Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 35(6): 80, 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31134400

RESUMO

In the present paper, products obtained from a blue-green microalga Spirulina platensis filtrate (applied for seed soaking and for foliar spray) and homogenate (used for seed coating) were tested in the cultivation of radish. Their effect on length, wet mass, multielemental composition and the greenness index of the radish leaves was examined. Multi-elemental analyses of the algal products, and radish were also performed using inductively coupled plasma-optical emission spectrometry (ICP-OES). The best soaking time, concentrations of filtrate and doses of homogenate were established. The longest and heaviest plants were observed for homogenate applied at a dose of 300 µL per 1.5 g of seeds and 15% of filtrate applied as foliar spray. The highest chlorophyll content was found in the group treated with 100 µL of homogenate and 5% of filtrate. In the case of soaking time, the longest plants were in the group where seeds were soaked for 6 h, but the heaviest and greenest were after soaking for 48 h. The applied algal products increased the content of elements in seedlings. Obtained results proved that algal extracts have high potential to be applied in modern horticulture and agriculture. The use of Spirulina-based products is consistent with the idea of sustainable agriculture that could help to ensure production of sufficient human food to meet the needs of rising population and protection of the environment.


Assuntos
Agricultura , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Sementes/efeitos dos fármacos , Spirulina/química , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Fracionamento Químico/métodos , Clorofila , Filtração , Germinação , Desenvolvimento Vegetal , Extratos Vegetais/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Raphanus/efeitos dos fármacos , Raphanus/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento
2.
J Environ Sci (China) ; 55: 206-213, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28477815

RESUMO

To compare the toxicity of landfill leachate exposure at the early stages of seed soaking and germination on maize, a field experiment was conducted to evaluate the physiological aspects of growth, yield and potential clastogenicity of root-tip cells. The maizes were treated with leachate at levels of 2%, 10%, 20%, 30% or 50% (V/V). First, the change of physiological indexes, including chlorophyll (Chl), Malondialdehyde (MDA) and Reactive oxygen species (ROS) levels, combined with yield all showed that soaking with leachate, but not germination, generated a greater ecological risk on maize. After a soaking treatment of maize with 50% leachate, the Chl, MDA and ROS levels during a vigorous growth period were 47.3%, 149.8% and 309.7%, respectively, of the control, whereas the yield decreased to 68.6% of the control. In addition, our results demonstrated that the leachate at lower levels could promote growth. This is mainly embodied in that the yield of maize treated with 10% leachate at the soaking stage increased to 116.0% of the control. Moreover, the cytological analysis experiment also demonstrated that the ecological risk of leachate still exists in both cases. Furthermore, the gray relational analysis showed that the ear row number and tassel branch number were the major factors affecting the yield of maize treated with 50% leachate at the stages of soaking and germination, respectively. In general, these results are helpful in understanding the phytotoxicity of leachate, which provides additional reference data for risk assessment and management of leachate.


Assuntos
Monitoramento Ambiental , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água/toxicidade , Zea mays/efeitos dos fármacos , Clorofila , Germinação , Malondialdeído , Plântula/crescimento & desenvolvimento , Sementes , Testes de Toxicidade , Zea mays/crescimento & desenvolvimento
3.
Ecotoxicol Environ Saf ; 133: 252-9, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27474846

RESUMO

The role of antioxidants exogenously-applied individually or in sequences in the improvement of salt tolerance in maize seedlings, and their effects on changes in the activities of endogenous enzymatic and non-enzymatic antioxidants, and the concentrations of phytohormones in seedlings grown under 100mM NaCl stress were assessed. The efficiency of maize seedlings to tolerate salt stress in terms of growth was noticed to varying degrees with antioxidants applied singly or in sequences. The healthy growth of salt-stressed seedlings was correlated with the improvements in the activities of enzymatic and non-enzymatic antioxidants, the concentrations of osmoprotectants and phytohormones, and tissue health in terms of relative water content and membrane stability index. Results show that, seed soaking in AsA, GSH and proline applied in sequences (i.e., AsA0.50-Pro0.50-GSH0.50 or GSH0.50-Pro0.50-AsA0.50) was better than their applications individually. In addition, the sequenced application of AsA0.50-Pro0.50-GSH0.50 as integrated treatment was better, generating maize seedlings more tolerant to salinity than those generated from the sequenced application of GSH0.50-Pro0.50-AsA0.50. Therefore, we recommend using the sequenced application of AsA0.50-Pro0.50-GSH0.50 as integrated soaking treatment for maize to grow under salt stress.


Assuntos
Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Glutationa/metabolismo , Prolina/metabolismo , Tolerância ao Sal , Plântula/fisiologia , Zea mays/fisiologia , Salinidade , Plântula/crescimento & desenvolvimento , Sementes , Cloreto de Sódio
4.
J Hazard Mater ; 479: 135639, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39191006

RESUMO

Chlormequat (CCC) is widely used in agricultural production to increase the crop yield. However, the effects of CCC on transfer of ARGs in agricultural system are still unclear. In this study, using E.coli DH5α (carrying RP4 plasmid with AmpR, TetR, KanR) as the donor bacterium, E.coli HB101, endophytic Pseudomonas sp. Ph6 or rhizosphere Pseudomonas putida KT2440 as the recipient strain, three conjugative systems were designed to investigate the effects of CCC on ARG transfer. Meanwhile, hydroponics experiments were designed to study the ARG spread in the rice-nutrient solution system after CCC application. The results showed that CCC significantly promoted the RP4 conjugation by expanding cell membrane permeability and improving the relative transcription levels of trfAp, trbBp, traA and traL genes in RP4. Furthermore, the conjugation frequency between E. coli and Pseudomonas was much higher than that between E. coli cells. Compared with spraying foliage with 2500 mg·L-1 of CCC, soaking seeds with 250 mg·L-1 of CCC was more beneficial to the colonization of ARB in rice, and also increased the abundance of ARGs in rice cultivation system. These results remind that the use of CCC in agricultural production might promote the ARG transmission in agro-ecosystems; however, foliage spraying with 2500 mg·L-1 of CCC could control its spread.


Assuntos
Conjugação Genética , Escherichia coli , Transferência Genética Horizontal , Oryza , Plasmídeos , Pseudomonas , Plasmídeos/genética , Oryza/microbiologia , Oryza/crescimento & desenvolvimento , Oryza/efeitos dos fármacos , Oryza/genética , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Pseudomonas/genética , Pseudomonas/efeitos dos fármacos , Pseudomonas/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/efeitos dos fármacos , Pseudomonas putida/metabolismo , Genes Bacterianos/efeitos dos fármacos , Antibacterianos/farmacologia , Agricultura , Farmacorresistência Bacteriana/genética , Farmacorresistência Bacteriana/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética
5.
Front Plant Sci ; 14: 1177844, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37139105

RESUMO

Micronutrient deficiencies caused by malnutrition and hidden hunger are a growing concern worldwide, exacerbated by climate change, COVID-19, and conflicts. A potentially sustainable way to mitigate such challenges is the production of nutrient-dense crops through agronomic biofortification techniques. Among several potential target crops, microgreens are considered suitable for mineral biofortification because of their short growth cycle, high content of nutrients, and low level of anti-nutritional factors. A study was conducted to evaluate the potential of zinc (Zn) biofortification of pea and sunflower microgreens via seed nutri-priming, examining the effect of different Zn sources (Zn sulfate, Zn-EDTA, and Zn oxide nanoparticles) and concentrations (0, 25, 50, 100, and 200 ppm) on microgreen yield components; mineral content; phytochemical constituents such as total chlorophyll, carotenoids, flavonoids, anthocyanin, and total phenolic compounds; antioxidant activity; and antinutrient factors like phytic acid. Treatments were arranged in a completely randomized factorial block design with three replications. Seed soaked in a 200 ppm ZnSO4 solution resulted in higher Zn accumulation in both peas (126.1%) and sunflower microgreens (229.8%). However, an antagonistic effect on the accumulation of other micronutrients (Fe, Mn, and Cu) was seen only in pea microgreens. Even at high concentrations, seed soaking in Zn-EDTA did not effectively accumulate Zn in both microgreens' species. ZnO increased the chlorophyll, total phenols, and antioxidant activities compared to Zn-EDTA. Seed soaking in ZnSO4 and ZnO solutions at higher concentrations resulted in a lower phytic acid/Zn molar ratio, suggesting the higher bioaccessibility of the biofortified Zn in both pea and sunflower microgreens. These results suggest that seed nutrient priming is feasible for enriching pea and sunflower microgreens with Zn. The most effective Zn source was ZnSO4, followed by ZnO. The optimal concentration of Zn fertilizer solution should be selected based on fertilizer source, target species, and desired Zn-enrichment level.

6.
Front Plant Sci ; 14: 1217893, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600184

RESUMO

Introduction: Two-line hybrid rice based on Photoperiod/thermo-sensitive genic male sterile (P/TGMS) lines has been developed and applied widely in agriculture due to the freedom in making hybrid combinations, less difficulty in breeding sterile lines, and simpler procedures for breeding and producing hybrid seed. However, there are certain risks associated with hybrid seed production; if the temperature during the P/TGMS fertility-sensitive period is lower than the critical temperature, seed production will fail due to self-pollination. In a previous study, we found that the issue of insufficient purity of two-line hybrid rice seed could be initially addressed by using the difference in tolerance to ß-triketone herbicides (bTHs) between the female parent and the hybrid seeds. Methods: In this study, we further investigated the types of applicable herbicides, application methods, application time, and the effects on physiological and biochemical indexes and yield in rice. Results: The results showed that this method could be used for hybrid purification by soaking seeds and spraying plants with the bTH benzobicylon (BBC) at safe concentrations in the range of 37.5-112.5 mg/L, and the seeds could be soaked in BBC at a treatment rate of 75.0 mg/L for 36-55 h without significant negative effects. The safe concentration for spraying in the field is 50.0-400.0 mg/L BBC at the three-leaf stage. Unlike BBC, Mesotrione (MST) can only be sprayed to achieve hybrid purification at concentrations between 10.0 and 70.0 mg/L without affecting yield. The three methods of hybrid seed purification can reach 100% efficiency without compromising the nutritional growth and yield of hybrid rice. Moreover, transcriptome sequencing revealed that 299 up-regulated significant differentially expressed genes (DEGs) in the resistant material (Huazhan) poisoned by BBC, were mainly enriched in phenylalanine metabolism and phenylpropanoid biosynthesis pathway, it may eliminate the toxic effects of herbicides through this way. Discussion: Our study establishes a foundation for the application of the bTH seed purification strategy and the three methods provide an effective mechanism for improving the purity of two-line hybrid rice seeds.

7.
Plants (Basel) ; 12(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36903881

RESUMO

As water deficit in arid countries has already become the norm rather than the exception, water conservation in crop production processes has become very critical. Therefore, it is urgent to develop feasible strategies to achieve this goal. Exogenous application of salicylic acid (SA) has been proposed as one of the effective and economical strategies for mitigating water deficit in plants. However, the recommendations concerning the proper application methods (AMs) and the optimal concentrations (Cons) of SA under field conditions seem contradictory. Here, a two-year field study was conducted to compare the effects of twelve combinations of AMs and Cons on the vegetative growth, physiological parameters, yield, and irrigation water use efficiency (IWUE) of wheat under full (FL) and limited (LM) irrigation regimes. These combinations included seed soaking in purified water (S0), 0.5 mM SA (S1), and 1.0 mM SA (S2); foliar spray of SA at concentrations of 1.0 mM (F1), 2.0 mM (F2), and 3.0 mM (F3); and combinations of S1 and S2 with F1 (S1F1 and S2F1), F2 (S1F2 and S2F2), and F3 (S1F3 and S2F3). The results showed that the LM regime caused a significant reduction in all vegetative growth, physiological, and yield parameters, while it led to an increase in IWUE. The application of SA through seed soaking, foliar application, and a combination of both methods increased all of the studied parameters in all the evaluated times, resulting in higher values for all parameters than the treatment without SA (S0). The multivariate analyses, including principal component analysis and heatmapping, identified the foliar application method with 1-3 mM SA alone or in combination with seed soaking with 0.5 mM SA as the best treatments for the optimal performance of wheat under both irrigation regimes. Overall, our results indicated that exogenous application of SA has the potential to greatly improve growth, yield, and IWUE under limited water application, while optimal coupling combinations of AMs and Cons were required for positive effects in field conditions.

8.
Plants (Basel) ; 10(9)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34579317

RESUMO

Soil salinization is one of the main abiotic stress factors impacting the growth of crops and the agricultural industry today. Thus, we aimed to investigate the effects of H2O2 pretreatment on seed germination in Tartary buckwheat (Fagopyrum tataricum) seeds under salt stress and to evaluate this species' salt tolerance. Through the preliminary experiment, this study used 50 mmol L-1 NaCl solution to induce seed stress. After soaking for 12 h in different H2O2 concentrations, seeds were laid in Petri dishes with 50 mmol L-1 NaCl for seven days and the germination parameters and physiological indicators were measured to screen the optimal H2O2 pretreatment concentration and the salt tolerance index. Our results indicated that pretreatment with 5-10 mmol L-1 H2O2 was most effective in alleviating NaCl's impacts on the seeds' germination parameters. Furthermore, the growth and material accumulation of seedlings was promoted; catalase, superoxide dismutase activity, and proline content were enhanced; and malondialdehyde content was reduced. Principal component analysis and stepwise regression revealed six key indicators that had a significant impact on the salt tolerance characteristics of F. tataricum, namely, germination potential, shoot fresh weight, root surface area, root average diameter, catalase activity, and superoxide dismutase activity.

9.
J Agric Food Chem ; 68(30): 8057-8067, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32609497

RESUMO

Soaking of soybean seeds is a prerequisite for the production of soy foods, and it has been shown that the extent of water absorbed during different imbibition conditions directly affects the quality of the subsequent soybean seed products by yet unknown mechanisms. In order to elucidate the molecular changes in soybean seeds during different soaking temperatures, we performed an integrated proteomics and metabolomics analysis of seeds soaked at 4, 25, and 55 °C. Proteomics analysis revealed that various enzymes related to carbohydrate and protein hydrolysis were activated in soybean seeds during water soaking at 55 °C. Interestingly, results obtained from this integrated proteomics and metabolomics study showed changes in various metabolites, including isoflavones, amino acids, and sugars, that were positively correlated with proteome changes occurring upon soaking at 55 °C. Furthermore, soaking of soybean seeds at 55 °C resulted in degradation of indigestible anti-nutrients such as raffinose oligosaccharides. Taken together, our results suggest that the seed soaking at a high temperature (55 °C) increases the nutritional value of soybean seeds by decreasing the contents of some of the common anti-nutrients.


Assuntos
Glycine max/química , Sementes/metabolismo , Proteínas de Soja/química , Manipulação de Alimentos , Metabolômica , Proteômica , Sementes/química , Sementes/genética , Proteínas de Soja/genética , Proteínas de Soja/metabolismo , Glycine max/genética , Glycine max/metabolismo , Temperatura , Água/metabolismo
10.
Front Plant Sci ; 8: 1447, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28871269

RESUMO

Inducible gene expression has emerged as a powerful tool for plant functional genomics. The estrogen receptor-based, chemical-inducible system XVE has been used in many plant species, but the limited systemic movement of inducer ß-estradiol in transgenic rice plants has prohibited a wide use of the XVE system in this important food crop. Here, we constructed an improved chemical-regulated, site-specific recombination system by employing the XVE transactivator in combination with a Cre/loxP-FRT system, and optimized a seed-soaking procedure for XVE induction in rice. By using a gus gene and an hpRNAi cassette targeted for OsPDS as reporters, we demonstrated that soaking transgenic seeds with estradiol solution could induce highly efficient site-specific recombination in germinating embryos, resulting in constitutive and high-level expression of target gene or RNAi cassette in intact rice plants from induced seeds. The strategy reported here thereby provides a useful gene activation approach for effectively regulating gene expression in rice.

11.
Front Plant Sci ; 7: 1447, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27733857

RESUMO

Salicylic acid is a promising compound for the reduction of stress sensitivity in plants. Although several biochemical and physiological changes have been described in plants treated with salicylic acid, the mode of action of the various treatments has not yet been clarified. The present work reports a detailed comparative study on the effects of different modes of salicylic acid application at the physiological, metabolomic, and transcriptomic levels. Seed soaking and hydroponic treatments were found to induce various changes in the protective mechanisms of wheat plants. The possible involvement of the flavonoid metabolism in salicylic acid-related stress signaling was also demonstrated. Different salicylic acid treatments were shown to induce different physiological and biochemical processes, with varying responses in the leaves and roots. Hydroponic treatment enhanced the level of oxidative stress, the expression of genes involved in the flavonoid metabolism and the amount of non-enzymatic antioxidant compounds, namely ortho-hydroxycinnamic acid and the flavonol quercetin in the leaves, while it decreased the ortho-hydroxycinnamic acid and flavonol contents and enhanced ascorbate peroxidase activity in the roots. In contrast, seed soaking only elevated the gene expression level of phenylalanine ammonia lyase in the roots and caused a slight increase in the amount of flavonols. These results draw attention to the fact that the effects of exogenous salicylic acid application cannot be generalized in different experimental systems and that the flavonoid metabolism may be an important part of the action mechanisms induced by salicylic acid.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa