RESUMO
Microbial pesticide degraders are heterogeneously distributed in soil. Their spatial aggregation at the millimeter scale reduces the frequency of degrader-pesticide encounter and can introduce transport limitations to pesticide degradation. We simulated reactive pesticide transport in soil to investigate the fate of the widely used herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) in response to differently aggregated distributions of degrading microbes. Four scenarios were defined covering millimeter scale heterogeneity from homogeneous (pseudo-1D) to extremely heterogeneous degrader distributions and two precipitation scenarios with either continuous light rain or heavy rain events. Leaching from subsoils did not occur in any scenario. Within the topsoil, increasing spatial heterogeneity of microbial degraders reduced macroscopic degradation rates, increased MCPA leaching, and prolonged the persistence of residual MCPA. In heterogeneous scenarios, pesticide degradation was limited by the spatial separation of degrader and pesticide, which was quantified by the spatial covariance between MCPA and degraders. Heavy rain events temporarily lifted these transport constraints in heterogeneous scenarios and increased degradation rates. Our results indicate that the mild millimeter scale spatial heterogeneity of degraders typical for arable topsoil will have negligible consequences for the fate of MCPA, but strong clustering of degraders can delay pesticide degradation.
Assuntos
Ácido 2-Metil-4-clorofenoxiacético , Herbicidas , Praguicidas , Poluentes do Solo , Ácido 2-Metil-4-clorofenoxiacético/metabolismo , Herbicidas/metabolismo , Solo , Microbiologia do Solo , Poluentes do Solo/metabolismoRESUMO
As thermal regimes change worldwide, projections of future population and species persistence often require estimates of how population growth rates depend on temperature. These projections rarely account for how temporal variation in temperature can systematically modify growth rates relative to projections based on constant temperatures. Here, we tested the hypothesis that time-averaged population growth rates in fluctuating thermal environments differ from growth rates in constant conditions as a consequence of Jensen's inequality, and that the thermal performance curves (TPCs) describing population growth in fluctuating environments can be predicted quantitatively based on TPCs generated in constant laboratory conditions. With experimental populations of the green alga Tetraselmis tetrahele, we show that nonlinear averaging techniques accurately predicted increased as well as decreased population growth rates in fluctuating thermal regimes relative to constant thermal regimes. We extrapolate from these results to project critical temperatures for population growth and persistence of 89 phytoplankton species in naturally variable thermal environments. These results advance our ability to predict population dynamics in the context of global change.
Assuntos
Clorófitas/fisiologia , Mudança Climática , Meio Ambiente , Temperatura , Modelos Biológicos , Crescimento DemográficoRESUMO
In this review we consider how small-scale temporal and spatial variation in body temperature, and biochemical/physiological variation among individuals, affect the prediction of organisms' performance in nature. For 'normal' body temperatures - benign temperatures near the species' mean - thermal biology traditionally uses performance curves to describe how physiological capabilities vary with temperature. However, these curves, which are typically measured under static laboratory conditions, can yield incomplete or inaccurate predictions of how organisms respond to natural patterns of temperature variation. For example, scale transition theory predicts that, in a variable environment, peak average performance is lower and occurs at a lower mean temperature than the peak of statically measured performance. We also demonstrate that temporal variation in performance is minimized near this new 'optimal' temperature. These factors add complexity to predictions of the consequences of climate change. We then move beyond the performance curve approach to consider the effects of rare, extreme temperatures. A statistical procedure (the environmental bootstrap) allows for long-term simulations that capture the temporal pattern of extremes (a Poisson interval distribution), which is characterized by clusters of events interspersed with long intervals of benign conditions. The bootstrap can be combined with biophysical models to incorporate temporal, spatial and physiological variation into evolutionary models of thermal tolerance. We conclude with several challenges that must be overcome to more fully develop our understanding of thermal performance in the context of a changing climate by explicitly considering different forms of small-scale variation. These challenges highlight the need to empirically and rigorously test existing theories.