Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(31): 9553-9560, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39041723

RESUMO

Soft electronics have significantly enhanced user convenience and data accuracy in wearable devices, implantable devices, and human-machine interfaces. However, a persistent challenge in their development has been the disconnection between the rigid and soft components of devices due to the substantial difference in modulus and stretchability. To address this issue, establishing a durable and flexible connection that smoothly links components of varying stiffness to signal-capturing sections with a lower stiffness is essential. In this study, we developed a novel stretchable interconnect that strongly adheres to various materials, facilitating electrical connections effortlessly by applying minimal finger pressure. Capable of stretching up to 1000% while maintaining electrical integrity, this interconnect proves its applicability across multiple domains, including electrocardiogram (ECG), electromyography (EMG), and stretchable light-emitting diode (LED) circuits. Its versatility is further demonstrated through its compatibility with various manufacturing techniques such as 3D printing, painting, and spin coating, highlighting its adaptability in soft electronics.

2.
Macromol Rapid Commun ; 45(7): e2300650, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38158795

RESUMO

Double-network hydrogels based on calcium alginate are extensively exploited. Unfortunately, their low strength and unstable constitution to open environments limit their application potential. Herein, a new type of double-network organohydrogel (OHG) is proposed. By solvent exchange, a stable physical network is established based on dimethyl sulfoxide (DMSO)-alginate in the presence of a polyacrylamide network. The DMSO content endows tunable mechanical properties, with a maximum tensile strength of ≈1.7 MPa. Importantly, the OHG shows much better environmental stability compared to the conventional double-network hydrogels. Due to the reversible association of hydrogen bonds, the OHG possesses some unique properties, including free-shapeability, shape-memory, and self-adhesion, that offers several promising ways to utilize alginate-based gels for wide applications.


Assuntos
Alginatos , Dimetil Sulfóxido , Solventes , Hidrogéis , Ligação de Hidrogênio
3.
Nano Lett ; 22(22): 8966-8974, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36374184

RESUMO

Softness, adhesion, stretchability, and fast recovery from large deformations are essential properties for conductive elastomers that play an important role in the development of high-performance soft electronics. However, it remains an ongoing challenge to obtain conductive elastomers that combine these properties. We have fabricated a super soft (Young's modulus 2.3-12 kPa), highly stretchable (up to 1500% strain), and underwater adhesive silicone conductive elastomer composite (SF-C-PDMS) by incorporating dimethyl silicone oil as a lubricating agent in a cross-linked molecular network. The resultant SF-C-PDMS not only exhibits superior softness but also can readily recover after a strain of 1000%. The initial resistance only decreases by 8% after 100000 cycles of tensile fatigue test (100% strain, 0.5 Hz, 15 mm/s). This multifunctional silicone conductive elastomer composite is obtained in a one-step preparation at room temperature using commercially available materials. Moreover, we illustrate the capabilities of this composite in motion sensing.

4.
Chemistry ; 26(50): 11604-11613, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32573862

RESUMO

Hydrogels used as strain sensors often rely on splicing tapes to attach them to surfaces, which causes much inconvenience. Therefore, to develop strain sensor hydrogels that possess both good mechanical properties and self-adhesion is still a great challenge. Inspired by the multiple hydrogen bonding interactions of nucleobases in DNA, we designed and synthesized a series of hydrogels PAAm-GO-Aba/Tba/Aba+Tba comprising polyacrylamide (PAAm), graphene oxide (GO), acrylated adenine and thymine (Aba and Tba). The introduction of nucleobases helps hydrogels to adhere to various substrates through multiple hydrogen-bonding interactions. It has also been found that the adhesive strength of hydrogels with nucleobases for hogskin increased to 2.5 times that of those without nucleobases. Meanwhile, these hydrogels exhibited good dynamic mechanical and self-recovery properties. They can be directly attached to human skin as strain sensors to monitor the motions of finger, wrist, and elbow. Electrical tests indicate that they give precise real-time monitoring data and exhibit good strain sensitivity and electrical stability. This work provides a promising basis from which to explore the fabrication of tough, self-adhesive, and strain-sensitive hydrogels as strain sensors for applications in wearable devices and healthcare monitoring.


Assuntos
Hidrogéis , Cimentos de Resina , Dispositivos Eletrônicos Vestíveis , Adesivos , Animais , DNA/química , Humanos , Hidrogéis/química , Movimento (Física)
5.
Molecules ; 25(15)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751141

RESUMO

In recent decades, microfluidic techniques have been extensively used to advance hydrogel design and control the architectural features on the micro- and nanoscale. The major challenges with the microfluidic approach are clogging and limited architectural features: notably, the creation of the sphere, core-shell, and fibers. Implementation of batch production is almost impossible with the relatively lengthy time of production, which is another disadvantage. This minireview aims to introduce a new microfluidic platform, a vortex fluidic device (VFD), for one-step fabrication of hydrogels with different architectural features and properties. The application of a VFD in the fabrication of physically crosslinked hydrogels with different surface morphologies, the creation of fluorescent hydrogels with excellent photostability and fluorescence properties, and tuning of the structure-property relationship in hydrogels are discussed. We conceive, on the basis of this minireview, that future studies will provide new opportunities to develop hydrogel nanocomposites with superior properties for different biomedical and engineering applications.


Assuntos
Hidrogéis , Microfluídica/instrumentação , Microfluídica/métodos , Engenharia Tecidual , Materiais Biocompatíveis , Análise Espectral
6.
Int J Biol Macromol ; 281(Pt 1): 136307, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39370073

RESUMO

As the application of conductive hydrogels in the field of wearable smart devices is gradually deepening, a variety of hydrogel sensors with high mechanical properties, strong adhesion, fast self-healing, and excellent conductivity are emerging. However, it is still a great challenge to manufacture hydrogel sensors combining multiple properties. Herein, we leveraged the dynamic redox reaction occurring between polydopamine (PDA) and Fe3+ to induce ammonium persulfate (APS) to generate free radicals, thereby initiating the copolymerization of hydroxyethyl methacrylate (HEMA) and acrylic acid (AA) monomers. Then, polypyrrole-encapsulated cellulose nanofibers (PPy@CNF) and carboxymethylcellulose (CMC) were incorporated as conductive reinforced nanofillers and interpenetrating network skeleton. The obtained hydrogel cross-linked through reversible metal-ligand bonds, π-π stacking and abundant hydrogen bonding demonstrated great mechanical properties (strength 240.4 kPa, strain 1175 %) and self-healing ability (88.96 %). Particularly, the gel displayed ultrahigh durability and skin adhesive ability (75 kPa after 10 cycles), surpassing previous skin adhesion hydrogels. Furthermore, through the synergistic conductive effect of PPy@CNF and Fe3+, the prepared hydrogel sensor possessed high sensitivity (GF = 1.89) with a wide sensing range (~1000 %), which could realize the human body's daily motion detection, and had a promising application in flexible wearable electronics.

7.
Int J Biol Macromol ; 273(Pt 1): 133002, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38851613

RESUMO

Here, a polysaccharide derivative acryloyl chitosan (AcCS) is exploited as macro-crosslinker to synthesize a novel ionogel poly (acrylic acid-co-1-Vinyl-3-butyl imidazolium chloride) (AA-IL/AcCS) via a one-pot method. AcCS provides abundant physical and chemical crosslinking sites contributing to the high mechanical stretchability (elongation at break 600 %) and strength (tensile strength 137 kPa) of AA-IL/AcCS. The high-density of dynamic bonds (hydrogen bonds and electrostatic interactions) in the network of ionogels enables self-healing and self-adhesive features of AA-IL/AcCS. Meanwhile, AA-IL/AcCS exhibits high ionic conductivity (0.1 mS/cm) at room temperature and excellent antifreeze ability (-58 °C). The AA-IL/AcCS-based sensor shows diverse sensory capabilities towards temperature and humidity, moreover, it could precisely detect human motions and handwritings signals. Furthermore, AA-IL/AcCS exhibits excellent bactericidal properties against both gram-positive and gram-negative bacteria. This work opens the possibility of polysaccharides as a macro-crosslinkers for preparing ionogel-based sensors for wearable electronics.


Assuntos
Quitosana , Congelamento , Quitosana/química , Reagentes de Ligações Cruzadas/química , Géis/química , Antibacterianos/química , Antibacterianos/farmacologia , Condutividade Elétrica , Adesivos/química , Humanos , Dispositivos Eletrônicos Vestíveis , Resistência à Tração
8.
Int J Biol Macromol ; 259(Pt 2): 129083, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38163511

RESUMO

Inspired by the mussel, tannic acid (TA) was modified onto the surface of self-made cellulose nanofibrils (CNFs) to prepare TA@CNFs, which was introduced into borax crosslinked polyvinyl alcohol (PVA) to prepare PTC double-network hydrogel with self-healing properties. Through the comparative observation of TEM images and infrared spectra before and after tannic acid modification, the formation of TA@CNFs was proved. The introduction of TA@CNFs greatly increases the fracture stress of PTC hydrogel, which is more than 10 times higher than that of PVA hydrogel without TA@CNFs, and has high fracture strain (1723 %). Moreover, PTC hydrogel has the ability of rapid self-healing, which can heal to the original form within two minutes. In addition, the temperature response ability of PTC hydrogel makes it capable of reshaping. The self-adhesion ability of PTC hydrogel enables it to adhere to the human epidermis to detect motion signals, as sensitive and as stable as a flexible sensor.


Assuntos
Celulose , Hidrogéis , Polifenóis , Humanos , Adesivos , Cimentos de Resina
9.
ACS Appl Bio Mater ; 7(7): 4307-4322, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38954747

RESUMO

In the realm of clinical applications, the concern surrounding biomedical device-related infections (BDI) is paramount. To mitigate the risk associated with BDI, enhancing surface characteristics such as lubrication and antibacterial efficacy is considered as a strategic approach. This study delineated the synthesis of a multifunctional copolymer, embodying self-adhesive, lubricating, and antibacterial properties, achieved through free radical polymerization and a carbodiimide coupling reaction. The copolymer was adeptly modified on the surface of stainless steel 316L (SS316L) substrates by employing a facile dip-coating technique. Comprehensive characterizations were performed by using an array of analytical techniques including Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, optical interferometry, scanning electron microscopy, and atomic force microscopy. Nanoscale tribological assessments revealed a notable reduction in the value of the friction coefficient of the copolymer-coated SS316L substrates compared to bare SS316L samples. The coating demonstrated exceptional resistance to protein adsorption, as evidenced in protein contamination models employing bovine serum albumin and fibrinogen. The bactericidal efficacy of the copolymer-modified surfaces was significantly improved against pathogenic strains such as Staphylococcus aureus and Escherichia coli. Additionally, in vitro evaluations of blood compatibility and cellular compatibility underscored the remarkable anticoagulant performance and biocompatibility. Collectively, these findings indicated that the developed copolymer coating represented a promising candidate, with its facile modification approach, for augmenting lubrication and antifouling properties in the field of biomedical implant applications.


Assuntos
Antibacterianos , Materiais Revestidos Biocompatíveis , Escherichia coli , Teste de Materiais , Staphylococcus aureus , Propriedades de Superfície , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Tamanho da Partícula , Próteses e Implantes , Humanos , Testes de Sensibilidade Microbiana , Animais , Polímeros/química , Polímeros/farmacologia , Aço Inoxidável/química , Lubrificação , Soroalbumina Bovina/química
10.
Int J Biol Macromol ; 265(Pt 2): 131143, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38537861

RESUMO

Hydrogel electrolyte is an ideal candidate material for flexible energy storage devices due to its excellent softness and conductivity properties. However, challenges such as the inherent mechanical weakness, the susceptibility to be frozen in low-temperature environments, and the insufficiency of hydrogel-electrode contact persist. Herein, a "Multi in One" strategy is employed to effectively conquer these difficulties by endowing hydrogels with high strength, freeze-resistance, and self-adhesive ability. Multiple hydrogen bond networks and ion crosslinking networks are constructed within the hydrogel electrolyte (PVA/PAAc/XG) containing polyvinyl alcohol (PVA), acrylic acid (AAc), and xanthan gum (XG), promoting the enhanced mechanical property, and the adhesion to electrode materials is also improved through abundant active groups. The introduction of zinc ions provides the material with superior frost resistance while also promoting electrical conductivity. Leveraging its multifunction of superior mechanical strength, anti-freeze property, and self-adhesive characteristic, the PVA/PAAc/XG hydrogel electrolyte is employed to fabricate zinc ion hybrid supercapacitors (ZHS). Remarkably, ZHS exhibits outstanding electrochemical performance and cycle stability. A remarkable capacity retention rate of 83.86 % after 10,000 charge-discharge cycles can be achieved at high current densities, even when the operational temperature decreases to -60 °C, showing great potential in the field of flexible energy storage devices.


Assuntos
Polissacarídeos Bacterianos , Cimentos de Resina , Zinco , Hidrogéis , Eletrólitos , Íons
11.
ACS Appl Mater Interfaces ; 16(31): 41435-41449, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39069834

RESUMO

Smart responsive materials are capable of responding to external stimuli and, compared to traditional materials, can be effectively reused and reduce usage costs in applications. However, smart responsive materials often face challenges such as the inability to repair extensive damage, instability in long-term performance, and inapplicability in extreme environments. This study combines 2D diamond nanosheets with organic fluorinated molecules to prepare a smart nanofluid (fluorinated diamond nanosheets, F-DN) with self-healing and self-adhesion properties. This smart nanofluid can be used to design various coatings for different applications. For example, coatings prepared on textured steel plates using the drop-casting method have excellent superhydrophobic and high oleophobic properties; coatings on titanium alloy plates achieve low friction and wear in the presence of lubricating additives of F-DN in perfluoropolyether (PFPE). Most impressively, coatings on steel plates not only provide effective corrosion resistance but also have the ability to self-heal significant damage (approximately 2 mm in width), withstand extremely low temperatures (-64 °C), and resist long-term corrosion factors (immersion in 3.5 wt % NaCl solution for 35 days). Additionally, it can act as a "coating glue" to repair extensive damage to other corrosion-resistant organic coatings and recover their original protective properties. Therefore, the smart nanofluid developed in this study offers diverse applications and presents new materials system for the future development of smart responsive materials.

12.
ACS Nano ; 18(29): 18980-18991, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38977409

RESUMO

Eutectogels have garnered considerable attention for the development of wearable devices, owing to their inherent mechanical elasticity, ionic conductivity, affordability, and environmental compatibility. However, the low conductivity of existing eutectogels has impeded their progression in electronic applications. Here, we report a zwitterionic eutectogel with an impressive ionic conductivity of up to 15.7 mS cm-1. The incorporation of zwitterionic groups into the eutectogel creates ample mobile charges by dissociating the cation and anion of solvents, thereby yielding exceptional ionic conductivity. Moreover, the abundant electrostatic and hydrogen bonding interactions within the eutectogel endow it with prominent self-healing and adhesive properties. By integrating the eutectogel with a roughly patterned polydimethylsiloxane film, we have successfully constructed a triboelectric nanogenerator (TENG) with a maximum output power density of 112 mW m-2. This TENG is capable of generating stable electrical signals even in extreme temperature conditions ranging from -80 to 100 °C and effectively powering electronic devices. Furthermore, the assembled TENG displays high sensitivity as a self-powered sensor, enabling real-time and precise monitoring of signals derived from human motions. This study establishes a promising approach for the development of sustainable and multifunctional flexible electronics that are resilient in extreme environments.

13.
Biosens Bioelectron ; 254: 116222, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38518560

RESUMO

Materials that have the ability to manipulate shapes in response to stimuli such as heat, light, humidity and magnetism offer a means for versatile, sophisticated functions in soft robotics or biomedical implants, while such a reactive transformation has certain drawbacks including high operating temperatures, inherent rigidity and biological hazard. Herein, we introduce biodegradable, self-adhesive, shape-transformable poly (L-lactide-co-ε-caprolactone) (BSS-PLCL) that can be triggered via thermal stimulation near physiological temperature (∼38 °C). Chemical inspections confirm the fundamental properties of the synthetic materials in diverse aspects, and study on mechanical and biochemical characteristics validates exceptional stretchability up to 800 % and tunable dissolution behaviors under biological conditions. The integration of the functional polymer with a bioresorbable electronic system highlights potential for a wide range of biomedical applications.


Assuntos
Técnicas Biossensoriais , Elastômeros , Elastômeros/química , Materiais Biocompatíveis/química , Implantes Absorvíveis , Polímeros/química , Poliésteres/química
14.
Nano Converg ; 11(1): 12, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512587

RESUMO

Stretchable and self-adhesive conductive hydrogels hold significant importance across a wide spectrum of applications, including human-machine interfaces, wearable devices, and soft robotics. However, integrating multiple properties, such as high stretchability, strong interfacial adhesion, self-healing capability, and sensitivity, into a single material poses significant technical challenges. Herein, we present a multifunctional conductive hydrogel based on poly(acrylic acid) (PAA), dopamine-functionalized pectin (PT-DA), polydopamine-coated reduction graphene oxide (rGO-PDA), and Fe3+ as an ionic cross-linker. This hydrogel exhibits a combination of high stretchability (2000%), rapid self-healing (~ 94% recovery in 5 s), and robust self-adhesion to various substrates. Notably, the hydrogel demonstrates a remarkable skin adhesion strength of 85 kPa, surpassing previous skin adhesive hydrogels. Furthermore, incorporating rGO within the hydrogel network creates electric pathways, ensuring excellent conductivity (0.56 S m-1). Consequently, these conductive hydrogels exhibit strain-sensing properties with a significant increase in gauge factor (GF) of 14.6, covering an extensive detection range of ~ 1000%, fast response (198 ms) and exceptional cycle stability. These multifunctional hydrogels can be seamlessly integrated into motion detection sensors capable of distinguishing between various strong or subtle movements of the human body.

15.
Int J Biol Macromol ; 241: 124102, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-36958445

RESUMO

It is one of the most emergent challenges to prepare wound dressings for quickly and effectively controlling profuse bleeding in clinical surgery and emergent accident. In this work, a novel strategy has been developed to prepare methacrylated gelatin-dopamine (GelMA-DA)/quaternized chitosan (QCS)/glycerol (Gly) composite sponges with good biocompatibility, tissue self-adhesion, antibacterial activity, and hemostatic ability. Results show that the GelMA-DA/QCS/Gly sponges display good biocompatibility and water absorption capacity. The lap shear strength of the GelMA-DA/QCS/Gly sponge with the GelMA-DA content of 5 W/V% is approximately 128.36 ± 8.45, 125.17 ± 7.18, 138.29 ± 7.94, and 113.83 ± 9.28 kPa for skin, liver, muscle, and fat, respectively. The GelMA-DA/QCS/Gly sponge displays better antibacterial activity against Gram positive and negative bacteria than the commercial Gelatin hemostatic sponge and CS hemostatic sponge. Animal experiments using rat tail and liver bleeding model show that the hemostasis time and blood loss in the GelMA-DA/QCS/Gly sponge group is approximately 33.3 ± 6.7 s and 0.19 ± 0.05 g, respectively, which is also better than that of the commercial Gelatin hemostatic sponge and CS hemostatic sponge. These results demonstrate promising potential of the GelMA-DA/QCS/Gly sponges for applications as hemostatic wound dressings in clinical surgery and emergent treatment.


Assuntos
Quitosana , Hemostáticos , Ratos , Animais , Hemostáticos/farmacologia , Quitosana/farmacologia , Gelatina/farmacologia , Glicerol/farmacologia , Dopamina/farmacologia , Hemostasia , Hemorragia/tratamento farmacológico , Bandagens , Antibacterianos/farmacologia
16.
ACS Appl Mater Interfaces ; 15(39): 46322-46332, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37748017

RESUMO

Hydrogels have attracted increasing attention in the biomedical field due to their similarity in structure and composition to natural extracellular matrices. However, they have been greatly limited by their low mechanical strength and self-adhesion for further application. Here, a gel-nanofiber material is designed for wound healing, which synergistically combines the benefits of hydrogels and nanofibers and can overcome the bottleneck of poor mechanical strength and self-adhesion in hydrogels and inadequate healing environment created by nanofibers. First, a nanofiber scaffold composed of polycaprolactone/poly(citric acid)-ε-lysine (PCL/PCE) nanofibers is fabricated via a new strategy of microfluidic electrospinning, which could provide a base for hyaluronic acid-polylysine (HE) gel growth on nanofibers. The prepared HE@PCL/PCE gel-nanofiber possesses high tensile strength (24.15 ± 1.67 MPa), excellent air permeability (656 m3/m2 h kPa), outstanding self-adhesion property, and positive hydrophilicity. More importantly, the prepared gel-nanofiber dressing shows good cytocompatibility and antibacterial properties, achieving a high wound-healing rate (92.48%) and 4.685 mm granulation growth thickness within 12 days. This material may open a promising avenue for accelerating wound healing and tissue regeneration, providing potential applications in clinical medicine.


Assuntos
Nanofibras , Nanofibras/química , Microfluídica , Antibacterianos , Cicatrização , Tecnologia , Bandagens , Hidrogéis/farmacologia , Poliésteres/química
17.
ACS Appl Mater Interfaces ; 15(36): 43003-43015, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37650377

RESUMO

All-polymer piezoelectric elastomers that integrate self-powered, soft, and elastic performance are attractive in the fields of flexible wearable electronics and human-machine interfaces. However, a lack of adhesion and UV-blocking performances greatly hinders the potential applications of elastomers in these emerging fields. Here, a high-performance piezoelectric elastomer with piezoelectricity, mechanical robustness, self-adhesion, and UV-resistance was developed by using poly(vinylidene fluoride) (PVDF), acrylonitrile (AN), acrylamide (AAm), and oxidized tannic acid (OTA) (named PPO). In this design, the dipole-dipole interactions between the PVDF and PAN chains promoted the content of ß-PVDF, endowing high piezoelectric coefficient (d33, 58 pC/N). Besides, high stretchability (∼500%), supercompressibility (∼98%), low Young's modulus (∼0.02 MPa), and remarkable elasticity (∼13.8% hysteresis ratio) were achieved simultaneously for the elastomers. Inspired by the mussel adhesion chemistry, the OTA containing abundant catechol and quinone groups provided high adhesion (93.26 kPa to wood) and an exceptional UV-blocking property (∼99.9%). In addition, the elastomers can produce a reliable electric signal output (Vocmax = 237 mV) and show a fast response (24 ms) when subjected to external force. Furthermore, the elastomer can be easily assembled as a wearable sensor for human physiological (body pulse and speech identification) monitoring and communication.

18.
Carbohydr Polym ; 313: 120813, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37182943

RESUMO

Self-healing, self-adhesive, and stretchable bio-based conductive hydrogels exhibit properties similar to those of biological tissues, making them an urgent requirement for emerging wearable devices. The primary challenge lies in devising straightforward strategies to accomplish all the aforementioned performances and achieve equilibrium among them. This study used the natural compound thioctic acid (TA) and modified cellulose to prepare conductive hydrogels with stretchability, healing, and self-adhesion through a simple one-step strategy. Metastable poly(TA) was obtained through ring-opening polymerization of lithiated TA, followed by the introduction of dopamine-grafted cellulose nanofibers (DCNF) to stabilize poly(TA) and prepare PTALi/DCNF hydrogels with the aforementioned properties. The hydrogels demonstrated remarkable conductivity, attributed to the existence of Li + ions, with a maximum conductivity of 17.36 mS/cm. The self-healing capacity of the hydrogels was achieved owing to the presence of disulfide bond in TA. The introduction of DCNF can effectively stabilize poly(TA), endow the hydrogel with self-adhesion ability, improve the mechanical properties, and further enhance the formability of hydrogels. Generally, bio-based PTALi/DCNF hydrogels with stretchability, self-healing, self-adhesion, and conductivity are obtained through a simple strategy and used as a sensor with a wide response range and high sensitivity. Hydrogels have significant potential for application in wearable electronic devices, electronic skins, and soft robots.

19.
Gels ; 9(4)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37102935

RESUMO

Hydrogel-based wet electrodes are the most important biosensors for electromyography (EMG), electrocardiogram (ECG), and electroencephalography (EEG); but, are limited by poor strength and weak adhesion. Herein, a new nanoclay-enhanced hydrogel (NEH) has been reported, which can be fabricated simply by dispersing nanoclay sheets (Laponite XLS) into the precursor solution (containing acrylamide, N, N'-Methylenebisacrylamide, ammonium persulfate, sodium chloride, glycerin) and then thermo-polymerizing at 40 °C for 2 h. This NEH, with a double-crosslinked network, has nanoclay-enhanced strength and self-adhesion for wet electrodes with excellent long-term stability of electrophysiology signals. First of all, among existing hydrogels for biological electrodes, this NEH has outstanding mechanical performance (93 kPa of tensile strength and 1326% of breaking elongation) and adhesion (14 kPa of adhesive force), owing to the double-crosslinked network of the NEH and the composited nanoclay, respectively. Furthermore, this NEH can still maintain a good water-retaining property (it can remain at 65.4% of its weight after 24 h at 40 °C and 10% humidity) for excellent long-term stability of signals, on account of the glycerin in the NEH. In the stability test of skin-electrode impedance at the forearm, the impedance of the NEH electrode can be stably kept at about 100 kΩ for more than 6 h. As a result, this hydrogel-based electrode can be applied for a wearable self-adhesive monitor to highly sensitively and stably acquire EEG/ECG electrophysiology signals of the human body over a relatively long time. This work provides a promising wearable self-adhesive hydrogel-based electrode for electrophysiology sensing; which, will also inspire the development of new strategies to improve electrophysiological sensors.

20.
ACS Appl Mater Interfaces ; 15(51): 59854-59865, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38095585

RESUMO

As typical soft materials, hydrogels have demonstrated great potential for the fabrication of flexible sensors due to their highly compatible elastic modulus with human skin, prominent flexibility, and biocompatible three-dimensional network structure. However, the practical application of wearable hydrogel sensors is significantly constrained because of weak adhesion, limited stretchability, and poor self-healing properties of traditional hydrogels. Herein, a multifunctional sodium hyaluronate (SH)/borax (B)/gelatin (G) double-cross-linked conductive hydrogel (SBG) was designed and constructed through a simple one-pot blending strategy with SH and gelatin as the gel matrix and borax as the dynamic cross-linker. The obtained SBG hydrogels exhibited a moderate tensile strength of 25.3 kPa at a large elongation of 760%, high interfacial toughness (106.5 kJ m-3), strong adhesion (28 kPa to paper), and satisfactory conductivity (224.5 mS/m). In particular, the dynamic cross-linking between SH, gelatin, and borax via borate ester bonds and hydrogen bonds between SH and gelatin chain endowed the SBG hydrogels with good fatigue resistance (>300 cycles), rapid self-healing performance (HE (healing efficiency) ∼97.03%), and excellent repeatable adhesion. The flexible wearable sensor assembled with SBG hydrogels demonstrated desirable strain sensing performance with a competitive gauge factor and exceptional stability, which enabled it to detect and distinguish various multiscale human motions and physiological signals. Furthermore, the flexible sensor is capable of precisely perceiving temperature variation with a high thermal sensitivity (1.685% °C-1). As a result, the wearable sensor displayed dual sensory performance for temperature and strain deformation. It is envisioned that the integration of strain sensors and thermal sensors provide a novel and convenient strategy for the next generation of multisensory wearable electronics and lay a solid foundation for their application in electronic skin and soft actuators.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa