Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36772243

RESUMO

In speaker recognition tasks, convolutional neural network (CNN)-based approaches have shown significant success. Modeling the long-term contexts and efficiently aggregating the information are two challenges in speaker recognition, and they have a critical impact on system performance. Previous research has addressed these issues by introducing deeper, wider, and more complex network architectures and aggregation methods. However, it is difficult to significantly improve the performance with these approaches because they also have trouble fully utilizing global information, channel information, and time-frequency information. To address the above issues, we propose a lighter and more efficient CNN-based end-to-end speaker recognition architecture, ResSKNet-SSDP. ResSKNet-SSDP consists of a residual selective kernel network (ResSKNet) and self-attentive standard deviation pooling (SSDP). ResSKNet can capture long-term contexts, neighboring information, and global information, thus extracting a more informative frame-level. SSDP can capture short- and long-term changes in frame-level features, aggregating the variable-length frame-level features into fixed-length, more distinctive utterance-level features. Extensive comparison experiments were performed on two popular public speaker recognition datasets, Voxceleb and CN-Celeb, with current state-of-the-art speaker recognition systems and achieved the lowest EER/DCF of 2.33%/0.2298, 2.44%/0.2559, 4.10%/0.3502, and 12.28%/0.5051. Compared with the lightest x-vector, our designed ResSKNet-SSDP has 3.1 M fewer parameters and 31.6 ms less inference time, but 35.1% better performance. The results show that ResSKNet-SSDP significantly outperforms the current state-of-the-art speaker recognition architectures on all test sets and is an end-to-end architecture with fewer parameters and higher efficiency for applications in realistic situations. The ablation experiments further show that our proposed approaches also provide significant improvements over previous methods.


Assuntos
Algoritmos , Redes Neurais de Computação , Atenção
2.
Front Genet ; 15: 1408688, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873109

RESUMO

N4-acetylcysteine (ac4C) is a chemical modification in mRNAs that alters the structure and function of mRNA by adding an acetyl group to the N4 position of cytosine. Researchers have shown that ac4C is closely associated with the occurrence and development of various cancers. Therefore, accurate prediction of ac4C modification sites on human mRNA is crucial for revealing its role in diseases and developing new diagnostic and therapeutic strategies. However, existing deep learning models still have limitations in prediction accuracy and generalization ability, which restrict their effectiveness in handling complex biological sequence data. This paper introduces a deep learning-based model, STM-ac4C, for predicting ac4C modification sites on human mRNA. The model combines the advantages of selective kernel convolution, temporal convolutional networks, and multi-head self-attention mechanisms to effectively extract and integrate multi-level features of RNA sequences, thereby achieving high-precision prediction of ac4C sites. On the independent test dataset, STM-ac4C showed improvements of 1.81%, 3.5%, and 0.37% in accuracy, Matthews correlation coefficient, and area under the curve, respectively, compared to the existing state-of-the-art technologies. Moreover, its performance on additional balanced and imbalanced datasets also confirmed the model's robustness and generalization ability. Various experimental results indicate that STM-ac4C outperforms existing methods in predictive performance. In summary, STM-ac4C excels in predicting ac4C modification sites on human mRNA, providing a powerful new tool for a deeper understanding of the biological significance of mRNA modifications and cancer treatment. Additionally, the model reveals key sequence features that influence the prediction of ac4C sites through sequence region impact analysis, offering new perspectives for future research. The source code and experimental data are available at https://github.com/ymy12341/STM-ac4C.

3.
Math Biosci Eng ; 21(1): 253-271, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38303422

RESUMO

The epigenetic modification of DNA N4-methylcytosine (4mC) is vital for controlling DNA replication and expression. It is crucial to pinpoint 4mC's location to comprehend its role in physiological and pathological processes. However, accurate 4mC detection is difficult to achieve due to technical constraints. In this paper, we propose a deep learning-based approach 4mCPred-GSIMP for predicting 4mC sites in the mouse genome. The approach encodes DNA sequences using four feature encoding methods and combines multi-scale convolution and improved selective kernel convolution to adaptively extract and fuse features from different scales, thereby improving feature representation and optimization effect. In addition, we also use convolutional residual connections, global response normalization and pointwise convolution techniques to optimize the model. On the independent test dataset, 4mCPred-GSIMP shows high sensitivity, specificity, accuracy, Matthews correlation coefficient and area under the curve, which are 0.7812, 0.9312, 0.8562, 0.7207 and 0.9233, respectively. Various experiments demonstrate that 4mCPred-GSIMP outperforms existing prediction tools.


Assuntos
DNA , Genoma , Animais , Camundongos , Epigênese Genética
4.
Phys Med Biol ; 69(7)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38306971

RESUMO

Objective. Celiac disease (CD) has emerged as a significant global public health concern, exhibiting an estimated worldwide prevalence of approximately 1%. However, existing research pertaining to domestic occurrences of CD is confined mainly to case reports and limited case analyses. Furthermore, there is a substantial population of undiagnosed patients in the Xinjiang region. This study endeavors to create a novel, high-performance, lightweight deep learning model utilizing endoscopic images from CD patients in Xinjiang as a dataset, with the intention of enhancing the accuracy of CD diagnosis.Approach. In this study, we propose a novel CNN-Transformer hybrid architecture for deep learning, tailored to the diagnosis of CD using endoscopic images. Within this architecture, a multi-scale spatial adaptive selective kernel convolution feature attention module demonstrates remarkable efficacy in diagnosing CD. Within this module, we dynamically capture salient features within the local channel feature map that correspond to distinct manifestations of endoscopic image lesions in the CD-affected areas such as the duodenal bulb, duodenal descending segment, and terminal ileum. This process serves to extract and fortify the spatial information specific to different lesions. This strategic approach facilitates not only the extraction of diverse lesion characteristics but also the attentive consideration of their spatial distribution. Additionally, we integrate the global representation of the feature map obtained from the Transformer with the locally extracted information via convolutional layers. This integration achieves a harmonious synergy that optimizes the diagnostic prowess of the model.Main results. Overall, the accuracy, specificity, F1-Score, and precision in the experimental results were 98.38%, 99.04%, 98.66% and 99.38%, respectively.Significance. This study introduces a deep learning network equipped with both global feature response and local feature extraction capabilities. This innovative architecture holds significant promise for the accurate diagnosis of CD by leveraging endoscopic images captured from diverse anatomical sites.


Assuntos
Doença Celíaca , Humanos , Doença Celíaca/diagnóstico por imagem , Endoscopia
5.
ISA Trans ; 133: 369-383, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35798589

RESUMO

This paper proposes a selective kernel convolution deep residual network based on the channel-spatial attention mechanism and feature fusion for mechanical fault diagnosis. First, adjacent channel attention modules are connected with the spatial attention mechanism module, then all channel features and spatial features are fused and a channel-spatial attention mechanism is constructed to form the feature enhancement module. Second, the feature enhancement module is embedded in a series model based on selective kernel convolution and deep residual network and combined with multi-layer feature fusion information. The model can more effectively extract fault features from the vibration signal, compared with traditional deep learning methods, and the fault recognition efficiency is improved. Finally, the proposed method was used to experimentally diagnose bearing and gear faults, and identification accuracies of 99.87% and 97.77%, respectively, were achieved. Compared with similar algorithms, the proposed method has higher fault identification ability, thereby demonstrating the advantages of the channel-spatial attention mechanism network. In addition, the accuracy and robustness of the model were verified.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa