Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Biochem Biophys Res Commun ; 718: 150082, 2024 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-38735141

RESUMO

A number of small molecule and protein therapeutic candidates have been developed in the last four years against SARS-CoV-2 spike. However, there are hardly a few molecules that have advanced through the subsequent discovery steps to eventually work as a therapeutic agent. This is majorly because of the hurdles in determining the affinity of potential therapeutics with live SARS-CoV-2 virus. Furthermore, affinity determined for the receptor binding domain (RBD) of the SARS-CoV-2 spike protein, at times, fails to mimic physiological conditions of the host-virus interaction. To bridge this gap between in vitro and in vivo methods of therapeutic agent screening, we report an improved screening protocol for therapeutic candidates using SARS-CoV-2 virus like particles (VLPs). To minimise the interference from the bulkier reporters like GPF in the affinity studies, a smaller hemagglutinin (HA) tag has been fused to one of the proteins of VLP. This HA tag serves as readout, when probed with fluorescent anti-HA antibodies. Outcome of this study sheds light on the lesser known virus neutralisation capabilities of AM type miniprotein mimics. Further, to assess the stability of SARS-CoV-2 spike - miniprotein complex, we have performed molecular dynamic simulations on the membrane embedded protein complex. Simulation results reveal extremely stable intermolecular interactions between RBD and one of the AM type miniproteins, AM1. Furthermore, we discovered a robust network of intramolecular interactions that help stabilise AM1. Findings from our in vitro and in silico experiments concurrently highlight advantages and capabilities of mimic based miniprotein therapeutics.


Assuntos
SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Humanos , COVID-19/virologia , COVID-19/imunologia , Ligação Proteica , Vírion/metabolismo , Antivirais/farmacologia , Antivirais/química , Células HEK293
2.
Regul Toxicol Pharmacol ; 149: 105619, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614220

RESUMO

The Xenopus Eleutheroembryonic Thyroid Assay (XETA) was recently published as an OECD Test Guideline for detecting chemicals acting on the thyroid axis. However, the OECD validation did not cover all mechanisms that can potentially be detected by the XETA. This study was therefore initiated to investigate and consolidate the applicability domain of the XETA regarding the following mechanisms: thyroid hormone receptor (THR) agonism, sodium-iodide symporter (NIS) inhibition, thyroperoxidase (TPO) inhibition, deiodinase (DIO) inhibition, glucocorticoid receptor (GR) agonism, and uridine 5'-diphospho-glucuronosyltransferase (UDPGT) induction. In total, 22 chemicals identified as thyroid-active or -inactive in Amphibian Metamorphosis Assays (AMAs) were tested using the XETA OECD Test Guideline. The comparison showed that both assays are highly concordant in identifying chemicals with mechanisms of action related to THR agonism, DIO inhibition, and GR agonism. They also consistently identified the UDPGT inducers as thyroid inactive. NIS inhibition, investigated using sodium perchlorate, was not detected in the XETA. TPO inhibition requires further mechanistic investigations as the reference chemicals tested resulted in opposing response directions in the XETA and AMA. This study contributes refining the applicability domain of the XETA, thereby helping to clarify the conditions where it can be used as an ethical alternative to the AMA.


Assuntos
Bioensaio , Disruptores Endócrinos , Metamorfose Biológica , Simportadores , Glândula Tireoide , Animais , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/metabolismo , Metamorfose Biológica/efeitos dos fármacos , Bioensaio/métodos , Disruptores Endócrinos/toxicidade , Xenopus laevis , Receptores dos Hormônios Tireóideos/metabolismo , Receptores dos Hormônios Tireóideos/agonistas , Iodeto Peroxidase/metabolismo
3.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612396

RESUMO

Acid-sensing ion channels (ASICs) play a key role in the perception and response to extracellular acidification changes. These proton-gated cation channels are critical for neuronal functions, like learning and memory, fear, mechanosensation and internal adjustments like synaptic plasticity. Moreover, they play a key role in neuronal degeneration, ischemic neuronal injury, seizure termination, pain-sensing, etc. Functional ASICs are homo or heterotrimers formed with (ASIC1-ASIC3) homologous subunits. ASIC1a, a major ASIC isoform in the central nervous system (CNS), possesses an acidic pocket in the extracellular region, which is a key regulator of channel gating. Growing data suggest that ASIC1a channels are a potential therapeutic target for treating a variety of neurological disorders, including stroke, epilepsy and pain. Many studies were aimed at identifying allosteric modulators of ASIC channels. However, the regulation of ASICs remains poorly understood. Using all available crystal structures, which correspond to different functional states of ASIC1, and a molecular dynamics simulation (MD) protocol, we analyzed the process of channel inactivation. Then we applied a molecular docking procedure to predict the protein conformation suitable for the amiloride binding. To confirm the effect of its sole active blocker against the ASIC1 state transition route we studied the complex with another MD simulation run. Further experiments evaluated various compounds in the Enamine library that emerge with a detectable ASIC inhibitory activity. We performed a detailed analysis of the structural basis of ASIC1a inhibition by amiloride, using a combination of in silico approaches to visualize its interaction with the ion pore in the open state. An artificial activation (otherwise, expansion of the central pore) causes a complex modification of the channel structure, namely its transmembrane domain. The output protein conformations were used as a set of docking models, suitable for a high-throughput virtual screening of the Enamine chemical library. The outcome of the virtual screening was confirmed by electrophysiological assays with the best results shown for three hit compounds.


Assuntos
Amilorida , Benzamidinas , Humanos , Simulação de Acoplamento Molecular , Canais Iônicos Sensíveis a Ácido , Dor
4.
BMC Plant Biol ; 23(1): 93, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36782128

RESUMO

BACKGROUND: Gibberellins (GAs) are widely involved in plant growth and development. DELLA proteins are key regulators of plant development and a negative regulatory factor of GA. Dendrobium officinale is a valuable traditional Chinese medicine, but little is known about D. officinale DELLA proteins. Assessing the function of D. officinale DELLA proteins would provide an understanding of their roles in this orchid's development. RESULTS: In this study, the D. officinale DELLA gene family was identified. The function of DoDELLA1 was analyzed in detail. qRT-PCR analysis showed that the expression levels of all DoDELLA genes were significantly up-regulated in multiple shoots and GA3-treated leaves. DoDELLA1 and DoDELLA3 were significantly up-regulated in response to salt stress but were significantly down-regulated under drought stress. DoDELLA1 was localized in the nucleus. A strong interaction was observed between DoDELLA1 and DoMYB39 or DoMYB308, but a weak interaction with DoWAT1. CONCLUSIONS: In D. officinale, a developmental regulatory network involves a close link between DELLA and other key proteins in this orchid's life cycle. DELLA plays a crucial role in D. officinale development.


Assuntos
Dendrobium , Dendrobium/genética , Dendrobium/metabolismo , Giberelinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
J Clin Microbiol ; 61(3): e0187322, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36840589

RESUMO

PCR-based screening assays targeting strain-specific genetic markers allow the timely detection and specific differentiation of bacterial strains. Especially in situations where an infection cluster occurs, fast assay development is crucial for supporting targeted control measures. However, the turnaround times (TATs) for assay setup may be high due to insufficient knowledge about screening assay methods, workflows, and software tools. Here, two blind-coded and quality-controlled ring trials were performed in which five German laboratories established PCR-based screening assays from genomic data that specifically target selected bacterial clusters within two bacterial monospecies sample panels. While the first ring trial was conducted without a time limit to train the participants and assess assay feasibility, in the second ring trial, a challenging time limit of 2 weeks was set to force fast assay development as soon as genomic data were available. During both ring trials, we detected high interlaboratory variability regarding the screening assay methods and targets, the TATs for assay setup, and the number of screening assays. The participants designed between one and four assays per cluster that targeted cluster-specific unique genetic sequences, genes, or single nucleotide variants using conventional PCRs, high-resolution melting assays, or TaqMan PCRs. Assays were established within the 2-week time limit, with TATs ranging from 4 to 13 days. TaqMan probe delivery times strongly influenced TATs. In summary, we demonstrate that a specific exercise improved the preparedness to develop functional cluster-specific PCR-based screening assays from bacterial genomic data. Furthermore, the parallel development of several assays enhances assay availability.


Assuntos
Bactérias , Genoma Bacteriano , Humanos , Reação em Cadeia da Polimerase/métodos , Genoma Bacteriano/genética , Genômica
6.
Biotechnol Appl Biochem ; 70(2): 707-715, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35931067

RESUMO

Kratom (Mitragyna speciosa Korth) has been used traditionally in Southeast Asia for its therapeutic properties. The major alkaloid of kratom, mitragynine, binds to opioid receptors to give opioid-like effects that causes addiction. In our previous study, we have identified AZ122 as a unique biomarker in habitual or regular kratom users through analysis of their urinary protein profiles. We aimed to develop and validate a screening method by means of enzyme-linked immunosorbent assay (ELISA) for detection of kratom habitual users. An ELISA approach was applied for the development of a screening method using urinary AZ122 as biomarker. Method validation was carried out using three quality control materials at different concentration of AZ122. The data was analyzed statistically using SPSS (Version 25). The ELISA was presented with Pearson correlation coefficient of 0.9993. The repeatability and reproducibility were presented at CV <7%, while the accuracy ranged from 78 to 96% at various AZ112 concentrations. Upon testing on 176 male respondents (n = 88 regular kratom users and n = 88 healthy controls), the specificity and sensitivity of the assay were both 100%. The ELISA has been validated and can be potentially used as a reliable screening test for detection of kratom habitual users.


Assuntos
Mitragyna , Alcaloides de Triptamina e Secologanina , Reprodutibilidade dos Testes , Extratos Vegetais , Biomarcadores
7.
J Enzyme Inhib Med Chem ; 38(1): 309-318, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36451618

RESUMO

Ornithine decarboxylase (ODC), the first rate-limiting enzyme in polyamine synthesis, has emerged as a therapeutic target for cancer and Alzheimer's disease (AD). To inhibit ODC, α-difluoromethylornithine (DFMO), an irreversible ODC inhibitor, has been widely used. However, due to its poor pharmacokinetics, the need for discovery of better ODC inhibitors is inevitable. For high-throughput screening (HTS) of ODC inhibitors, an ODC enzyme assay using supramolecular tandem assay has been introduced. Nevertheless, there has been no study utilising the ODC tandem assay for HTS, possibly due to its intolerability to dimethyl sulfoxide (DMSO), a common amphipathic solvent used for drug libraries. Here we report a DMSO-tolerant ODC tandem assay in which DMSO-dependent fluorescence quenching becomes negligible by separating enzyme reaction and putrescine detection. Furthermore, we optimised human cell-line-based mass production of ODC for HTS. Our newly developed assay can be a crucial first step in discovering more effective ODC modulators than DFMO.


Assuntos
Ensaios de Triagem em Larga Escala , Ornitina Descarboxilase , Humanos , Dimetil Sulfóxido , Bioensaio , Putrescina
8.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36293514

RESUMO

Individuals with cystic fibrosis (CF) suffer from severe respiratory disease due to a genetic defect in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which impairs airway epithelial ion and fluid secretion. New CFTR modulators that restore mutant CFTR function have been recently approved for a large group of people with CF (pwCF), but ~19% of pwCF cannot benefit from CFTR modulators Restoration of epithelial fluid secretion through non-CFTR pathways might be an effective treatment for all pwCF. Here, we developed a medium-throughput 384-well screening assay using nasal CF airway epithelial organoids, with the aim to repurpose FDA-approved drugs as modulators of non-CFTR-dependent epithelial fluid secretion. From a ~1400 FDA-approved drug library, we identified and validated 12 FDA-approved drugs that induced CFTR-independent fluid secretion. Among the hits were several cAMP-mediating drugs, including ß2-adrenergic agonists. The hits displayed no effects on chloride conductance measured in the Ussing chamber, and fluid secretion was not affected by TMEM16A, as demonstrated by knockout (KO) experiments in primary nasal epithelial cells. Altogether, our results demonstrate the use of primary nasal airway cells for medium-scale drug screening, target validation with a highly efficient protocol for generating CRISPR-Cas9 KO cells and identification of compounds which induce fluid secretion in a CFTR- and TMEM16A-indepent manner.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/metabolismo , Organoides/metabolismo , Cloretos/metabolismo , Reposicionamento de Medicamentos , Células Epiteliais/metabolismo , Agonistas Adrenérgicos/metabolismo
9.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36555652

RESUMO

The effective antiviral agents that treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are urgently needed around the world. The 3C-like protease (3CLpro) of SARS-CoV-2 plays a pivotal role in virus replication; it also has become an important therapeutic target for the infection of SARS-CoV-2. In this work, we have identified Darunavir derivatives that inhibit the 3CLpro through a high-throughput screening method based on a fluorescence resonance energy transfer (FRET) assay in vitro. We found that the compounds 29# and 50# containing polyphenol and caffeine derivatives as the P2 ligand, respectively, exhibited favorable anti-3CLpro potency with EC50 values of 6.3 µM and 3.5 µM and were shown to bind to SARS-CoV-2 3CLpro in vitro. Moreover, we analyzed the binding mode of the DRV in the 3CLpro through molecular docking. Importantly, 29# and 50# exhibited a similar activity against the protease in Omicron variants. The inhibitory effect of compounds 29# and 50# on the SARS-CoV-2 3CLpro warrants that they are worth being the template to design functionally improved inhibitors for the treatment of COVID-19.


Assuntos
Antivirais , Proteases 3C de Coronavírus , Darunavir , Inibidores de Proteases , SARS-CoV-2 , Humanos , Antivirais/farmacologia , COVID-19 , Darunavir/farmacologia , Simulação de Acoplamento Molecular , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Proteases 3C de Coronavírus/antagonistas & inibidores
10.
Molecules ; 27(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35164063

RESUMO

There is a need for rapidly screening thyroid hormone (TH) signaling disruptors in vivo considering the essential role of TH signaling in vertebrates. We aimed to establish a rapid in vivo screening assay using Xenopus laevis based on the T3-induced Xenopus metamorphosis assay we established previously, as well as the Xenopus Eleutheroembryonic Thyroid Assay (XETA). Stage 48 tadpoles were treated with a series of concentrations of T3 in 6-well plates for 24 h and the expression of six TH-response genes was analyzed for choosing a proper T3 concentration. Next, bisphenol A (BPA) and tetrabromobisphenol A (TBBPA), two known TH signaling disruptors, were tested for determining the most sensitive TH-response gene, followed by the detection of several suspected TH signaling disruptors. We determined 1 nM as the induction concentration of T3 and thibz expression as the sensitive endpoint for detecting TH signaling disruptors given its highest response to T3, BPA, and TBBPA. And we identified betamipron as a TH signaling agonist, and 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) as a TH signaling antagonist. Overall, we developed a multiwell-based assay for rapidly screening TH signaling disruptors using thibz expression as a sensitive endpoint in X. laevis.


Assuntos
Disruptores Endócrinos/farmacologia , Expressão Gênica/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Transdução de Sinais/efeitos dos fármacos , Hormônios Tireóideos/metabolismo , Alanina/análogos & derivados , Alanina/farmacologia , Animais , Éteres Difenil Halogenados/farmacologia , Tri-Iodotironina/farmacologia , Xenopus laevis
11.
Angew Chem Int Ed Engl ; 61(2): e202109967, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34668624

RESUMO

Sphingolipid metabolism is tightly controlled by enzymes to regulate essential processes in human physiology. The central metabolite is ceramide, a pro-apoptotic lipid catabolized by ceramidase enzymes to produce pro-proliferative sphingosine-1-phosphate. Alkaline ceramidases are transmembrane enzymes that recently attracted attention for drug development in fatty liver diseases. However, due to their hydrophobic nature, no specific small molecule inhibitors have been reported. We present the discovery and mechanism of action of the first drug-like inhibitors of alkaline ceramidase 3 (ACER3). In particular, we chemically engineered novel fluorescent ceramide substrates enabling screening of large compound libraries and characterized enzyme:inhibitor interactions using mass spectrometry and MD simulations. In addition to revealing a new paradigm for inhibition of lipid metabolising enzymes with non-lipidic small molecules, our data lay the ground for targeting ACER3 in drug discovery efforts.


Assuntos
Ceramidases
12.
Bioorg Med Chem Lett ; 35: 127813, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33486050

RESUMO

Current techniques for the identification of DNA adduct-inducing and DNA interstrand crosslinking agents include electrophoretic crosslinking assays, electrophoretic gel shift assays, DNA and RNA stop assays, mass spectrometry-based methods and 32P-post-labelling. While these assays provide considerable insight into the site and stability of the interaction, they are relatively expensive, time-consuming and sometimes rely on the use of radioactively-labelled components, and thus are ill-suited to screening large numbers of compounds. A novel medium throughput assay was developed to overcome these limitations and was based on the attachment of a biotin-tagged double stranded (ds) oligonucleotide to Corning DNA-Bind plates. We aimed to detect anthracycline and anthracenedione DNA adducts which form by initial non-covalent intercalation with duplex DNA, and subsequent covalent adduct formation which is mediated by formaldehyde. Following drug treatment, DNA samples were subjected to a denaturation step, washing and then measurement by fluorescence to detect remaining drug-DNA species using streptavidin-europium. This dissociation-enhanced lanthanide fluorescent immunoassay (DELFIA) is a time-resolved fluorescence intensity assay where the fluorescence signal arises only from stabilised drug-DNA complexes. We applied this new methodology to the identification of anthracycline-like compounds with the ability to functionally crosslink double-strand oligonucleotides. The entire procedure can be performed by robotics, requiring low volumes of compounds and reagents, thereby reducing costs and enabling multiple compounds to be assessed on a single microtitre plate.


Assuntos
Automação , Reagentes de Ligações Cruzadas/farmacologia , Adutos de DNA/efeitos dos fármacos , Desenvolvimento de Medicamentos , Reagentes de Ligações Cruzadas/síntese química , Reagentes de Ligações Cruzadas/química , Relação Dose-Resposta a Droga , Estrutura Molecular , Relação Estrutura-Atividade
13.
Acta Pharmacol Sin ; 42(8): 1347-1353, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33116249

RESUMO

To discover effective drugs for COVID-19 treatment amongst already clinically approved drugs, we developed a high throughput screening assay for SARS-CoV-2 virus entry inhibitors using SARS2-S pseudotyped virus. An approved drug library of 1800 small molecular drugs was screened for SARS2 entry inhibitors and 15 active drugs were identified as specific SARS2-S pseudovirus entry inhibitors. Antiviral tests using native SARS-CoV-2 virus in Vero E6 cells confirmed that 7 of these drugs (clemastine, amiodarone, trimeprazine, bosutinib, toremifene, flupenthixol, and azelastine) significantly inhibited SARS2 replication, reducing supernatant viral RNA load with a promising level of activity. Three of the drugs were classified as histamine receptor antagonists with clemastine showing the strongest anti-SARS2 activity (EC50 = 0.95 ± 0.83 µM). Our work suggests that these 7 drugs could enter into further in vivo studies and clinical investigations for COVID-19 treatment.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Reposicionamento de Medicamentos , SARS-CoV-2/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Linhagem Celular , Aprovação de Drogas , Ensaios de Triagem em Larga Escala , Humanos , Testes de Sensibilidade Microbiana , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/efeitos dos fármacos
14.
Arch Toxicol ; 95(5): 1723-1737, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33656581

RESUMO

The sodium-iodide symporter (NIS) mediates the uptake of iodide into the thyroid. Inhibition of NIS function by xenobiotics has been demonstrated to suppress circulating thyroid hormones and perturb related physiological functions. Until recently, few environmental chemicals had been screened for NIS inhibition activity. We previously screened over 1000 chemicals from the ToxCast Phase II (ph1v2 and ph2) libraries using an in vitro radioactive iodide uptake (RAIU) with the hNIS-HEK293T cell line to identify NIS inhibitors. Here, we broaden the chemical space by expanding screening to include the ToxCast e1k library (804 unique chemicals) with initial screening for RAIU at 1 × 10-4 M. Then 209 chemicals demonstrating > 20% RAIU inhibition were further tested in multiple-concentration, parallel RAIU and cell viability assays. This identified 55 chemicals as active, noncytotoxic RAIU inhibitors. Further cytotoxicity-adjusted potency scoring (with NaClO4 having a reference score of 200) revealed five chemicals with moderate to strong RAIU inhibition (scored > 100). These data were combined with our previous PhII screening data to produce binary hit-calls for ~ 1800 unique chemicals (PhII + e1k) with and without cytotoxicity filtering. Results were analyzed with a ToxPrint chemotype-enrichment workflow to identify substructural features significantly enriched in the NIS inhibition hit-call space. We assessed the applicability of enriched PhII chemotypes to prospectively predict NIS inhibition in the e1k dataset. Chemotype enrichments derived for the combined ~ 1800 dataset also identified additional enriched features, as well as chemotypes affiliated with cytotoxicity. These enriched chemotypes provide important new information that can support future data interpretation, structure-activity relationship, chemical use, and regulation.


Assuntos
Ensaios de Triagem em Larga Escala , Simportadores/antagonistas & inibidores , Animais , Bioensaio , Transporte Biológico , Sobrevivência Celular , Células HEK293 , Humanos , Iodetos , Relação Estrutura-Atividade , Glândula Tireoide
15.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34502213

RESUMO

Bone marrow stromal cell antigen 2 (BST-2), also known as CD317 or tetherin, has been identified as a host restriction factor that suppresses the release of enveloped viruses from host cells by physically tethering viral particles to the cell surface; however, this host defense can be subverted by multiple viruses. For example, human immunodeficiency virus (HIV)-1 encodes a specific accessory protein, viral protein U (Vpu), to counteract BST-2 by binding to it and directing its lysosomal degradation. Thus, blocking the interaction between Vpu and BST-2 will provide a promising strategy for anti-HIV therapy. Here, we report a NanoLuc Binary Technology (NanoBiT)-based high-throughput screening assay to detect inhibitors that disrupt the Vpu-BST-2 interaction. Out of more than 1000 compounds screened, four inhibitors were identified with strong activity at nontoxic concentrations. In subsequent cell-based BST-2 degradation assays, inhibitor Y-39983 HCl restored the cell-surface and total cellular level of BST-2 in the presence of Vpu. Furthermore, the Vpu-mediated enhancement of pesudotyped viral particle production was inhibited by Y-39983 HCl. Our findings indicate that our newly developed assay can be used for the discovery of potential antiviral molecules with novel mechanisms of action.


Assuntos
Fármacos Anti-HIV/farmacologia , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Proteínas do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Proteínas Virais Reguladoras e Acessórias/antagonistas & inibidores , Antígenos CD/metabolismo , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/metabolismo , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Células HeLa , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Humanos , Nanotecnologia/métodos , Proteínas Virais Reguladoras e Acessórias/metabolismo , Replicação Viral
16.
J Virol ; 93(13)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30996104

RESUMO

Herpes simplex virus 1 (HSV-1) has infected more than 80% of the population. Reactivation of the virus causes diseases ranging in severity from benign cold sores to fatal encephalitis. Current treatments involve viral DNA replication inhibitors, but the emergence of drug-resistant mutants is observed frequently, highlighting the need for novel antiviral therapies. Infected cell protein 0 (ICP0) of HSV-1 is encoded by an immediate early gene and plays a fundamental role during infection, because it enables viral gene expression and blocks antiviral responses. One mechanism by which ICP0 functions is through an E3 ubiquitin ligase activity that induces the degradation of targeted proteins. A ΔICP0 virus or mutants with deficiencies in E3 ligase activity cannot counteract beta interferon (IFN-ß)-induced restriction of viral infection, are highly immunogenic, are avirulent, and fail to spread. Thus, small molecules interfering with essential and conserved ICP0 functions are expected to compromise HSV-1 infection. We have developed a high-throughput screening assay, based on the autoubiquitination properties of ICP0, to identify small-molecule inhibitors of ICP0 E3 ubiquitin ligase activity. Through a pilot screening procedure, we identified nine compounds that displayed dose-dependent inhibitory effects on ICP0 but not on Mdm2, a control E3 ubiquitin ligase. Following validation, one compound displayed ICP0-dependent inhibition of HSV-1 infection. This compound appeared to bind ICP0 in a cellular thermal shift assay, it blocked ICP0 self-elimination, and it blocked wild-type but not ICP0-null virus gene expression. This scaffold displays specificity and could be used to develop optimized ICP0 E3 ligase inhibitors.IMPORTANCE Since acyclovir and its derivatives were launched for herpesviruses control almost four decades ago, the search for novel antivirals has waned. However, as human life expectancy has increased, so has the number of immunocompromised individuals who receive prolonged treatment for HSV recurrences. This has led to an increase in unresponsive patients due to acquired viral drug resistance. Thus, novel treatments need to be explored. Here we explored the HSV-1 ICP0 E3 ligase as a potential antiviral target because (i) ICP0 is expressed before virus replication, (ii) it is essential for infection in vivo, (iii) it is required for efficient reactivation of the virus from latency, (iv) inhibition of its E3 ligase activity would sustain host immune responses, and (v) it is shared by other herpesviruses. We report a compound that inhibits HSV-1 infection in an ICP0-dependent manner by inhibiting ICP0 E3 ligase activity.


Assuntos
Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/metabolismo , Ensaios de Triagem em Larga Escala , Proteínas Imediatamente Precoces/efeitos dos fármacos , Proteínas Imediatamente Precoces/metabolismo , Ubiquitina-Proteína Ligases/efeitos dos fármacos , Linhagem Celular , Replicação do DNA , Regulação Viral da Expressão Gênica , Herpesvirus Humano 1/genética , Interações Hospedeiro-Patógeno , Humanos , Proteínas Imediatamente Precoces/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais , Replicação Viral/efeitos dos fármacos
17.
Chemistry ; 26(72): 17462-17469, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-32761825

RESUMO

The protein transthyretin (TTR) modulates amyloid-ß (Aß) peptides deposition and processing and this physiological effect is further enhanced by treatment with iododiflunisal (IDIF), a small-molecule compound (SMC) with TTR tetramer stabilization properties, which behaves as chaperone of the complex. This knowledge has prompted us to design and optimize a rapid and simple high-throughput assay that relies on the ability of test compounds to form ternary soluble complexes TTR/Aß/SMC that prevent Aß aggregation. The method uses the shorter Aß(12-28) sequence which is cheaper and simpler to use while retaining the aggregation properties of their parents Aß(1-40) and Aß(1-42). The test is carried out in 96-plate wells that are UV monitored for turbidity during 6 h. Given its reproducibility, we propose that this test can be a powerful tool for efficient screening of SMCs that act as chaperones of the TTR/Aß interaction that may led to potential AD therapies.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides/química , Preparações Farmacêuticas , Doença de Alzheimer/tratamento farmacológico , Humanos , Pré-Albumina/química , Reprodutibilidade dos Testes
18.
J Biopharm Stat ; 30(2): 267-276, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31237475

RESUMO

Percentile is ubiquitous in statistics and plays a significant role in the day-to-day statistical application. FDA Guidance for Industry: Assay Development for Immunogenicity Testing of Therapeutic Protein Products (2016) recommends the use of a lower confidence limit of the percentile of the negative subject population as the cut point to guarantee a pre-specified false-positive rate with high confidence. Shen proposed and compared an exact t approach with some approximated approaches. However, the exact t approach might be compromised by computational time and complexity. In this article, we proposed to use a UMOVER method as a potential alternative for percentile estimation for one application to screening and confirmatory cut point determination due to its easy implementation and similar performance to the exact t approach. The applications and performance comparison with different approaches are investigated and discussed. Furthermore, we extended the proposed method for the comparison of the percentile of the test product and percentile of the reference product followed by numerical studies.


Assuntos
Medicamentos Genéricos , Determinação de Ponto Final/estatística & dados numéricos , Estatística como Assunto , Análise de Variância , Medicamentos Genéricos/uso terapêutico , Determinação de Ponto Final/métodos , Humanos , Estatística como Assunto/métodos , Equivalência Terapêutica
19.
Proc Natl Acad Sci U S A ; 114(5): E689-E696, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28096387

RESUMO

Although it has been known for more than 60 years that the cause of sickle cell disease is polymerization of a hemoglobin mutant, hydroxyurea is the only drug approved for treatment by the US Food and Drug Administration. This drug, however, is only partially successful, and the discovery of additional drugs that inhibit fiber formation has been hampered by the lack of a sensitive and quantitative cellular assay. Here, we describe such a method in a 96-well plate format that is based on laser-induced polymerization in sickle trait cells and robust, automated image analysis to detect the precise time at which fibers distort ("sickle") the cells. With this kinetic method, we show that small increases in cell volume to reduce the hemoglobin concentration can result in therapeutic increases in the delay time prior to fiber formation. We also show that, of the two drugs (AES103 and GBT440) in clinical trials that inhibit polymerization by increasing oxygen affinity, one of them (GBT440) also inhibits sickling in the absence of oxygen by two additional mechanisms.


Assuntos
Antidrepanocíticos/farmacologia , Tamanho Celular/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Furaldeído/análogos & derivados , Anemia Falciforme/terapia , Eritrócitos/fisiologia , Furaldeído/farmacologia , Hemoglobina Falciforme/metabolismo , Humanos , Cinética , Oxigênio
20.
Int J Mol Sci ; 21(18)2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32906775

RESUMO

Platelets play a crucial role in the immunological response and are involved in the pathological settings of vascular diseases, and their adhesion to the extracellular matrix is important to bring leukocytes close to the endothelial cells and to form and stabilize the thrombus. Currently there are several methods to study platelet adhesion; however, the optimal parameters to perform the assay vary among studies, which hinders their comparison and reproducibility. Here, a standardization and validation of a fluorescence-based quantitative adhesion assay to study platelet-ECM interaction in a high-throughput screening format is proposed. Our study confirms that fluorescence-based quantitative assays can be effectively used to detect platelet adhesion, in which BCECF-AM presents the highest sensitivity in comparison to other dyes.


Assuntos
Imagem Óptica/métodos , Adesividade Plaquetária/fisiologia , Plaquetas/fisiologia , Células Endoteliais , Endotélio Vascular , Matriz Extracelular/fisiologia , Fluorescência , Humanos , Imagem Óptica/normas , Ativação Plaquetária , Padrões de Referência , Reprodutibilidade dos Testes , Trombose
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa