Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Neuroeng Rehabil ; 21(1): 144, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39169408

RESUMO

BACKGROUND: Children with unilateral cerebral palsy (CP) exhibit motor impairments predominantly on one side of the body, while also having ipsilesional and bilateral impairments. These impairments are known to persist through adulthood, but their extent have not been described in adults with CP. This study's aim is to characterize bilateral and unilateral upper limbs impairments in adults with CP. METHODS: Nineteen adults with CP (34.3 years old ± 11.5) performed three robotic assessments in the Kinarm Exoskeleton Lab, including two bilateral tasks (Object Hit [asymmetric independent goals task] and Ball on Bar [symmetric common goal task]) and one unilateral task (Visually Guided Reaching, performed with the more affected arm [MA] and less affected arm [LA]). Individual results were compared to sex, age and handedness matched normative data, describing the proportion of participants exhibiting impairments in each task-specific variable (e.g., Hand speed), each performance category (e.g., Feedforward control) and in global task performance. Associations were assessed using Spearman correlation coefficients between: 1: the results of the MA and LA of each limb in the unilateral task; and 2: the results of each limb in the unilateral vs. the bilateral tasks. RESULTS: The majority of participants exhibited impairments in bilateral tasks (84%). The bilateral performance categories (i.e., Bimanual) identifying bilateral coordination impairments were impaired in the majority of participants (Object Hit: 57.8%; Ball on Bar: 31.6%). Most of the participants were impaired when performing a unilateral task with their MA arm (63%) and a smaller proportion with their LA arm (31%). The Feedforward control was the unilateral performance category showing the highest proportion of impaired participants while displaying the strongest relationship between the MA and LA arms impairments (rs = 0.93). Feedback control was the unilateral performance category most often associated with impairments in bilateral tasks (6 out of 8 performance categories). CONCLUSIONS: Adults with CP experienced more impairment in bilateral tasks while still having substantial impairments in unilateral tasks. They frequently display Feedforward control impairments combined with a higher reliance on Feedback control during both bilateral and unilateral tasks, leading to poorer motor performance.


Assuntos
Paralisia Cerebral , Robótica , Extremidade Superior , Humanos , Paralisia Cerebral/fisiopatologia , Paralisia Cerebral/complicações , Masculino , Feminino , Adulto , Extremidade Superior/fisiopatologia , Robótica/instrumentação , Pessoa de Meia-Idade , Adulto Jovem , Desempenho Psicomotor/fisiologia , Exoesqueleto Energizado , Lateralidade Funcional/fisiologia
2.
Sensors (Basel) ; 24(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38894116

RESUMO

BACKGROUND: Robotic devices are known to provide pivotal parameters to assess motor functions in Multiple Sclerosis (MS) as dynamic balance. However, there is still a lack of validation studies comparing innovative technologies with standard solutions. Thus, this study's aim was to compare the postural assessment of fifty people with MS (PwMS) during dynamic tasks performed with the gold standard EquiTest® and the robotic platform hunova®, using Center of Pressure (COP)-related parameters and global balance indexes. METHODS: Pearson's ρ correlations were run for each COP-related measure and the global balance index was computed from EquiTest® and hunova® in both open (EO) and closed-eyes (EC) conditions. RESULTS: Considering COP-related parameters, all correlations were significant in both EO (0.337 ≤ ρ ≤ 0.653) and EC (0.344 ≤ ρ ≤ 0.668). Furthermore, Pearson's analysis of global balance indexes revealed relatively strong for visual and vestibular, and strong for somatosensory system associations (ρ = 0.573; ρ = 0.494; ρ = 0.710, respectively). CONCLUSIONS: Findings confirm the use of hunova® as a valid device for dynamic balance assessment in MS, suggesting that such a robotic platform could allow for a more sensitive assessment of balance over time, and thus a better evaluation of the effectiveness of personalized treatment, thereby improving evidence-based clinical practice.


Assuntos
Esclerose Múltipla , Equilíbrio Postural , Robótica , Humanos , Esclerose Múltipla/fisiopatologia , Equilíbrio Postural/fisiologia , Masculino , Robótica/instrumentação , Robótica/métodos , Feminino , Adulto , Pessoa de Meia-Idade , Tecnologia Assistiva
3.
J Neuroeng Rehabil ; 19(1): 82, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35883179

RESUMO

BACKGROUND: An individual's rapid motor skills allow them to perform many daily activities and are a hallmark of physical health. Although age and sex are both known to affect motor performance, standardized methods for assessing their impact on upper limb function are limited. METHODS: Here we perform a cross-sectional study of 643 healthy human participants in two interactive motor tasks developed to quantify sensorimotor abilities, Object-Hit (OH) and Object-Hit-and-Avoid (OHA). The tasks required participants to hit virtual objects with and without the presence of distractor objects. Velocities and positions of hands and objects were recorded by a robotic exoskeleton, allowing a variety of parameters to be calculated for each trial. We verified that these tasks are viable for measuring performance in healthy humans and we examined whether any of our recorded parameters were related to age or sex. RESULTS: Our analysis shows that both OH and OHA can assess rapid motor behaviours in healthy human participants. It also shows that while some parameters in these tasks decline with age, those most associated with the motor system do not. Three parameters show significant sex-related effects in OH, but these effects disappear in OHA. CONCLUSIONS: This study suggests that the underlying effect of aging on rapid motor behaviours is not on the capabilities of the motor system, but on the brain's capacity for processing inputs into motor actions. Additionally, this study provides a baseline description of healthy human performance in OH and OHA when using these tasks to investigate age-related declines in sensorimotor ability.


Assuntos
Exoesqueleto Energizado , Destreza Motora , Envelhecimento , Estudos Transversais , Mãos , Humanos
4.
J Neuroeng Rehabil ; 18(1): 130, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34465356

RESUMO

BACKGROUND: In recent years, many studies focused on the use of robotic devices for both the assessment and the neuro-motor reeducation of upper limb in subjects after stroke, spinal cord injuries or affected by neurological disorders. Contrarily, it is still hard to find examples of robot-aided assessment and rehabilitation after traumatic injuries in the orthopedic field. However, those benefits related to the use of robotic devices are expected also in orthopedic functional reeducation. METHODS: After a wrist injury occurred at their workplace, wrist functionality of twenty-three subjects was evaluated through a robot-based assessment and clinical measures (Patient Rated Wrist Evaluation, Jebsen-Taylor and Jamar Test), before and after a 3-week long rehabilitative treatment. Subjects were randomized in two groups: while the control group (n = 13) underwent a traditional rehabilitative protocol, the experimental group (n = 10) was treated replacing traditional exercises with robot-aided ones. RESULTS: Functionality, assessed through the function subscale of PRWE scale, improved in both groups (experimental p = 0.016; control p < 0.001) and was comparable between groups, both pre (U = 45.5, p = 0.355) and post (U = 47, p = 0.597) treatment. Additionally, even though groups' performance during the robotic assessment was comparable before the treatment (U = 36, p = 0.077), after rehabilitation the experimental group presented better results than the control one (U = 26, p = 0.015). CONCLUSIONS: This work can be considered a starting point for introducing the use of robotic devices in the orthopedic field. The robot-aided rehabilitative treatment was effective and comparable to the traditional one. Preserving efficacy and safety conditions, a systematic use of these devices could lead to decrease human therapists' effort, increase repeatability and accuracy of assessments, and promote subject's engagement and voluntary participation. Trial Registration ClinicalTrial.gov ID: NCT04739644. Registered on February 4, 2021-Retrospectively registered, https://www.clinicaltrials.gov/ct2/show/study/NCT04739644 .


Assuntos
Robótica , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Extremidade Superior , Punho , Articulação do Punho
5.
Hum Brain Mapp ; 40(16): 4813-4826, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31348604

RESUMO

Proprioceptive information allows humans to perform smooth coordinated movements by constantly updating one's mind with knowledge of the position of one's limbs in space. How this information is combined with other sensory modalities and centrally processed to form conscious perceptions of limb position remains relatively unknown. What has proven even more elusive is pinpointing the contribution of proprioception in cortical activity related to motion. This study addresses these gaps by examining electrocortical dynamics while participants performed an upper limb position matching task in two conditions, namely with proprioceptive feedback or with both visual and proprioceptive feedback. Specifically, we evaluated the reduction of the electroencephalographic power (desynchronization) in the µ frequency band (8-12 Hz), which is known to characterize the neural activation associated with motor control and behavior. We observed a stronger desynchronization in the left motor and somatosensory areas, contralateral to the moving limb while, parietal and occipital regions, identifying association and visual areas, respectively, exhibited a similar activation level in the two hemispheres. Pertaining to the influence of the two experimental conditions it affected only movement's offset, and precisely we found that when matching movements are performed relying only on proprioceptive information, a lower cortical activity is entailed. This effect was strongest in the visual and association areas, while there was a minor effect in the hand motor and somatosensory areas.


Assuntos
Propriocepção/fisiologia , Extremidade Superior/fisiologia , Adolescente , Adulto , Fenômenos Biomecânicos , Mapeamento Encefálico , Eletroencefalografia , Potenciais Evocados/fisiologia , Retroalimentação Fisiológica , Retroalimentação Sensorial , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Motor/fisiologia , Robótica , Córtex Somatossensorial/fisiologia , Córtex Visual/fisiologia , Adulto Jovem
6.
J Neuroeng Rehabil ; 16(1): 124, 2019 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-31655612

RESUMO

BACKGROUND: The use of integrated robotic technology to quantify the spectrum of motor symptoms of Parkinson's Disease (PD) has the potential to facilitate objective assessment that is independent of clinical ratings. The purpose of this study is to use the KINARM exoskeleton robot to (1) differentiate subjects with PD from controls and (2) quantify the motor effects of dopamine replacement therapies (DRTs). METHODS: Twenty-six subjects (Hoehn and Yahr mean 2.2; disease duration 0.5 to 15 years) were evaluated OFF (after > 12 h of their last dose) and ON their DRTs with the Unified Parkinson's Disease Rating Scale (UPDRS) and the KINARM exoskeleton robot. Bilateral upper extremity bradykinesia, rigidity, and postural stability were quantified using a repetitive movement task to hit moving targets, a passive stretch task, and a torque unloading task, respectively. Performance was compared against healthy age-matched controls. RESULTS: Mean hand speed was 41% slower and 25% fewer targets were hit in subjects with PD OFF medication than in controls. Receiver operating characteristic (ROC) area for hand speed was 0.94. The torque required to stop elbow movement during the passive stretch task was 34% lower in PD subjects versus controls and resulted in an ROC area of 0.91. The torque unloading task showed a maximum displacement that was 29% shorter than controls and had an ROC area of 0.71. Laterality indices for speed and end total torque were correlated to the most affected side. Hand speed laterality index had an ROC area of 0.80 against healthy controls. DRT administration resulted in a significant reduction in a cumulative score of parameter Z-scores (a measure of global performance compared to healthy controls) in subjects with clinically effective levodopa doses. The cumulative score was also correlated to UPDRS scores for the effect of DRT. CONCLUSIONS: Robotic assessment is able to objectively quantify parkinsonian symptoms of bradykinesia, rigidity and postural stability similar to the UPDRS. This integrated testing platform has the potential to aid clinicians in the management of PD and help assess the effects of novel therapies.


Assuntos
Exoesqueleto Energizado , Doença de Parkinson/diagnóstico , Robótica/instrumentação , Idoso , Antiparkinsonianos/uso terapêutico , Feminino , Humanos , Levodopa/uso terapêutico , Masculino , Pessoa de Meia-Idade , Movimento/fisiologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/fisiopatologia
7.
Front Neurosci ; 17: 1248975, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37854290

RESUMO

Background: Somatosensory deficits after stroke correlate with functional disabilities and impact everyday-life. In particular, the interaction of proprioception and motor dysfunctions affects the recovery. While corticospinal tract (CST) damage is linked to poor motor outcome, much less is known on proprioceptive recovery. Identifying a predictor for such a recovery could help to gain insights in the complex functional recovery processes thereby reshaping rehabilitation strategies. Methods: 50 patients with subacute stroke were tested before and after neurological rehabilitation. Proprioceptive and motor impairments were quantified with three clinical assessments and four hand movement and proprioception measures using a robotic device. Somatosensory evoked potentials (SSEP) to median nerve stimulation and structural imaging data (MRI) were also collected. Voxel-based lesion-symptom mapping (VLSM) along with a region of interest (ROI) analysis were performed for the corticospinal tract (CST) and for cortical areas. Results: Before rehabilitation, the VLSM revealed lesion correlates for all clinical and three robotic measures. The identified voxels were located in the white matter within or near the CST. These regions associated with proprioception were located posterior compared to those associated with motor performance. After rehabilitation the patients showed an improvement of all clinical and three robotic assessments. Improvement in the box and block test was associated with an area in anterior CST. Poor recovery of proprioception was correlated with a high lesion load in fibers towards primary sensorymotor cortex (S1 and M1 tract). Patients with loss of SSEP showed higher lesion loads in these tracts and somewhat poorer recovery of proprioception. The VSLM analysis for SSEP loss revealed a region within and dorsal of internal capsule next to the posterior part of CST, the posterior part of insula and the rolandic operculum. Conclusion: Lesions dorsal to internal capsule next to the posterior CST were associated with proprioceptive deficits and may have predictive value. Higher lesion load was correlated with poorer restoration of proprioceptive function. Furthermore, patients with SSEP loss trended towards poor recovery of proprioception, the corresponding lesions were also located in the same location. These findings suggest that structural imaging of the internal capsule and CST could serve as a recovery predictor of proprioceptive function.

8.
Front Hum Neurosci ; 16: 887270, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712530

RESUMO

Fatigue is a temporary condition that arises as a result of intense and/or prolonged use of muscles and can affect skilled human performance. Therefore, the quantitative analysis of these effects is a topic of crucial interest in both ergonomics and clinical settings. This study introduced a novel protocol, based on robotic techniques, to quantitatively assess the effects of fatigue on the human wrist joint. A wrist manipulandum was used for two concurrent purposes: (1) implementing the fatigue task and (2) assessing the functional changes both before and at four time points after the end of the fatigue task. Fourteen participants completed the experimental protocol, which included the fatigue task and assessment sessions over 2 days. Specifically, the assessments performed are related to the following indicators: (1) isometric forces, (2) biomechanical properties of the wrist, (3) position sense, and (4) stretch reflexes of the muscles involved. The proposed fatigue task was a short-term, submaximal and dynamic wrist flexion/extension task designed with a torque opposing wrist flexion. A novel task termination criterion was employed and based on a percentage decrease in the mean frequency of muscles measured using surface electromyography. The muscle fatigue analysis demonstrated a change in mean frequency for both the wrist flexors and extensors, however, only the isometric flexion force decreased 4 min after the end of the task. At the same time point, wrist position sense was significantly improved and stiffness was the lowest. Viscosity presented different behaviors depending on the direction evaluated. At the end of the experiment (about 12 min after the end of the fatigue task), wrist position sense recovered to pre-fatigue values, while biomechanical properties did not return to their pre-fatigue values. Due to the wide variety of fatigue tasks proposed in the literature, it has been difficult to define a complete framework that presents the dynamic of fatigue-related changes in different components associated with wrist function. This work enables us to discuss the possible causes and the mutual relationship of the changes detected after the same task.

9.
Arthroplast Today ; 16: 151-157, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35769767

RESUMO

Background: A new morphometric fixed-bearing unicompartmental knee arthroplasty (UKA) system has been introduced to address the anatomical patient-specific challenges. It was our hypothesis that accurate restoration of the patient-specific anatomy would restore normal knee kinematics after UKA. Therefore, we aimed in this cadaveric study to analyze the impact of a medial morphometric UKA on (1) the varus-valgus and anterior-posterior stability of the knee, (2) the knee kinematics during standardized activities of the daily living, and (3) the patellar tracking, measured using a dedicated robotic testing protocol. Methods: Eight human knee specimens underwent full-leg computed tomography CT scanning and comprehensive robotic assessments of tibiofemoral and patellofemoral kinematics. Specimens were tested in the intact state and after implantation of a fixed-bearing medial UKA. Assessments included passive flexion, laxity testing and simulations of level walking, lunge, and stair descent. Results: Medial and lateral joint laxity after UKA closely resembled intact laxity across the full arc of flexion. Anterior-posterior envelope of motion showed a close match between the intact and UKA groups. Net rollback and average laxity were both not statistically different. Simulation of activities of daily living showed a close match in the anterior-posterior motion profile between the medial condyle and lateral condyle. Patellar tilt and medial-lateral shift during knee flexion matched closely between groups. Conclusion: Functional assessment of this UKA system shows nearly identical behavior to the intact knee. Fixed-bearing UKA with morphometric, compartment-specific geometry and precise mechanical instrumentation replicates complex knee balance and kinematics.

10.
Front Neurorobot ; 16: 920118, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898562

RESUMO

Multiple sclerosis (MS) is an autoimmune and neurodegenerative disease resulting in motor impairments associated with muscle weakness and lack of movement coordination. The goal of this work was to quantify upper limb motor deficits in asymptomatic MS subjects with a robot-based assessment including performance and muscle synergies analysis. A total of 7 subjects (MS: 3 M-4 F; 42 ± 10 years) with clinically definite MS according to McDonald criteria, but with no clinical disability, and 7 age- and sex-matched subjects without a history of neurological disorders participated in the study. All subjects controlled a cursor on the computer screen by moving their hand or applying forces in 8 coplanar directions at their self-selected speed. They grasped the handle of a robotic planar manipulandum that generated four different environments: null, assistive or resistive forces, and rigid constraint. Simultaneously, the activity of 15 upper body muscles was recorded. Asymptomatic MS subjects generated less smooth and less accurate cursor trajectories than control subjects in controlling a force profile, while the end-point error was significantly different also in the other environments. The EMG analysis revealed different muscle activation patterns in MS subjects when exerting isometric forces or when moving in presence of external forces generated by a robot. While the two populations had the same number and similar structure of muscle synergies, they had different activation profiles. These results suggested that a task requiring to control forces against a rigid environment allows better than movement tasks to detect early sensory-motor signs related to the onset of symptoms of multiple sclerosis and to differentiate between stages of the disease.

11.
Front Hum Neurosci ; 15: 662768, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33967724

RESUMO

A deep investigation of proprioceptive processes is necessary to understand the relationship between sensory afferent inputs and motor outcomes. In this work, we investigate whether and how perception of wrist position is influenced by the direction along which the movement occurs. Most previous studies have tested Joint Position Sense (JPS) through 1 degree of freedom (DoF) wrist movements, such as flexion/extension (FE) or radial/ulnar deviation (RUD). However, the wrist joint has 3-DoF and many activities of daily living produce combined movements, requiring at least 2-DoF wrist coordination. For this reason, in this study, target positions involved movement directions that combined wrist flexion or extension with radial or ulnar deviation. The chosen task was a robot-aided Joint Position Matching (JPM), in which blindfolded participants actively reproduced a previously passively assumed target joint configuration. The JPM performance of 20 healthy participants was quantified through measures of accuracy and precision, in terms of both perceived target direction and distance along each direction of movement. Twelve different directions of movement were selected and both hands tested. The left and right hand led to comparable results, both target extents and directions were differently perceived according to the target direction on the FE/RUD space. Moreover, during 2-DoF combined movements, subjects' perception of directions was impaired when compared to 1-DoF target movements. In summary, our results showed that human perception of wrist position on the FE/RUD space is symmetric between hands but not isotropic among movement directions.

12.
Front Neurorobot ; 15: 640551, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33732131

RESUMO

Position sense refers to an aspect of proprioception crucial for motor control and learning. The onset of neurological diseases can damage such sensory afference, with consequent motor disorders dramatically reducing the associated recovery process. In regular clinical practice, assessment of proprioceptive deficits is run by means of clinical scales which do not provide quantitative measurements. However, existing robotic solutions usually do not involve multi-joint movements but are mostly applied to a single proximal or distal joint. The present work provides a testing paradigm for assessing proprioception during coordinated multi-joint distal movements and in presence of kinaesthetic perturbations: we evaluated healthy subjects' ability to match proprioceptive targets along two of the three wrist's degrees of freedom, flexion/extension and abduction/adduction. By introducing rotations along the pronation/supination axis not involved in the matching task, we tested two experimental conditions, which differed in terms of the temporal imposition of the external perturbation: in the first one, the disturbance was provided after the presentation of the proprioceptive target, while in the second one, the rotation of the pronation/ supination axis was imposed during the proprioceptive target presentation. We investigated if (i) the amplitude of the perturbation along the pronation/supination would lead to proprioceptive miscalibration; (ii) the encoding of proprioceptive target, would be influenced by the presentation sequence between the target itself and the rotational disturbance. Eighteen participants were tested by means of a haptic neuroergonomic wrist device: our findings provided evidence that the order of disturbance presentation does not alter proprioceptive acuity. Yet, a further effect has been noticed: proprioception is highly anisotropic and dependent on perturbation amplitude. Unexpectedly, the configuration of the forearm highly influences sensory feedbacks, and significantly alters subjects' performance in matching the proprioceptive targets, defining portions of the wrist workspace where kinaesthetic and proprioceptive acuity are more sensitive. This finding may suggest solutions and applications in multiple fields: from general haptics where, knowing how wrist configuration influences proprioception, might suggest new neuroergonomic solutions in device design, to clinical evaluation after neurological damage, where accurately assessing proprioceptive deficits can dramatically complement regular therapy for a better prediction of the recovery path.

13.
Front Hum Neurosci ; 15: 726841, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671248

RESUMO

In this study, we designed a robot-based method to compute a mechanical impedance model that could extract the viscoelastic properties of the wrist joint. Thirteen subjects participated in the experiment, testing both dominant and nondominant hands. Specifically, the robotic device delivered position-controlled disturbances in the flexion-extension degree of freedom of the wrist. The external perturbations were characterized by small amplitudes and fast velocities, causing rotation at the wrist joint. The viscoelastic characteristics of the mechanical impedance of the joint were evaluated from the wrist kinematics and corresponding torques. Since the protocol used position inputs to determine changes in mean wrist torque, a detailed analysis of wrist joint dynamics could be made. The scientific question was whether and how these mechanical features changed with various grip demands and perturbation velocities. Nine experimental conditions were tested for each hand, given by the combination of three velocity perturbations (fast, medium, and slow) and three hand grip conditions [self-selected grip, medium and high grip force, as percentage of the maximum voluntary contraction (MVC)]. Throughout the experiments, electromyographic signals of the extensor carpi radialis (ECR) and the flexor carpi radialis (FCR) were recorded. The novelty of this work included a custom-made soft grip sensor, wrapped around the robotic handle, to accurately quantify the grip force exerted by the subjects during experimentation. Damping parameters were in the range of measurements from prior studies and consistent among the different experimental conditions. Stiffness was independent of both direction and velocity of perturbations and increased with increasing grip demand. Both damping and stiffness were not different between the dominant and nondominant hands. These results are crucial to improving our knowledge of the mechanical characteristics of the wrist, and how grip demands influence these properties. This study is the foundation for future work on how mechanical characteristics of the wrist are affected in pathological conditions.

14.
Neurorehabil Neural Repair ; 33(10): 848-861, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31434533

RESUMO

Background. Corticospinal tract (CST) damage is considered a biomarker for stroke recovery. Several methods have been used to define CST damage and examine its relationship to motor performance, but which method is most useful remains unclear. Proprioceptive impairment also affects stroke recovery and may be related to CST damage. Methods. Robotic assessment quantified upper-limb motor and proprioceptive performance at 2 weeks and 6 months poststroke (n = 149). Three previously-established CST lesion metrics were calculated using clinical neuroimaging. Diffusion magnetic resonance imaging quantified CST microstructure in a subset of participants (n = 21). Statistical region of interest (sROI) analysis identified lesion locations associated with motor and proprioceptive deficits. Results. CST lesion metrics were moderately correlated with motor scores at 2 weeks and 6 months poststroke. CST fractional anisotropy (FA) was correlated with motor scores at 1 month poststroke, but not at 6 months. The FA ratio of the posterior limb of the internal capsule was not correlated with motor performance. CST lesion metrics were moderately correlated with proprioceptive scores at 2 weeks and 6 months poststroke. sROI analysis confirmed that CST damage was associated with motor and proprioceptive deficits and additionally found that putamen, internal capsule, and corticopontocerebellar tract lesions were associated with poor motor performance. Conclusions. Across all methods used to quantify CST damage, correlations with motor or proprioceptive performance were moderate at best. Future research is needed to identify complementary or alternative biomarkers to address the complexity and heterogeneity of stroke recovery.


Assuntos
Propriocepção/fisiologia , Desempenho Psicomotor/fisiologia , Tratos Piramidais/patologia , Tratos Piramidais/fisiopatologia , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/diagnóstico , Extremidade Superior/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tratos Piramidais/diagnóstico por imagem , Robótica , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologia
15.
Neuroimage Clin ; 20: 955-971, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30312939

RESUMO

Proprioceptive deficits are common after stroke and have been associated with poorer recovery. Relatively little is known about the brain regions beyond primary somatosensory cortex that contribute to the percept of proprioception in humans. We examined a large sample (n = 153) of stroke survivors longitudinally to determine which brain regions were associated with persistent post-stroke proprioceptive deficits. A robotic exoskeleton quantified two components of proprioception, position sense and kinesthesia (movement sense), at 2 weeks and again at 6 months post-stroke. A statistical region of interest (sROI) analysis compared the lesion-behaviour relationships of those subjects with cortical and subcortical stroke (n = 136). The impact of damage to brainstem and cerebellum (n = 17) was examined separately. Results indicate that damage to the supramarginal gyrus, the arcuate fasciculus, and Heschl's gyrus are associated with deficits in position sense and kinesthesia at 6 months post-stroke. These results suggest that regions beyond the primary somatosensory cortex contribute to our sense of limb position and movement. This information extends our understanding of proprioceptive processing and may inform personalized interventions such as non-invasive brain stimulation where specific brain regions can be targeted to potentially improve stroke recovery.


Assuntos
Rede Nervosa/patologia , Propriocepção/fisiologia , Acidente Vascular Cerebral/patologia , Extremidade Superior/patologia , Cerebelo/patologia , Cerebelo/fisiopatologia , Feminino , Humanos , Cinestesia/fisiologia , Masculino , Movimento/fisiologia , Rede Nervosa/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia , Extremidade Superior/fisiopatologia , Substância Branca/patologia , Substância Branca/fisiopatologia
17.
Front Neurosci ; 11: 101, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28381985

RESUMO

Motor learning is a critical component of the rehabilitation process; however, it can be difficult to separate the fundamental causes of a learning deficit when physical impairment is a confounding factor. In this paper, a new technique is proposed to augment the residual ability of physically impaired patients with a robotic rehabilitation exoskeleton, such that motor learning can be studied independently of physical impairment. The proposed technique augments the velocity of an on-screen cursor relative to the restricted physical motion. Radial Basis Functions (RBFs) are used to both model velocity and derive a function to scale velocity as a function of workspace position. Two variations of the algorithm are presented for comparison. In a cross-over pilot study, healthy participants were recruited and subjected to a simulated impairment to constrain their motion, imposed by the cable-driven wrist exoskeleton. Participants then completed a sinusoidal tracking task, in which the algorithms were statistically shown to augment the cursor velocity in the constrained state such that it matched position-dependent velocities recorded in the healthy state. A kinematic task was then designed as a motor-learning case study where the algorithms were statistically shown to allow participants to achieve the same performance when their motion was constrained as when unconstrained. The results of the pilot study provide motivation for further research into the use of this technique, thus providing a tool with which motor-learning can be studied in neurologically impaired populations. This could be used to give physiotherapists greater insight into underlying causes of motor learning deficits, consequently facilitating and enhancing subject-specific therapy regimes.

18.
Clin Interv Aging ; 12: 635-643, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28435235

RESUMO

Neurological injuries such as stroke can lead to proprioceptive impairment. For an informed diagnosis, prognosis, and treatment planning, it is essential to be able to distinguish between healthy performance and deficits following the neurological injury. Since there is some evidence that proprioception declines with age and stroke occurs predominantly in the elderly population, it is important to create a healthy reference model in this specific age group. However, most studies investigate age effects by comparing young and elderly subjects and do not provide a model within a target age range. Moreover, despite the functional relevance of the hand in activities of daily living, age-based models of distal proprioception are scarce. Here, we present a proprioception model based on the assessment of the metacarpophalangeal joint angle difference threshold in 30 healthy elderly subjects, aged 55-80 years (median: 63, interquartile range: 58-66), using a robotic tool to apply passive flexion-extension movements to the index finger. A two-alternative forced-choice paradigm combined with an adaptive algorithm to define stimulus magnitude was used. The mixed-effects model analysis revealed that aging has a significant, increasing effect on the difference threshold at the metacarpophalangeal joint, whereas other predictors (eg, tested hand or sex) did not show a significant effect. The adaptive algorithm allowed reaching an average assessment duration <15 minutes, making its clinical applicability realistic. This study provides further evidence for an age-related decline in proprioception at the level of the hand. The established age-based model of proprioception in elderly may serve as a reference model for the proprioceptive performance of stroke patients, or of any other patient group with central or peripheral proprioceptive impairments. Furthermore, it demonstrates the potential of such automated robotic tools as a rapid and quantitative assessment to be used in research and clinical settings.


Assuntos
Articulação Metacarpofalângica/fisiopatologia , Propriocepção/fisiologia , Amplitude de Movimento Articular/fisiologia , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Feminino , Dedos/fisiopatologia , Mãos/fisiopatologia , Humanos , Masculino , Junção Neuromuscular/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Suporte de Carga/fisiologia
19.
Front Neurosci ; 10: 477, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27826223

RESUMO

Technology aided measures offer a sensitive, accurate and time-efficient approach for the assessment of sensorimotor function after neurological insult compared to standard clinical assessments. This study investigated the sensitivity of robotic measures to capture differences in planar reaching movements as a function of neurological status (stroke, healthy), direction (front, ipsilateral, contralateral), movement segment (outbound, inbound), and time (baseline, post-training, 2-week follow-up) using a planar, two-degrees of freedom, robotic-manipulator (H-Man). Twelve chronic stroke (age: 55 ± 10.0 years, 5 female, 7 male, time since stroke: 11.2 ± 6.0 months) and nine aged-matched healthy participants (age: 53 ± 4.3 years, 5 female, 4 male) participated in this study. Both healthy and stroke participants performed planar reaching movements in contralateral, ipsilateral and front directions with the H-Man, and the robotic measures, spectral arc length (SAL), normalized time to peak velocities (TpeakN ), and root-mean square error (RMSE) were evaluated. Healthy participants went through a one-off session of assessment to investigate the baseline. Stroke participants completed a 2-week intensive robotic training plus standard arm therapy (8 × 90 min sessions). Motor function for stroke participants was evaluated prior to training (baseline, week-0), immediately following training (post-training, week-2), and 2-weeks after training (follow-up, week-4) using robotic assessment and the clinical measures Fugl-Meyer Assessment (FMA), Activity-Research-Arm Test (ARAT), and grip-strength. Robotic assessments were able to capture differences due to neurological status, movement direction, and movement segment. Movements performed by stroke participants were less-smooth, featured longer TpeakN , and larger RMSE values, compared to healthy controls. Significant movement direction differences were observed, with improved reaching performance for the front, compared to ipsilateral and contralateral movement directions. There were group differences depending on movement segment. Outbound reaching movements were smoother and featured longer TpeakN values than inbound movements for control participants, whereas SAL, TpeakN , and RMSE values were similar regardless of movement segment for stroke patients. Significant change in performance was observed between initial and post-assessments using H-Man in stroke participants, compared to conventional scales which showed no significant difference. Results of the study indicate the potential of H-Man as a sensitive tool for tracking changes in performance compared to ordinal scales (i.e., FM, ARAT).

20.
Front Neurosci ; 10: 88, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27013950

RESUMO

Previous studies suggested that both robot-assisted rehabilitation and non-invasive brain stimulation can produce a slight improvement in severe chronic stroke patients. It is still unknown whether their combination can produce synergistic and more consistent improvements. Safety and efficacy of this combination has been assessed within a proof-of-principle, double-blinded, semi-randomized, sham-controlled trial. Inhibitory continuous Theta Burst Stimulation (cTBS) was delivered on the affected hemisphere, in order to improve the response to the following robot-assisted therapy via a homeostatic increase of learning capacity. Twenty severe upper limb-impaired chronic stroke patients were randomized to robot-assisted therapy associated with real or sham cTBS, delivered for 10 working days. Eight real and nine sham patients completed the study. Change in Fugl-Meyer was chosen as primary outcome, while changes in several quantitative indicators of motor performance extracted by the robot as secondary outcomes. The treatment was well-tolerated by the patients and there were no adverse events. All patients achieved a small, but significant, Fugl-Meyer improvement (about 5%). The difference between the real and the sham cTBS groups was not significant. Among several secondary end points, only the Success Rate (percentage of targets reached by the patient) improved more in the real than in the sham cTBS group. This study shows that a short intensive robot-assisted rehabilitation produces a slight improvement in severe upper-limb impaired, even years after the stroke. The association with homeostatic metaplasticity-promoting non-invasive brain stimulation does not augment the clinical gain in patients with severe stroke.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa