTS4/9/11 ternary complex, which constitutes Integrator's catalytic core. Our structure reveals the spatial organization of the catalytic nuclease INTS11, bound to its catalytically impaired homolog INTS9 via several interdependent interfaces. INTS4, a helical repeat protein, plays a key role in stabilizing nuclease domains and other components. In this assembly, all three proteins form a composite electropositive groove, suggesting a putative RNA binding path within the complex. Comparison with other 3' end-processing machineries points to distinct features and a unique architecture of the Integrator's catalytic module.


Assuntos
Complexos Multiproteicos , Terminação da Transcrição Genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Microscopia Crioeletrônica , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
19.
Genes Dev ; 35(19-20): 1383-1394, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34531317

RESUMO

Enhancers generate bidirectional noncoding enhancer RNAs (eRNAs) that may regulate gene expression. At present, the eRNA function remains enigmatic. Here, we report a 5' capped antisense eRNA PEARL (Pcdh eRNA associated with R-loop formation) that is transcribed from the protocadherin (Pcdh) α HS5-1 enhancer region. Through loss- and gain-of-function experiments with CRISPR/Cas9 DNA fragment editing, CRISPRi, and CRISPRa, as well as locked nucleic acid strategies, in conjunction with ChIRP, MeDIP, DRIP, QHR-4C, and HiChIP experiments, we found that PEARL regulates Pcdhα gene expression by forming local RNA-DNA duplexes (R-loops) in situ within the HS5-1 enhancer region to promote long-distance chromatin interactions between distal enhancers and target promoters. In particular, increased levels of eRNA PEARL via perturbing transcription elongation factor SPT6 lead to strengthened local three-dimensional chromatin organization within the Pcdh superTAD. These findings have important implications regarding molecular mechanisms by which the HS5-1 enhancer regulates stochastic Pcdhα promoter choice in single cells in the brain.


Assuntos
Elementos Facilitadores Genéticos , Protocaderinas , Cromatina , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica , Regiões Promotoras Genéticas/genética , RNA , Transcrição Gênica
20.
EMBO J ; 43(18): 3876-3894, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39112803

RESUMO

The OAS-RNase L pathway is one of the oldest innate RNA sensing pathways that leads to interferon (IFN) signaling and cell death. OAS recognizes viral RNA and then activates RNase L, which subsequently cleaves both cellular and viral RNA, creating "processed RNA" as an endogenous ligand that further triggers RIG-I-like receptor signaling. However, the IFN response and antiviral activity of the OAS-RNase L pathway are weak compared to other RNA-sensing pathways. Here, we discover that the SKIV2L RNA exosome limits the antiviral capacity of the OAS-RNase L pathway. SKIV2L-deficient cells exhibit remarkably increased interferon responses to RNase L-processed RNA, resulting in heightened antiviral activity. The helicase activity of SKIV2L is indispensable for this function, acting downstream of RNase L. SKIV2L depletion increases the antiviral capacity of OAS-RNase L against RNA virus infection. Furthermore, SKIV2L loss exacerbates autoinflammation caused by human OAS1 gain-of-function mutations. Taken together, our results identify SKIV2L as a critical barrier to OAS-RNase L-mediated antiviral immunity that could be therapeutically targeted to enhance the activity of a basic antiviral pathway.


Assuntos
2',5'-Oligoadenilato Sintetase , Endorribonucleases , 2',5'-Oligoadenilato Sintetase/metabolismo , 2',5'-Oligoadenilato Sintetase/genética , Humanos , Endorribonucleases/metabolismo , Endorribonucleases/genética , RNA Helicases/metabolismo , RNA Helicases/genética , Animais , Imunidade Inata , Transdução de Sinais , Camundongos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/genética , RNA Viral/metabolismo , RNA Viral/genética , RNA Viral/imunologia , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/metabolismo , Células HEK293
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa