Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
1.
Mol Cell ; 82(18): 3484-3498.e11, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36070765

RESUMO

ADP-ribosyltransferases (ARTs) were among the first identified bacterial virulence factors. Canonical ART toxins are delivered into host cells where they modify essential proteins, thereby inactivating cellular processes and promoting pathogenesis. Our understanding of ARTs has since expanded beyond protein-targeting toxins to include antibiotic inactivation and DNA damage repair. Here, we report the discovery of RhsP2 as an ART toxin delivered between competing bacteria by a type VI secretion system of Pseudomonas aeruginosa. A structure of RhsP2 reveals that it resembles protein-targeting ARTs such as diphtheria toxin. Remarkably, however, RhsP2 ADP-ribosylates 2'-hydroxyl groups of double-stranded RNA, and thus, its activity is highly promiscuous with identified cellular targets including the tRNA pool and the RNA-processing ribozyme, ribonuclease P. Consequently, cell death arises from the inhibition of translation and disruption of tRNA processing. Overall, our data demonstrate a previously undescribed mechanism of bacterial antagonism and uncover an unprecedented activity catalyzed by ART enzymes.


Assuntos
RNA Catalítico , Sistemas de Secreção Tipo VI , ADP Ribose Transferases/química , Difosfato de Adenosina/metabolismo , Antibacterianos/metabolismo , Bactérias/genética , Toxina Diftérica/genética , Toxina Diftérica/metabolismo , RNA Catalítico/genética , RNA Catalítico/metabolismo , RNA de Cadeia Dupla/metabolismo , Ribonuclease P/genética , Sistemas de Secreção Tipo VI/metabolismo , Fatores de Virulência/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(3): e2312455121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38194450

RESUMO

Type VII secretion systems are membrane-embedded nanomachines used by Gram-positive bacteria to export effector proteins from the cytoplasm to the extracellular environment. Many of these effectors are polymorphic toxins comprised of an N-terminal Leu-x-Gly (LXG) domain of unknown function and a C-terminal toxin domain that inhibits the growth of bacterial competitors. In recent work, it was shown that LXG effectors require two cognate Lap proteins for T7SS-dependent export. Here, we present the 2.6 Å structure of the LXG domain of the TelA toxin from the opportunistic pathogen Streptococcus intermedius in complex with both of its cognate Lap targeting factors. The structure reveals an elongated α-helical bundle within which each Lap protein makes extensive hydrophobic contacts with either end of the LXG domain. Remarkably, despite low overall sequence identity, we identify striking structural similarity between our LXG complex and PE-PPE heterodimers exported by the distantly related ESX type VII secretion systems of Mycobacteria implying a conserved mechanism of effector export among diverse Gram-positive bacteria. Overall, our findings demonstrate that LXG domains, in conjunction with their cognate Lap targeting factors, represent a tripartite secretion signal for a widespread family of T7SS toxins.


Assuntos
Gafanhotos , Toxinas Biológicas , Sistemas de Secreção Tipo VII , Animais , Sistemas de Secreção Tipo VII/genética , Citoplasma
3.
Trends Biochem Sci ; 47(9): 795-809, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35654690

RESUMO

The bacterial injectisome is a structurally conserved, syringe-shaped nanomachine that spans the Gram-negative envelope and forms a continuous channel for type III secretion of protein effectors. The injectisome, and the host-modulating effectors it secretes, are essential for the pathogenesis of several Gram-negative bacterial species, and it is a key virulence factor associated with the progression of many clinical and community-based infectious diseases. The molecular structure of the injectisome has been the focus of intense research efforts over the past 30 years, and during this time significant progress has been made in determining the molecular structures of many components. In this review we present major advances in our structural and mechanistic understanding of the injectisome, as facilitated by cryoelectron microscopy approaches.


Assuntos
Bactérias , Proteínas de Bactérias , Bactérias/metabolismo , Proteínas de Bactérias/química , Microscopia Crioeletrônica , Bactérias Gram-Negativas/metabolismo , Fatores de Virulência/metabolismo
4.
Mol Microbiol ; 121(2): 304-323, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38178634

RESUMO

In animal pathogens, assembly of the type III secretion system injectisome requires the presence of so-called pilotins, small lipoproteins that assist the formation of the secretin ring in the outer membrane. Using a combination of functional assays, interaction studies, proteomics, and live-cell microscopy, we determined the contribution of the pilotin to the assembly, function, and substrate selectivity of the T3SS and identified potential new downstream roles of pilotin proteins. In absence of its pilotin SctG, Yersinia enterocolitica forms few, largely polar injectisome sorting platforms and needles. Accordingly, most export apparatus subcomplexes are mobile in these strains, suggesting the absence of fully assembled injectisomes. Remarkably, while absence of the pilotin all but prevents export of early T3SS substrates, such as the needle subunits, it has little effect on secretion of late T3SS substrates, including the virulence effectors. We found that although pilotins interact with other injectisome components such as the secretin in the outer membrane, they mostly localize in transient mobile clusters in the bacterial membrane. Together, these findings provide a new view on the role of pilotins in the assembly and function of type III secretion injectisomes.


Assuntos
Sistemas de Secreção Tipo III , Yersinia enterocolitica , Animais , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Secretina/metabolismo , Especificidade por Substrato , Yersinia enterocolitica/genética , Ligação Proteica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
5.
Mol Microbiol ; 121(4): 636-645, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37975530

RESUMO

Bacterial secretion systems, such as the type 3, 4, and 6 are multiprotein nanomachines expressed at the surface of pathogens with Gram-negative like envelopes. They are known to be crucial for virulence and to translocate bacteria-encoded effector proteins into host cells to manipulate cellular functions. This facilitates either pathogen attachment or invasion of the targeted cell. Effector proteins also promote evasion of host immune recognition. Imaging by cryo-electron microscopy in combination with structure determination has become a powerful approach to understand how these nanomachines work. Still, questions on their assembly, the precise secretion mechanisms, and their direct involvement in pathogenicity remain unsolved. Here, we present an overview of the recent developments in in situ cryo-electron microscopy. We discuss its potential for the investigation of the role of bacterial secretion systems during the host-bacterial crosstalk at the molecular level. These in situ studies open new perspectives for our understanding of secretion system structure and function.


Assuntos
Sistemas de Secreção Bacterianos , Tomografia com Microscopia Eletrônica , Tomografia com Microscopia Eletrônica/métodos , Microscopia Crioeletrônica , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Tipo III/metabolismo
6.
Mol Syst Biol ; 20(8): 859-879, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39069594

RESUMO

Secretion systems play a crucial role in microbe-microbe or host-microbe interactions. Among these systems, the extracellular contractile injection system (eCIS) is a unique bacterial and archaeal extracellular secretion system that injects protein toxins into target organisms. However, the specific proteins that eCISs inject into target cells and their functions remain largely unknown. Here, we developed a machine learning classifier to identify eCIS-associated toxins (EATs). The classifier combines genetic and biochemical features to identify EATs. We also developed a score for the eCIS N-terminal signal peptide to predict EAT loading. Using the classifier we classified 2,194 genes from 950 genomes as putative EATs. We validated four new EATs, EAT14-17, showing toxicity in bacterial and eukaryotic cells, and identified residues of their respective active sites that are critical for toxicity. Finally, we show that EAT14 inhibits mitogenic signaling in human cells. Our study provides insights into the diversity and functions of EATs and demonstrates machine learning capability of identifying novel toxins. The toxins can be employed in various applications dependently or independently of eCIS.


Assuntos
Aprendizado de Máquina , Humanos , Toxinas Bacterianas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
7.
J Bacteriol ; 206(5): e0010924, 2024 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-38597609

RESUMO

Pseudomonas aeruginosa is a significant cause of global morbidity and mortality. Although it is often regarded as an extracellular pathogen toward human cells, numerous investigations report its ability to survive and replicate within host cells, and additional studies demonstrate specific mechanisms enabling it to adopt an intracellular lifestyle. This ability of P. aeruginosa remains less well-investigated than that of other intracellular bacteria, although it is currently gaining attention. If intracellular bacteria are not killed after entering host cells, they may instead receive protection from immune recognition and experience reduced exposure to antibiotic therapy, among additional potential advantages shared with other facultative intracellular pathogens. For this review, we compiled studies that observe intracellular P. aeruginosa across strains, cell types, and experimental systems in vitro, as well as contextualize these findings with the few studies that report similar observations in vivo. We also seek to address key findings that drove the perception that P. aeruginosa remains extracellular in order to reconcile what is currently understood about intracellular pathogenesis and highlight open questions regarding its contribution to disease.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Humanos , Infecções por Pseudomonas/microbiologia , Animais , Interações Hospedeiro-Patógeno
8.
Infect Immun ; 92(9): e0050023, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39166846

RESUMO

Type VI secretion systems (T6SSs) are complex molecular machines that allow bacteria to deliver toxic effector proteins to neighboring bacterial and eukaryotic cells. Although initial work focused on the T6SS as a virulence mechanism of human pathogens, the field shifted to examine the use of T6SSs for interbacterial competition in various environments, including in the plant rhizosphere. Genes encoding the T6SS are estimated to be found in a quarter of all Gram-negative bacteria and are especially highly represented in Proteobacteria, a group which includes the most important bacterial phytopathogens. Many of these pathogens encode multiple distinct T6SS gene clusters which can include the core components of the apparatus as well as effector proteins. The T6SS is deployed by pathogens at multiple points as they colonize their hosts and establish an infection. In this review, we describe what is known about the use of T6SS by phytopathogens against plant hosts and non-plant organisms, keeping in mind that the structure of plants requires unique mechanisms of attack that are distinct from the mechanisms used for interbacterial interactions and against animal hosts. While the interactions of specific effectors (such as phospholipases, endonucleases, peptidases, and amidases) with targets have been well described in the context of interbacterial competition and in some eukaryotic interactions, this review highlights the need for future studies to assess the activity of phytobacterial T6SS effectors against plant cells.


Assuntos
Doenças das Plantas , Plantas , Sistemas de Secreção Tipo VI , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Plantas/microbiologia , Doenças das Plantas/microbiologia , Interações Hospedeiro-Patógeno , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
9.
Infect Immun ; 92(9): e0048023, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38506518

RESUMO

The intestinal lumen is a turbulent, semi-fluid landscape where microbial cells and nutrient-rich particles are distributed with high heterogeneity. Major questions regarding the basic physical structure of this dynamic microbial ecosystem remain unanswered. Most gut microbes are non-motile, and it is unclear how they achieve optimum localization relative to concentrated aggregations of dietary glycans that serve as their primary source of energy. In addition, a random spatial arrangement of cells in this environment is predicted to limit sustained interactions that drive co-evolution of microbial genomes. The ecological consequences of random versus organized microbial localization have the potential to control both the metabolic outputs of the microbiota and the propensity for enteric pathogens to participate in proximity-dependent microbial interactions. Here, we review evidence suggesting that several bacterial species adopt organized spatial arrangements in the gut via adhesion. We highlight examples where localization could contribute to antagonism or metabolic interdependency in nutrient degradation, and we discuss imaging- and sequencing-based technologies that have been used to assess the spatial positions of cells within complex microbial communities.


Assuntos
Microbioma Gastrointestinal , Nutrientes , Microbioma Gastrointestinal/fisiologia , Humanos , Nutrientes/metabolismo , Bactérias/metabolismo , Bactérias/genética , Interações Microbianas/fisiologia , Aderência Bacteriana/fisiologia , Animais , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/metabolismo
10.
Mol Microbiol ; 119(2): 161-173, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36196760

RESUMO

Enterohaemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC) are gastrointestinal pathogens responsible for severe diarrheal illness. EHEC and EPEC form "attaching and effacing" lesions during colonization and, upon adherence, inject proteins directly into host intestinal cells via the type III secretion system (T3SS). Injected bacterial proteins have a variety of functions but generally alter host cell biology to favor survival and/or replication of the pathogen. Non-LEE-encoded effector A (NleA) is a T3SS-injected effector of EHEC, EPEC, and the related mouse pathogen Citrobacter rodentium. Studies in mouse models indicate that NleA has an important role in bacterial virulence. However, the mechanism by which NleA contributes to disease remains unknown. We have determined that the following translocation into host cells, a serine and threonine-rich region of NleA is modified by host-mediated mucin-type O-linked glycosylation. Surprisingly, this region was not present in several clinical EHEC isolates. When expressed in C. rodentium, a non-modifiable variant of NleA was indistinguishable from wildtype NleA in an acute mortality model but conferred a modest increase in persistence over the course of infection in mixed infections in C57BL/6J mice. This is the first known example of a bacterial effector being modified by host-mediated O-linked glycosylation. Our data also suggests that this modification may confer a selective disadvantage to the bacteria during in vivo infection.


Assuntos
Escherichia coli Enteropatogênica , Proteínas de Escherichia coli , Humanos , Animais , Camundongos , Fatores de Virulência/metabolismo , Células HeLa , Glicosilação , Proteínas de Escherichia coli/metabolismo , Camundongos Endogâmicos C57BL
11.
Crit Rev Microbiol ; : 1-12, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39257231

RESUMO

Antimicrobial resistance (AMR) has been recognized as an important health crisis in the twenty first century. Type IV secretion systems (T4SSs) play key roles in the dissemination of AMR plasmids. Novel strategies that combat AMR problem by targeting T4SS sprung up in recent years. Here, we focus on the strategy of male-specific phages that could target and kill bacteria carrying conjugative AMR plasmids encoding T4SSs. We reviewed the recent advances in male-specific phages, including anti-conjugation mechanisms, clinical isolation and identification methods, classification and characteristics, in vitro and in vivo anti-conjugation efficacy and improving strategies. Male-specific phages constitute exciting candidates for developing sustainable anti-resistance biocontrol applications.

12.
Annu Rev Microbiol ; 73: 621-638, 2019 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-31226022

RESUMO

Bacteria need to deliver large molecules out of the cytosol to the extracellular space or even across membranes of neighboring cells to influence their environment, prevent predation, defeat competitors, or communicate. A variety of protein-secretion systems have evolved to make this process highly regulated and efficient. The type VI secretion system (T6SS) is one of the largest dynamic assemblies in gram-negative bacteria and allows for delivery of toxins into both bacterial and eukaryotic cells. The recent progress in structural biology and live-cell imaging shows the T6SS as a long contractile sheath assembled around a rigid tube with associated toxins anchored to a cell envelope by a baseplate and membrane complex. Rapid sheath contraction releases a large amount of energy used to push the tube and toxins through the membranes of neighboring target cells. Because reach of the T6SS is limited, some bacteria dynamically regulate its subcellular localization to precisely aim at their targets and thus increase efficiency of toxin translocation.


Assuntos
Bactérias Gram-Negativas/metabolismo , Sistemas de Secreção Tipo VI , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Membrana Celular/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Lipoproteínas/química , Lipoproteínas/metabolismo , Transdução de Sinais , Sistemas de Secreção Tipo VI/biossíntese , Sistemas de Secreção Tipo VI/química , Sistemas de Secreção Tipo VI/metabolismo , Sistemas de Secreção Tipo VI/ultraestrutura
13.
BMC Vet Res ; 20(1): 362, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39129003

RESUMO

BACKGROUND: Rhodococcus equi (R. equi) is a Gram-positive zoonotic pathogen that frequently leads to illness and death in young horses (foals). This study presents the complete genome sequence of R. equi strain BJ13, which was isolated from a thoroughbred racehorse breeding farm in Beijing, China. RESULTS: The BJ13 genome has a length of 5.30 Mb and consists of a complete chromosome and a plasmid measuring 5.22 Mb and 0.08 Mb, respectively. We predicted 4,929 coding gene open reading frames, along with 52 tRNAs and 12 rRNAs. Through analysis of mobile genetic elements, we identified 6 gene islands and 1 prophage gene. Pathogenic system analysis predicted the presence of 418 virulence factors and 225 drug resistance genes. Secretion system analysis revealed the prediction of 297 secreted proteins and 1,106 transmembrane proteins. BJ13 exhibits genomic features, virulence-associated genes, potential drug resistance, and a virulence plasmid structure that may contribute to the evolution of its pathogenicity. Lastly, the pathogenicity of the isolated strain was assessed through animal experiments, which resulted in inflammatory reactions or damage in the lungs, liver, and spleen of mice. Moreover, by the 7th day post-infection, the mortality rate of the mice reached 50.0%, indicating complex immune regulatory mechanisms, including overexpression of IL-10 and increased production of pro-inflammatory cytokines like TNF-α. These findings validate the strong pathogenicity of the isolated strain and provide insights for studying the pathogenic mechanisms of Rhodococcus equi infection. CONCLUSIONS: The complete genome sequence of R. equi strain BJ13 provides valuable insights into its genomic characteristics, virulence potential, drug resistance, and secretion systems. The strong pathogenicity observed in animal experiments underscores the need for further investigation into the pathogenic mechanisms of R. equi infection.


Assuntos
Infecções por Actinomycetales , Genoma Bacteriano , Doenças dos Cavalos , Rhodococcus equi , Sequenciamento Completo do Genoma , Rhodococcus equi/patogenicidade , Rhodococcus equi/genética , Animais , Cavalos , Doenças dos Cavalos/microbiologia , Infecções por Actinomycetales/veterinária , Infecções por Actinomycetales/microbiologia , Virulência/genética , Camundongos , Fatores de Virulência/genética , Feminino
14.
J Bacteriol ; 205(4): e0000523, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36892285

RESUMO

Agrobacterium tumefaciens incites the formation of readily visible macroscopic structures known as crown galls on plant tissues that it infects. Records from biologists as early as the 17th century noted these unusual plant growths and began examining the basis for their formation. These studies eventually led to isolation of the infectious agent, A. tumefaciens, and decades of study revealed the remarkable mechanisms by which A. tumefaciens causes crown gall through stable horizontal genetic transfer to plants. This fundamental discovery generated a barrage of applications in the genetic manipulation of plants that is still under way. As a consequence of the intense study of A. tumefaciens and its role in plant disease, this pathogen was developed as a model for the study of critical processes that are shared by many bacteria, including host perception during pathogenesis, DNA transfer and toxin secretion, bacterial cell-cell communication, plasmid biology, and more recently, asymmetric cell biology and composite genome coordination and evolution. As such, studies of A. tumefaciens have had an outsized impact on diverse areas within microbiology and plant biology that extend far beyond its remarkable agricultural applications. In this review, we attempt to highlight the colorful history of A. tumefaciens as a study system, as well as current areas that are actively demonstrating its value and utility as a model microorganism.


Assuntos
Agrobacterium tumefaciens , Interações entre Hospedeiro e Microrganismos , Agrobacterium tumefaciens/genética , Tumores de Planta/microbiologia , Doenças das Plantas/microbiologia , Plantas/microbiologia , Bactérias , Biologia
15.
Infect Immun ; 91(11): e0036523, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37843413

RESUMO

The host type I interferon (IFN) response protects against Legionella pneumophila infections. Other bacterial pathogens inhibit type I IFN-mediated cell signaling; however, the interaction between this signaling pathway and L. pneumophila has not been well described. Here, we demonstrate that L. pneumophila inhibits the IFN-ß signaling pathway but does not inhibit IFN-γ-mediated cell signaling. The addition of IFN-ß to L. pneumophila-infected macrophages limited bacterial growth independently of NOS2 and reactive nitrogen species. The type IV secretion system of L. pneumophila is required to inhibit IFN-ß-mediated cell signaling. Finally, we show that the inhibition of the IFN-ß signaling pathway occurs downstream of STAT1 and STAT2 phosphorylation. In conclusion, our findings describe a novel host cell signaling pathway inhibited by L. pneumophila via its type IV secretion system.


Assuntos
Interferon Tipo I , Legionella pneumophila , Doença dos Legionários , Humanos , Legionella pneumophila/fisiologia , Sistemas de Secreção Tipo IV , Interferon gama/metabolismo , Transdução de Sinais
16.
Mol Microbiol ; 118(1-2): 77-91, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35703459

RESUMO

Gram-negative pathogens like Burkholderia pseudomallei use trimeric autotransporter adhesins such as BpaC as key molecules in their pathogenicity. Our 1.4 Å crystal structure of the membrane-proximal part of the BpaC head domain shows that the domain is exclusively made of left-handed parallel ß-roll repeats. This, the largest such structure solved, has two unique features. First, the core, rather than being composed of the canonical hydrophobic Ile and Val, is made up primarily of the hydrophilic Thr and Asn, with two different solvent channels. Second, comparing BpaC to all other left-handed parallel ß-roll structures showed that the position of the head domain in the protein correlates with the number and type of charged residues. In BpaC, only negatively charged residues face the solvent-in stark contrast to the primarily positive surface charge of the left-handed parallel ß-roll "type" protein, YadA. We propose extending the definitions of these head domains to include the BpaC-like head domain as a separate subtype, based on its unusual sequence, position, and charge. We speculate that the function of left-handed parallel ß-roll structures may differ depending on their position in the structure.


Assuntos
Burkholderia pseudomallei , Adesinas Bacterianas/metabolismo , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/metabolismo , Solventes , Sistemas de Secreção Tipo V , Virulência
17.
Mol Microbiol ; 117(2): 480-492, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34897856

RESUMO

The enteropathogenic Escherichia coli (EPEC) type III secretion system effector Tir, which mediates intimate bacterial attachment to epithelial cells, also triggers Ca2+ influx followed by LPS entry and caspase-4-dependent pyroptosis, which could be antagonized by the effector NleF. Here we reveal the mechanism by which EPEC induces Ca2+ influx. We show that in the intestinal epithelial cell line SNU-C5, Tir activates the mechano/osmosensitive cation channel TRPV2 which triggers extracellular Ca2+ influx. Tir-induced Ca2+ influx could be blocked by siRNA silencing of TRPV2, pre-treatment with the TRPV2 inhibitor SET2 or by growing cells in low osmolality medium. Pharmacological activation of TRPV2 in the absence of Tir failed to initiate caspase-4-dependent cell death, confirming the necessity of Tir. Consistent with the model implicating activation on translocation of TRPV2 from the ER to plasma membrane, inhibition of protein trafficking by either brefeldin A or the effector NleA prevented TRPV2 activation and cell death. While infection with EPECΔnleA triggered pyroptotic cell death, this could be prevented by NleF. Taken together this study shows that while integration of Tir into the plasma membrane activates TRPV2, EPEC uses NleA to inhibit TRPV2 trafficking and NleF to inhibit caspase-4 and pyroptosis.


Assuntos
Escherichia coli Enteropatogênica , Proteínas de Escherichia coli , Escherichia coli Enteropatogênica/genética , Proteínas de Escherichia coli/metabolismo , Transporte Proteico , Piroptose , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo
18.
EMBO J ; 38(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30877094

RESUMO

Bacteria have evolved macromolecular machineries that secrete effectors and toxins to survive and thrive in diverse environments. The type VI secretion system (T6SS) is a contractile machine that is related to Myoviridae phages. It is composed of a phage tail-like structure inserted in the bacterial cell envelope by a membrane complex (MC) comprising the TssJ, TssL and TssM proteins. We previously reported the low-resolution negative-stain electron microscopy structure of the enteroaggregative Escherichia coli MC and proposed a rotational 5-fold symmetry with a TssJ:TssL:TssM stoichiometry of 2:2:2. Here, cryo-electron tomography analyses of the T6SS MC confirm the 5-fold symmetry in situ and identify the regions of the structure that insert into the bacterial membranes. A high-resolution model obtained by single-particle cryo-electron microscopy highlights new features: five additional copies of TssJ, yielding a TssJ:TssL:TssM stoichiometry of 3:2:2, an 11-residue loop in TssM, protruding inside the lumen of the MC and constituting a functionally important periplasmic gate, and hinge regions. Based on these data, we propose an updated model on MC structure and dynamics during T6SS assembly and function.


Assuntos
Sistemas de Secreção Tipo VI/química , Sistemas de Secreção Tipo VI/metabolismo , Sistemas de Secreção Bacterianos/química , Sistemas de Secreção Bacterianos/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Microscopia Crioeletrônica , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Ligação Proteica , Estrutura Quaternária de Proteína
19.
Microbiology (Reading) ; 169(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37310005

RESUMO

Virulence-associated bacterial type III secretion systems are multiprotein molecular machines that promote the pathogenicity of bacteria towards eukaryotic host cells. These machines form needle-like structures, named injectisomes, that span both bacterial and host membranes, forming a direct conduit for the delivery of bacterial proteins into host cells. Once within the host, these bacterial effector proteins are capable of manipulating a multitude of host cell functions. In recent years, the knowledge of assembly, structure and function of these machines has grown substantially and is presented and discussed in this review.


Assuntos
Bactérias Gram-Negativas , Sistemas de Secreção Tipo III , Virulência , Proteínas de Bactérias
20.
Microbiology (Reading) ; 169(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37083586

RESUMO

Unprecedented insights into the biology and functions of bacteria have been and continue to be gained through studying bacterial secretion systems in isolation. This method, however, results in our understanding of the systems being primarily based on the idea that they operate independently, ignoring the subtleties of downstream interconnections. Gram-negative bacteria are naturally able to adapt to and navigate their frequently varied and dynamic surroundings, mostly because of the covert connections between secretion systems. Therefore, to comprehend some of the linked downstream repercussions for organisms that follow this discourse, it is vital to have mechanistic insights into how the intersecretion system functions in bacterial rivalry, virulence, and survival, among other things. To that purpose, this paper discusses a few key instances of molecular antagonistic and interdependent relationships between bacterial secretion systems and their produced functional products.


Assuntos
Sistemas de Secreção Bacterianos , Bactérias Gram-Negativas , Sistemas de Secreção Bacterianos/genética , Bactérias Gram-Negativas/genética , Virulência , Bactérias/genética , Fatores de Virulência , Proteínas de Bactérias/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa