Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 205: 112521, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34902380

RESUMO

Regeneration and reuse of draw solute (DS) is a key challenge in the application of forward osmosis (FO) technologies. Herein, EDTA-Na2 was studied as a recoverable DS for water extraction by taking advantages of its pH-responsive property. The FO system using EDTA DS achieved a higher water flux of 2.22 ± 0.06 L m-2 h-1 and a significantly lower reverse salt flux (RSF) of 0.06 ± 0.01 g m-2 h-1, compared to that with NaCl DS having either the same DS concentration or the same Na+ concentration. The suitable pH range for the application of EDTA DS was between 4.0 and 10.5. A simple recovery method via combined pH adjustment and microfiltration was employed to recover EDTA DS and could achieve the recovery efficiency (at pH 2) of 96.26 ± 0.48%, 97.13 ± 1.03% and 98.56 ± 1.40% by using H2SO4, H3PO4 and HCl, respectively. The lowest acid cost for DS recovery was estimated from 0.0012 ± 0.0001 to 0.0162 ± 0.0003 $ g-1 by using H2SO4. The recovered EDTA DS could be reused in the subsequent FO operation and the overall recovery efficiency was 94.4% for four reuse cycles. These results have demonstrated the feasible of EDTA-Na2 DS and a potentially cost-effective recovery approach, and encouraged further exploration of using EDTA-based compounds as a draw solute for FO applications.


Assuntos
Purificação da Água , Água , Ácido Edético/química , Membranas Artificiais , Osmose , Águas Residuárias , Purificação da Água/métodos
2.
Artigo em Inglês | MEDLINE | ID: mdl-32022630

RESUMO

In this study, a novel osmotic membrane was developed by polyamide (PA) coating on the tubular electrospun nanofiber (TuEN) support membrane. Water and reverse salt flux properties of the obtained membrane were investigated by applying pressure in addition to the osmotic forces. Surface characterization of the membrane was carried out by Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM) analyses and flux performance tests were performed in both cross flow and submerged membrane setups. Applying pressure from the feed to the concentrate side had significant effects on the water and salt fluxes. Higher pressure differences between the feed and concentrate sides resulted in unexpected high water fluxes up to 500 Lm-2h-1 (LMH). Besides, the pressure helps to transfer the salt content of feed water into the concentrate side, differently from the osmotic process preventing the salinity build-up at the feed side. PA coated TuEN membrane operated under pressure will exhibit a favorable solution in water/wastewater treatment applications, especially for membrane bioreactors (MBR) in terms of preventing salt accumulation in the bioreactor, decreasing the membrane fouling, increasing the volume of product water, and enabling the concentrate management.


Assuntos
Membranas Artificiais , Nanofibras/química , Nylons/química , Reatores Biológicos , Modelos Teóricos , Osmose , Pressão , Salinidade , Cloreto de Sódio/química , Propriedades de Superfície , Águas Residuárias/química , Movimentos da Água , Purificação da Água/métodos
3.
J Environ Manage ; 226: 217-225, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30119046

RESUMO

Solutions to mitigate the reverse diffusion of solutes are critical to the successful commercialisation of the fertiliser drawn forward osmosis process. In this study, we proposed to combine a high performance fertiliser (i.e., ammonium sulfate or SOA) with surfactants as additives as an approach to reduce the reverse diffusion of ammonium ions. Results showed that combining SOA with both anionic and non-ionic surfactants can help in reducing the reverse salt diffusion by up to 67%. We hypothesised that, hydrophobic interactions between the surfactant tails and the membrane surface likely constricted membrane pores resulting in increased rejection of ions with large hydrated radii such as SO42-. By electroneutrality, the rejection of the counter ions (i.e., NH4+) also therefore subsequently improved. Anionic surfactant was found to further decrease the reverse salt diffusion due to electrostatic repulsions between the surfactant negatively-charged heads and SO42-. However, when the feed solution contains cations with small hydrated radii (e.g., Na+); it was found that NH4+ ions can be substituted in the DS to maintain its electroneutrality and thus the diffusion of NH4+ to the feed solution was increased.


Assuntos
Fertilizantes , Purificação da Água , Membranas Artificiais , Osmose , Tensoativos
4.
J Environ Sci (China) ; 45: 7-17, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27372114

RESUMO

Polyethylene terephthalate mesh (PET) enhanced cellulose acetate membranes were fabricated via a phase inversion process. The membrane fabrication parameters that may affect the membrane performance were systematically evaluated including the concentration and temperature of the casting polymer solution and the temperature and time of the evaporation, coagulation and annealing processes. The water permeability and reverse salt flux were measured in forward osmosis (FO) mode for determination of the optimal membrane fabrication conditions. The optimal FO membrane shows a typical asymmetric sandwich structure with a mean thickness of about 148.2µm. The performance of the optimal FO membrane was tested using 0.2mol/L NaCl as the feed solution and 1.5mol/L glucose as the draw solution. The membrane displayed a water flux of 3.47L/(m(2)·hr) and salt rejection of 95.48% in FO mode. While in pressure retarded osmosis (PRO) mode, the water flux was 4.74L/(m(2)·hr) and salt rejection 96.03%. The high ratio of water flux in FO mode to that in PRO mode indicates that the fabricated membrane has a lower degree of internal concentration polarization than comparable membranes.


Assuntos
Celulose/análogos & derivados , Filtração/instrumentação , Membranas Artificiais , Polietilenotereftalatos/química , Purificação da Água/instrumentação , Celulose/química , Interações Hidrofóbicas e Hidrofílicas , Osmose , Permeabilidade , Purificação da Água/métodos
5.
Bioresour Technol ; 406: 130957, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876283

RESUMO

The osmotic membrane bioreactor (OMBR) is a novel wastewater treatment and resource recovery technology combining forward osmosis (FO) and membrane bioreactor. It has attracted attention for its low energy consumption and high contaminant removal performance. However, in the long-term operation, OMBR faces the problem of salt accumulation due to high salt rejection and reverse salt flux, which affects microbial activity and contaminants removal efficiency. This review analyzed the feasibility of screening salt-tolerant microorganisms and determining salinity thresholds to improve the salt tolerance of OMBR. Combined with recent research, the inhibition strategies for salt accumulation were reviewed, including the draw solution, FO membrane, operating conditions and coupling with other systems. It is hoped to provide a theoretical basis and practical guidance for the further development of OMBR. Finally, future research directions were prospected. This review provides new insights for achieving stable operation of OMBR and promotes its wide application.


Assuntos
Reatores Biológicos , Membranas Artificiais , Osmose , Tolerância ao Sal/fisiologia , Purificação da Água/métodos , Águas Residuárias/química , Salinidade
6.
Chemosphere ; 311(Pt 1): 136906, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36270521

RESUMO

Microplastics (MPs) are emerging contaminants that are abundantly present in the influent and effluent of wastewater treatment plants (WWTPs). Forward osmosis (FO) is an advanced treatment technology with potential applications in WWTPs. The presence of MPs in WWTP effluents can contribute to FO fouling and performance deterioration. This study focuses on FO membrane fouling by MPs of different sizes, and the interactional impacts of MPs and Humic acid (HA) (as the most common organic foulant in WWTPs) on FO membrane performance. The synergistic effect of combined MPs and HA fouling is shown to cause higher flux decline for FO membranes than that of HA or MPs alone. Reverse salt flux increased in the presence of MPs, and decreased when HA was present. Further, full flux recovery was obtained for all fouled membranes after hydraulic cleaning. This indicates the efficiency of FO systems for treating wastewater with high fouling potential. This study highlights the necessity of considering MPs in studying fouling behaviour, and for mitigation strategies of membranes used in WWT. The fundamentals created here can be further extended to other membrane-assisted separation processes.


Assuntos
Microplásticos , Purificação da Água , Plásticos , Membranas Artificiais , Osmose , Águas Residuárias , Substâncias Húmicas
7.
Environ Sci Pollut Res Int ; 30(7): 19224-19233, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36227491

RESUMO

In this study, poly(acrylic acid) sodium (PAA-Na) salt was selected as representative polymer additive and the effect on forward osmosis (FO) performance of traditional draw solute NaCl was investigated. Results showed that PAA-Na increased water flux in both FO and PRO mode at 25 °C (up to 50%). Water flux and specific RSF firstly increased and then kept stable with the increasing concentration of PAA-Na additive. However, PAA-Na cannot enhance water permeation effectively at 35 and 45 °C. PAA-Na influenced FO performance by (1) increasing membrane hydrophilicity, which can increase water permeation, and was dominant at low temperature, and (2) causing pore-clogging, leading water flux decline, which was significant at high temperature. Furthermore, the influence of PAA-Na was compared with another polymer PAM and divalent salts MgCl2. The addition of PAM increased water flux slightly (lower than 25%), but increased RSF at the same time, due to the negative charge. Although MgCl2 decreased RSF and kept water flux fixed, its role was not obvious. In all, PAA-Na had advantages to improve FO performance.


Assuntos
Sódio , Purificação da Água , Purificação da Água/métodos , Cloreto de Sódio , Resinas Acrílicas , Água , Osmose , Membranas Artificiais
8.
Membranes (Basel) ; 12(11)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36422157

RESUMO

The forward osmosis membrane (FO membrane) is an emerging wastewater treatment technology in bioelectricity generation, organic substrate removal and wastewater reclamation. Compared with traditional membrane materials, the FO membrane has a more uniform water content distribution and internal solution concentration distribution. In the past, it was believed that one of the important factors restricting power generation was membrane fouling. This study innovatively constructed a mass transfer model of a fouling membrane. Through the analysis of the hydraulic resistance coefficient and the salt mass transfer resistance coefficient, the driving force and the tendency of reverse salt flux during membrane fouling were determined by the model. A surprising discovery was that the fouling membrane can also achieve efficient power generation. The results showed that the hydraulic resistance coefficient of the fouling membrane increased to 4.97 times the initial value, while the salt mass transfer resistance coefficient did not change significantly. Meanwhile, membrane fouling caused concentration polarization in the FO membrane, which enhanced the reverse trend of salt, and the enhancement effect was significantly higher than the impact of the water flux decline caused by membrane pollution. This will make an important contribution to research on FO membrane technology as sustainable membrane technology in wastewater treatment.

9.
J Hazard Mater ; 404(Pt A): 124160, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33049631

RESUMO

Forward osmosis (FO)-membrane distillation (MD) process was integrated with anaerobic fluidized bed bioreactor (AFBR) to advance wastewater treatment. Low removal efficiency of nutrients such as ammonia nitrogen was improved significantly by combining FO-MD process with AFBR. The MD membrane was applied to concentrate the draw solution (DS) which can be diluted by FO filtration. By using 1 M of NaCl as DS, about 80% of ammonia nitrogen was further removed by the FO membrane while the phosphorous was removed almost completely (99%). However, the accumulation of ammonia nitrogen in DS and the reverse salt flux through the FO membrane was unavoidable. Nevertheless, combining MD membrane produced excellent removal efficiency yielding only 4 and 5.6 mg/L of ammonia nitrogen and chemical oxygen demand (COD) in MD permeate, respectively at 15 â„ƒ of transmembrane temperature. Alternatively, there is the possibility that the FO-MD process can be superior to concentrate resources such as nitrogen and phosphorous present in AFBR. The reverse salt flux from DS into AFBR bulk suspension did not show adverse effects on the performances of bioreactor with respect to COD removal efficiency, conductivity and methane production during operational period. Deposit of the fouling layer on FO membrane was also observed, but the fouling on MD membrane was not severe probably because crystallization rate could be retarded by diluting the DS during FO filtration.


Assuntos
Destilação , Purificação da Água , Anaerobiose , Reatores Biológicos , Membranas Artificiais , Osmose , Águas Residuárias
10.
Water Environ Res ; 93(10): 2329-2340, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34216398

RESUMO

Water is crucial for enhancing the yield of agricultural land to meet the growing demand. Forward osmosis (FO) is a developing technology that utilizes the natural osmotic gradient of solutions. In this study, fertilizer drawn FO setup was considered by using potassium chloride (KCl) as the draw solution (DS) for treating textile wastewater as the feed solution (FS). This study investigated the effects of FS temperature, pH, and FS and DS concentrations. The performance investigation involved the study in terms of water flux, reverse salt flux, and specific reverse salt flux. DS and FS properties, osmotic potential, and temperature played a vital role in the performance. At 30°C FS temperature, the highest water flux (5.5 LMH) was observed. Reverse salt flux increased due to the increase in solute diffusivity. The highest value of water flux was obtained at a DS of 1.150 M and FS of 1000 mg/L. The permeation of water improved due to the difference in DS and FS concentrations at pH values above 7. The results of this study suggest that KCl as DS has a higher potential for the treatment of textile wastewater at a temperature of 30°C. Additionally, the functional groups attached to the FO membrane were identified through Fourier-transform infrared (FTIR) spectroscopic study. PRACTITIONER POINTS: Treatment of textile wastewater with the use of fertilizer draw solution (KCl) by forward osmosis process as carried out. The performance was assessed in terms of water flux, reverse salt flux, and specific reverse salt flux. The effects of feed and fertilizer draw solution concentrations; pH and temperature were evaluated on the performance of FO process.


Assuntos
Fertilizantes , Purificação da Água , Concentração de Íons de Hidrogênio , Membranas Artificiais , Osmose , Temperatura , Têxteis , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa