Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 21(23): 9889-9895, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34807625

RESUMO

The functionality of a ferroic device is intimately coupled to the configuration of domains, domain boundaries, and the possibility for tailoring them. Exemplified with a ferromagnetic system, we present a novel approach which allows the creation of new, metastable multidomain patterns with tailored wall configurations through a self-assembled geometrical transformation. By preparing a magnetic layer system on a polymeric platform including swelling layer, a repeated self-assembled rolling into a multiwinding tubular structure and unrolling of the functional membrane is obtained. When polarizing the rolled-up 3D structure in a simple homogeneous magnetic field, the imprinted configuration translates into a regularly arranged multidomain configuration once the tubular structure is unwound. The process is linked to the employed magnetic anisotropy with respect to the surface normal, and the geometrical transformation connects the angular with the lateral degrees of freedom. This combination offers unparalleled possibilities for designing new magnetic or other ferroic micropatterns.


Assuntos
Magnetismo , Imãs , Anisotropia , Campos Magnéticos , Polímeros
2.
Nano Lett ; 18(6): 3688-3694, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29799209

RESUMO

Future advances in materials will be aided by improved dimensional control in fabrication of 3D hierarchical structures. Self-rolling technology provides additional degrees of freedom in 3D design by enabling an arbitrary rolling direction with controllable curvature. Here, we demonstrate that deterministic helical structures with variable rolling directions can be formed through releasing a strained nanomembrane patterned in a "utility knife" shape. The asymmetry of the membrane shape provides anisotropic driving force generated by the disparity between the etching rates along different sides in this asymmetric shape. A transient finite element method (FEM) model of diagonal rolling is established to analyze the relationships among geometries, elastic properties, and boundary conditions. On the basis of this model, a diamond-based helical framework consisting of two or three helical segments has been fabricated to mimic the shapes of natural plants. Further experiment has been done to extend this approach to other materials and material combinations, such as MoSe2/Cr, Cr/Pt, and VO2. To demonstrate the possible application accessible by our technology to new fields, VO2-based helical microscale actuation has been demonstrated with photocontrollable bending in a selected region, as well as morphable and recognizable helix. This study offers a new way to construct helical mesostructures that combine special properties of the advanced materials, thus possess novel features and potential applications.

3.
Nano Lett ; 16(7): 4288-96, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27266478

RESUMO

We report an ultrasensitive label-free DNA biosensor with fully on-chip integrated rolled-up nanomembrane electrodes. The hybridization of complementary DNA strands (avian influenza virus subtype H1N1) is selectively detected down to attomolar concentrations, an unprecedented level for miniaturized sensors without amplification. Impedimetric DNA detection with such a rolled-up biosensor shows 4 orders of magnitude sensitivity improvement over its planar counterpart. Furthermore, it is observed that the impedance response of the proposed device is contrary to the expected behavior due to its particular geometry. To further investigate this difference, a thorough model analysis of the measured signal and the electric field calculation is performed, revealing enhanced electron hopping/tunneling along the DNA chains due to an enriched electric field inside the tube. Likewise, conformational changes of DNA might also contribute to this effect. Accordingly, these highly integrated three-dimensional sensors provide a tool to study electrical properties of DNA under versatile experimental conditions and open a new avenue for novel biosensing applications (i.e., for protein, enzyme detection, or monitoring of cell behavior under in vivo like conditions).


Assuntos
Técnicas Biossensoriais , DNA Viral/análise , Nanoestruturas , Técnicas Eletroquímicas , Eletrodos , Vírus da Influenza A Subtipo H1N1/genética , Hibridização de Ácido Nucleico
4.
Nano Lett ; 15(8): 5530-8, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26161791

RESUMO

We employ glass microtube structures fabricated by rolled-up nanotechnology to infer the influence of scaffold dimensionality and cell confinement on neural stem cell (NSC) migration. Thereby, we observe a pronounced morphology change that marks a reversible mesenchymal to amoeboid migration mode transition. Space restrictions preset by the diameter of nanomembrane topography modify the cell shape toward characteristics found in living tissue. We demonstrate the importance of substrate dimensionality for the migration mode of NSCs and thereby define rolled-up nanomembranes as the ultimate tool for single-cell migration studies.


Assuntos
Movimento Celular , Nanoestruturas/química , Células-Tronco Neurais/citologia , Alicerces Teciduais/química , Animais , Linhagem Celular , Vidro/química , Membranas Artificiais , Camundongos , Nanoestruturas/ultraestrutura , Nanotecnologia
5.
Adv Sci (Weinh) ; 10(21): e2302103, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37162217

RESUMO

Although rolling origami technology has provided convenient access to three-dimensional (3D) microstructure systems, the high yield and scalable construction of complex rolling structures with well-defined geometry without impeding functionality has remained challenging. The straightforward, one-step fabrication that uses external mechanical stress to scroll micrometer thick, flexible planar films with centimeter lateral dimensions into tubular or spiral geometry within a few seconds is demonstrated. The method allows controlling the scrolls' diameter, number of windings and nanostructured surface morphology, and is applicable to a wide range of functional materials. The obtained 3D structures are highly promising for various applications including sensors, actuators, microrobotics, as well as energy storage and electronic devices.

6.
Adv Sci (Weinh) ; 6(20): 1901051, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31637162

RESUMO

The rapid development of microelectronics has equally rapidly increased the demand for miniaturized energy storage devices. On-chip microsupercapacitors (MSCs), as promising power candidates, possess great potential to complement or replace electrolytic capacitors and microbatteries in various applications. However, the areal capacities and energy densities of the planar MSCs are commonly limited by the low voltage window, the thin layer of the electrode materials and complex fabrication processes. Here, a new-type three-dimensional (3D) tubular asymmetric MSC with small footprint area, high potential window, ultrahigh areal energy density, and long-term cycling stability is fabricated with shapeable materials and photolithographic technologies, which are compatible with modern microelectronic fabrication procedures widely used in industry. Benefiting from the novel architecture, the 3D asymmetric MSC displays an ultrahigh areal capacitance of 88.6 mF cm-2 and areal energy density of 28.69 mW h cm-2, superior to most reported interdigitated MSCs. Furthermore, the 3D tubular MSCs demonstrate remarkable cycling stability and the capacitance retention is up to 91.8% over 12 000 cycles. It is believed that the efficient fabrication methodology can be used to construct various integratable microscale tubular energy storage devices with small footprint area and high performance for miniaturized electronics.

7.
Adv Mater ; 29(13)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28165163

RESUMO

Nanocrystalline diamond nanomembranes with thinning-reduced flexural rigidities can be shaped into various 3D mesostructures, such as tubes, jagged ribbons, nested tubes, helices, and nested rings. Microscale helical diamond architectures are formed by controlled debonding in agreement with finite-element simulation results. Rolled-up diamond tubular microcavities exhibit pronounced defect-related photoluminescence with whispering-gallery-mode resonance.

8.
Beilstein J Nanotechnol ; 8: 1277-1282, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28690963

RESUMO

The investigation of charge transport in organic nanocrystals is essential to understand nanoscale physical properties of organic systems and the development of novel organic nanodevices. In this work, we fabricate organic nanocrystal diodes contacted by rolled-up robust nanomembranes. The organic nanocrystals consist of vanadyl phthalocyanine and copper hexadecafluorophthalocyanine heterojunctions. The temperature dependent charge transport through organic nanocrystals was investigated to reveal the transport properties of ohmic and space-charge-limited current under different conditions, for instance, temperature and bias.

9.
Adv Mater ; 29(34)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28691179

RESUMO

A novel realization of microtubular direct methanol fuel cells (µDMFC) with ultrahigh power output is reported by using "rolled-up" nanotechnology. The microtube (Pt-RuO2 -RUMT) is prepared by rolling up Ru2 O layers coated with magnetron-sputtered Pt nanoparticles (cat-NPs). The µDMFC is fabricated by embedding the tube in a fluidic cell. The footprint of per tube is as small as 1.5 × 10-4 cm2 . A power density of ≈257 mW cm-2 is obtained, which is three orders of magnitude higher than the present microsized DFMCs. Atomic layer deposition technique is applied to alleviate the methanol crossover as well as improve stability of the tube, sustaining electrolyte flow for days. A laminar flow driven mechanism is proposed, and the kinetics of the fuel oxidation depends on a linear-diffusion-controlled process. The electrocatalytic performance on anode and cathode is studied by scanning both sides of the tube wall as an ex situ working electrode, respectively. This prototype µDFMC is extremely interesting for integration with micro- and nanoelectronics systems.

10.
Sci Adv ; 2(8): e1600027, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27536723

RESUMO

Three-dimensional (3D) design and manufacturing enable flexible nanomembranes to deliver unique properties and applications in flexible electronics, photovoltaics, and photonics. We demonstrate that a quantum well (QW)-embedded nanomembrane in a rolled-up geometry facilitates a 3D QW infrared photodetector (QWIP) device with enhanced responsivity and detectivity. Circular geometry of nanomembrane rolls provides the light coupling route; thus, there are no external light coupling structures, which are normally necessary for QWIPs. This 3D QWIP device under tube-based light-trapping mode presents broadband enhancement of coupling efficiency and omnidirectional detection under a wide incident angle (±70°), offering a unique solution to high-performance focal plane array. The winding number of these rolled-up QWIPs provides well-tunable blackbody photocurrents and responsivity. 3D self-assembly of functional nanomembranes offers a new path for high conversion efficiency between light and electricity in photodetectors, solar cells, and light-emitting diodes.


Assuntos
Técnicas Biossensoriais , Raios Infravermelhos , Membranas Artificiais , Nanoestruturas , Nanotecnologia , Pontos Quânticos , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Nanotecnologia/instrumentação , Nanotecnologia/métodos
11.
Adv Mater ; 25(27): 3715-21, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23703926

RESUMO

Surface tension of self-assembled metal nanodroplets can be applied to overcome the deformation barriers of strain-engineered nanomembranes and produce extremely nanoscale tubes. Aggregated nanoparticles stress nanomembranes and subsequently integrate on the walls of rolled-up nanotubes, which can speed up the tubular engines owing to the enhanced electrocatalytic activity.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa